EP1405131A1 - Dispositif electrocommandable a proprietes optiques variables ou systeme holographique, thermotrope ou a particules en suspension - Google Patents

Dispositif electrocommandable a proprietes optiques variables ou systeme holographique, thermotrope ou a particules en suspension

Info

Publication number
EP1405131A1
EP1405131A1 EP02764963A EP02764963A EP1405131A1 EP 1405131 A1 EP1405131 A1 EP 1405131A1 EP 02764963 A EP02764963 A EP 02764963A EP 02764963 A EP02764963 A EP 02764963A EP 1405131 A1 EP1405131 A1 EP 1405131A1
Authority
EP
European Patent Office
Prior art keywords
element according
glass
absorbent
sheet
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02764963A
Other languages
German (de)
English (en)
Inventor
Grégoire MATHEY
Jean-Christophe Giron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1405131A1 publication Critical patent/EP1405131A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • B32B17/10045Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10504Liquid crystal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer

Definitions

  • the present invention relates to electrically controllable systems with variable optical properties, and more precisely to glazing type systems, the light diffusion of which can be modified under the effect of an appropriate electrical supply, such as liquid crystal systems and optical valves.
  • the invention applies similarly to systems which exhibit significant light scattering, but only within a narrow range of angles of vision incidence, such as holographic systems. It also applies to thermotropic systems, as well as systems with suspended particles (known under the English abbreviation S.P.D for "suspended particles display”).
  • Liquid crystal systems use a functional film based on a polymer (s) medium in which droplets of liquid crystals, in particular nematic with positive dielectric anisotropy, are dispersed.
  • the liquid crystals when the film is tensioned, orient themselves along a privileged axis, which allows vision. When switched off, in the absence of alignment of the crystals, the film becomes diffusing and prevents vision. Examples are described in patents EP-88 126, EP-268 877, EP-238 164, EP-357 234, EP-409 5 442 and EP-964 288.
  • This type of film is generally placed between two substrates, for example example two sheets of polymer provided with electrodes, a structure which can then be leafed between two glasses to form a glazing.
  • Optical valve systems generally use a functional film in the form of an optionally crosslinked polymer matrix, in which microdroplets are dispersed containing particles capable of being placed in a preferred direction under the action of an electric or magnetic field.
  • the film will have a variable light transmission, generally associated with a variable light diffusion (under tension, the particles intercept light much less than under tension ).
  • An example is described in patent WO93 / 09460, with a film comprising a crosslinkable polyorganosiloxane matrix and absorbent particles of the polyiodide type.
  • the electrochromic system When the electrochromic system is switched on, it darkens and gives the image projected on the screen better contrast, and for the spectator, better visual comfort in an environment in natural or artificial light; it makes it possible in particular to absorb the stray light diffusedly reflected on the screen coming from the lighting means placed on the side of the spectator.
  • the invention therefore aims to improve the performance of a variable light scattering system such as one of those described above, in particular in view of an application as a projection screen, and this by means of means simple to manufacture, simple to implement and simple to maintain, and therefore less expensive.
  • a subject of the invention is first of all an element with variable optical properties comprising: (a) - a system of variable electrically controlled light diffusion, of the type with optical valve or liquid crystal system, or a system with suspended particles or a non-electrocontrolled system (a ') such as a holographic or thermotropic system or, which is associated with
  • the absorbent element (b) includes an element which has the desired optical property in the visible permanently, without requiring electrical or other control.
  • thermotropic systems among the electrically controlled systems when they are associated with one or more heating elements (for example a conductive layer heating by Joule effect), in order to make them switch at will, and not according to , in particular, the climatic conditions to which they are exposed.
  • heating elements for example a conductive layer heating by Joule effect
  • the invention therefore chose to add functionality to a system (a) or
  • the system (a) is a liquid crystal system as described above, comprising a film of droplets of liquid crystals dispersed in a medium and contained by two protective sheets each provided with an electrode.
  • These sheets can be chosen based on rigid substrates, preferably essentially transparent (glass, sufficiently thick PC polycarbonate), semi-rigid or flexible (thin polymer, such as thin PC).
  • rigid substrates preferably essentially transparent (glass, sufficiently thick PC polycarbonate), semi-rigid or flexible (thin polymer, such as thin PC).
  • a glass and a polymer substrate for example.
  • the preferred variant consists in that the two protective sheets are based on flexible polymer, in particular transparent of the PET (polyethylene terephthalate) type.
  • the absorbent elements (b) can be chosen from different natures. One or more can be used, of the same nature or of different natures, they will therefore "add” light absorption to the system (a) or (a '), over its entire surface or the majority of its surface.
  • the absorbent element may firstly consist of a rigid or semi-rigid substrate (glass, polymer) which is dyed in the mass, by suitable dyes.
  • TL light transmission glasses of 10 to 60% are chosen, for a thickness of the order of 1 to 8 mm, in particular from 1.5 to 6 mm.
  • the glass or the plastic substrate may have the most neutral transmission color possible, especially in the grays. In an application as a rear projection screen, these tones are the least distorting of the original colors of the projected images.
  • the absorbent element may also consist of a flexible, mass-dyed polymer sheet, in particular of thermoplastic, that is to say the type of sheet which is used as an interlayer sheet in laminated glazing. It can be polyvinyl butyral PVB, polyurethane PU, etylene vinyllacetate EVA. These tinted sheets have, for example, a light transmission T of 25 to 60%, in particular from 30 to 45% for a thickness generally between 0.2 and 0.8 mm (generally around 0.38 mm). For the same reason as above, we will preferably choose a color in neutral transmission, in gray for example. It is also possible to use a polymer-based sheet with absorbent properties which has been calendered to a clear substrate, for example a clear glass.
  • the absorbent element can also be in the form of a thin absorbent layer disposed on one of the faces of a rigid (glass, polymer), semi-rigid or flexible (polymer) substrate forming part of the whole of the element with variable optical properties.
  • the term “thin layer” is understood to mean a layer of interferential thickness (less than 1 ⁇ m, in particular between 1 and 100 nm or 2 and 50 nm). It can also be a superposition of thin layers, at least one of which is absorbent in the visible.
  • Niobium oxide and / or iron and / or chromium can, for example, be layers based on nickel oxide and / or iron and / or chromium, which can be deposited by a thermal decomposition technique (pyrolysis in the gas phase, in the form of powder or in liquid phase), by a vacuum technique (cathode sputtering assisted in particular by magnetic field) or by sol-gel.
  • a thermal decomposition technique pyrolysis in the gas phase, in the form of powder or in liquid phase
  • a vacuum technique cathode sputtering assisted in particular by magnetic field
  • sol-gel sol-gel.
  • it can be reactive in the presence of oxidizing elements type O 2 from metallic targets or sub-stoichiometric oxide targets, or non-reactive from targets of oxide.
  • the absorbent layer can also be essentially metallic, for example based on one of the following metals: nickel Ni, chromium Cr, Ni-Cr alloy, steel, Inconel alloy, Au or Au alloy, Ag silver or Ag alloy, copper. It is then preferably deposited by non-reactive sputtering. It can also be based on metallic nitride (s), of the TiN or ZrN type, which can be deposited by CVD or by reactive sputtering in the presence of nitriding elements from metallic targets.
  • the absorbent layer can also be based on electrochromic material, such as possibly hydrated tungsten oxide, possibly hydrated nickel oxide, possibly hydrated iridium or tantalum oxide.
  • another type of absorbent element (b) consists in using a dye within the functional film. It can very particularly be dichroic dyes which are dissolved within the droplets of liquid crystals and / or in the medium in which they are dispersed.
  • dichroic dyes are for example chosen from the family of diazoquinone derivatives or from that of anthraquinone derivatives.
  • the percentage or weight of dye relative to the liquid crystals, when the latter is dissolved therein, is preferably between 0.1 and 5%, in particular between 0.5 and 2%. In the variant where the dye is in the medium, its percentage by weight per contribution to the medium can be between 20 and 30% for example.
  • the absorbent element may be an absorbent electrically conductive layer forming part of one of the electrodes which supply the functional film with electricity. It can be a layer based on a conductive metal oxide (which can be deposited by pyrolysis or by cathode sputtering as in the case of the absorbent layer mentioned above).
  • the oxide (or mixture of oxides) is preferably doped. The fact that it is absorbent comes, in a first variant, from the fact that it is in the reduced state and / or substoichiometric in oxygen (while remaining electrically conductive).
  • It can be for example indium oxide (doped with tin) and reduced, tin oxide (doped for example with fluorine) and reduced, zinc oxide (doped for example Al) and reduced.
  • he can also be conductive oxides which are intrinsically absorbent, without being in the reduced state: this is the case of tin oxide doped with antimony, which at 30 nm, can have a light absorption A from 10 to about 62% depending on the percentage of dopant (2.5 to 10% of dopant).
  • the conductive layer forming part of the electrode is absorbent comes from the combination of its chemical nature and the choice of its thickness.
  • a layer based on metal oxide (doped) it can become sufficiently absorbent for the invention if it is sufficiently thick.
  • a metal-based layer of the Ni, Cr, NiCr type, or metallic nitride (TiN, ZrN %) whose thickness is adjusted appropriately (for example, a layer of surrounding TiN 25 nm has a light absorption of around 50%).
  • the absorbent element can also be a film based on a plastic material, which is absorbent and which can, for example, be calendered to a clear substrate, in particular clear glass.
  • the element with optical properties due to the presence of the absorbent element or elements (b) sees its light absorption AL increase by at least 5% and / or sees its light reflection R
  • the element with optical properties as a whole has a light transmission T in particular between 10 and 50%, preferably between 20 and 40%: this range of TL is adequate to obtain the desired absorption effect while keeping a level sufficient light transmission, this last point being particularly important when the electrically controllable variable diffusion system is in the "ON" state, that is to say in the live and transparent state.
  • the preferred embodiment according to the invention consists in that the element with variable optical properties also comprises: (c) - at least one anti-reflective element in the visible (called anti-reflection in the following text).
  • the anti-reflection element (c) can be formed, according to a first variant, of an alternation of thin layers of interferential thickness with high and low refractive indices, according to a sequence (high index layer / low index layer) n , with n> 1.
  • a high index / low index sequence most particularly the first from the substrate on which the anti-reflection is located, can be replaced by a layer of a material of intermediate index.
  • Each "layer” can be a single layer or a superposition of several layers respectively at high or low index.
  • the layers can be deposited by pyrolysis or by sputtering, like the absorbent layers mentioned above.
  • the low index layers can be made of SiO 2 , AI 2 O 3 or a mixture.
  • the high index layers can be SnO 2 , Si 3 N 4j TiO 2 , Nb 2 Os, AIN, ZnO.
  • the intermediate index layers can be a mixture of high and low index oxides or SiON. Examples of suitable antireflections are described in patents EP-728,712, EP-911,302, WO97 / 43224, WO00 / 72053, FR99 / 14423. An example is marketed under the name of Vision Lite by the company Saint-Gobain Glass II. It may in particular be a stack of the Si 3 N 4 or Sn ⁇ 2 / Si0 2 / Si 3 N4 or Nb 2 ⁇ 5 / S ⁇ O type.
  • the anti-reflection coating may comprise an absorbent layer, for example made of nitride of the TiN or ZrN type: there are thus two functions at the same time, with a single stack of layers which can be deposited one after the other by the same deposition method: anti-reflection and absorption effect.
  • the anti-reflection element is an anti-reflection film, which can be applied by calendering to the surface of a substrate of the glass or plastic type. It may, for example, be a film of polyethylene terephthalate PET provided with an anti-reflection coating or a film of cellulose triacetate.
  • the anti-reflective coating is effective when it is deposited on the exterior face of at least one of the "exterior” substrates of the element with variable optical properties (the term “exterior substrate” means that which delimits the element, of which one side is accessible and facing outside).
  • an anti-reflection element is very positive in the context of an application to a rear projection screen for transmission. Indeed, it will decrease the light reflection, preferably from the outside face of the element as a whole which is intended to be turned towards the viewer. It will therefore make it possible to reduce the light reflection coming from the stray lighting on the spectator side. Its effect is also beneficial, but much less marked, if it is placed on the external face which will be on the side of the projector.
  • the same type of anti-reflection effect is obtained by superficially modifying the external surface of at least one of these external substrates: this modification can consist of a surface texturing, a surface etching leaving calibrated growths , as described in patent FR 00/08842 filed on July 6, 2000: at increasing depth, there is less and less material and more and more air, which creates on the surface of the material ( glass in particular) an intermediate index layer between the material in question and the air, resulting in an anti-reflection effect.
  • a glazing structure can be used in the narrow sense of the term, that is to say using at least one glass substrate. It can have, in particular, one, two or three glass substrates. It is also possible to replace all or part of these glasses with other rigid substrates of the polycarbonate type. We can even consider the case where the element as a whole does not contain rigid substrates, and only includes, for example, the functional film, of the liquid crystal type, sandwiched between two sheets of flexible polymer provided with electrodes (of the type PET / ITO or PET / SnO 2 doped), without counting of course the connection elements and any peripheral seals.
  • thermoplastic polymer / variable light diffusion system / sheet (s) of thermoplastic polymer / glass 2 / optional anti-reflection coating or
  • a single glass configuration can be of the type: (D - Optional anti-reflective coating / glass 1 / sheet (s) of thermoplastic polymer / variable light diffusion system / sheet (s) of optional protective polymer.
  • the glass 1 and / or 2 and / or 3 which can be tinted in the mass and / or be provided with an absorbent layer, or one of the sheets of thermoplastic polymer be tinted in the mass .
  • a favorable configuration consists in that it is the glass closest to the spectator which is this absorbent glass (by coloring in the mass or by adding a layer).
  • a preferred variant of this configuration is that it is this absorbent glass which is provided with an anti-reflective coating.
  • the subject of the invention is the element as a whole described above
  • this element forming part of a rear projection screen operating in transmission.
  • Figure 1 a laminated glazing according to the invention with two glasses
  • Figure 2 a laminated glazing according to the invention with three glasses.
  • liquid crystal system 1 is of configuration: PET sheet / electrode / functional film / electrode / PET sheet, the assembly being currently used in SAINT-GOBAIN GLASS Priva-Lite glazing.
  • the functional film comprising the liquid emulsion of nematic liquid crystals is approximately 10 to 30 ⁇ m thick (preferably 20 to 25 micrometers).
  • the PET sheets are approximately 175 ⁇ m thick.
  • the two electrodes are made of ITO (indium oxide doped with tin) with a resistivity of around 100 ohms per square.
  • liquid crystals can be of the "NCAP” type, in particular those used in "Priva-Lite” or “PDLC” glazing which have been mentioned above.
  • their birefringence is between 0.1 and 0.2, it is variable in particular according to the medium used, of the order of 0.1 if the polymer of the medium is of polyurethane (PU) type and l '' order of 0.2 if it is of polyvinyl alcohol (PVA) type.
  • PU polyurethane
  • PVA polyvinyl alcohol
  • the medium is in fact preferably based on a polymer from the family of PUs (latex) and / or PVA, generally prepared in the aqueous phase in a proportion of polymers of 15 to 50% by weight relative to water. .
  • the active elements vis-à-vis the light scattering are advantageously in the form of droplets of average diameter between
  • Size droplets depends on a certain number of parameters, including in particular the ease of emulsion of the active elements in the medium considered.
  • these droplets represent between 120 and 220% by weight of the medium, in particular between 150 and 200% by weight, apart from the solvent, generally aqueous of said medium.
  • liquid crystals are chosen in the form of droplets with a diameter of approximately 2.5 ⁇ m when the medium is based on polyurethane latex (birefringence of approximately 0.1) and with a diameter d '' approximately 1 ⁇ m when the medium is rather based on polyvinyl alcohol (birefringence of approximately 0.2).
  • the power supply uses voltages between 0 and 110 V.
  • the clear glasses being standard soda-lime-silica glasses marketed by SAINT-GOBAIN GLASS under the name "Planilux” and 2 mm thick.
  • the EVA (ethylene vinyl acetate) sheet is 380 micrometers thick.
  • This VENUS glass has the following characteristics: T between 25 and 30%. In the case of the glass used here, the TL is 26.6% (according to Illuminant D65), its color is gray.
  • This glazing is illustrated in Figure 1, with the liquid crystal system
  • Example 3 presents a configuration with three glasses according to FIG. 2: compared to the configuration of FIG. 1, it adds a clear glass 8 4 mm thick laminated to glass 2 and provided on the outside with an anti-reflection coating 7.
  • This anti-reflection coating is composed of the following stack of layers: SnO 2 / SiO 2 / Nb 2 O 5 / SiO 2 : Al
  • FIG. 2 thus illustrates another embodiment, where the laminated glazing has three glasses: there is added to the configuration according to FIG. 1, on the side of the tinted glass in the mass 2, a thermoplastic interlayer sheet of polyurethane 6 of 0.76 mm thick, allowing to leaf through the third glass 8, which is a clear glass identical to clear glass 3. In the case where an antireflection coating 7 is used, it is therefore on the outer face of this third glass 8 that it is arranged.
  • Example 4 repeats the configuration of Example 3, and adds a second anti-reflective coating 7 ′ (cf. FIG. 2) on the outside face of the clear glass 3.
  • the coating 7 ′ is identical to the coating 7 of Example 3
  • glasses 3 and 8 have a thickness of 4 mm.
  • Example 5 repeats the configuration of Example 2 with two glasses according to FIG. 2, but replaces VENUS 2 glass colored in the mass with another glass tinted in the mass 2 of 5 mm thick and marketed by SAINT-GOBAIN GLASS under the name "Parsol Gris". Its characteristics are: T L of 48.5%, gray color.
  • Example 6 is a configuration with three glasses according to Figure 2, taking glass 2 from the tinted glass from Example 5, and adding a clear glass 8 of 4 mm provided with an anti-reflective coating 7 as in Example 3 EXAMPLE 7
  • Example 7 uses the configuration of Example 6 and adds an anti-reflective coating T (identical to that of Example 4) to the outside of the clear glass 3.
  • the clear glasses 3 and 8 each have a thickness of 4 mm.
  • This example is a laminated glazing of the same configuration as in Example 2, to which is added by calendering on the outside of the tinted glass 2 an anti-reflection film 7 (plastic film) sold by Murei Danki under the reference "ReaLook 2201" EXAMPLE 9
  • This example is a laminated glazing of the same configuration as in Example 5, to which is added by calendering on the outer face of the tinted glass 2 an anti-reflection film 7 identical to that used in Example 8.
  • Table 1 summarizes for these nine examples: - The type of glass and / or the number of anti-reflective coatings used,

Abstract

L'invention a pour objet un élément à propriétés optiques variables comprenant : (a) - un système à diffusion lumineuse variable électrocommandée du type système à valve optique ou à cristaux liquides, un système à particules en suspension, ou un système (a') holographique ou thermotrope, qui est associé à (b) - au moins un élément absorbant au moins dans le domaine du visible. Elle s'applique notamment à la fabrication d'écrans de rétro-projection.

Description

DISPOSITIF ELECTROCOMMANDABLE A PROPRIETES OPTIQUES VARIABLES OU SYSTEME HOLOGRAPHIQUE, THERMOTROPE OU A PARTICULES EN SUSPENSION
La présente invention concerne des systèmes électrocommandables à propriétés optiques variables, et plus précisément des systèmes du type vitrage dont on peut modifier la diffusion lumineuse sous l'effet d'une alimentation 0 électrique appropriée, comme les systèmes à cristaux liquides et les valves optiques.
Accessoirement, l'invention s'applique de façon similaire aux systèmes qui présentent une diffusion lumineuse significative, mais seulement dans une gamme étroite d'angles d'incidence de vision, comme les systèmes 5 holographiques. Elle s'applique également aux systèmes thermotropes, ainsi qu'aux systèmes à particules en suspension (connus sous l'abréviation anglaise S.P.D pour "suspended particles display").
Les systèmes à cristaux liquides utilisent un film fonctionnel à base d'un médium en polymère(s) dans lequel sont dispersées des gouttelettes de cristaux 0 liquides, notamment nematiques à anisotropie diélectrique positive. Les cristaux liquides, quand le film est mis sous tension, s'orientent selon un axe privilégié, ce qui autorise la vision. Hors tension, en l'absence d'alignement des cristaux, le film devient diffusant et empêche la vision. Des exemples sont décrits dans les brevets EP-88 126, EP-268 877, EP-238 164, EP-357 234, EP-409 5 442 et EP-964 288. Ce type de film est généralement disposé entre deux substrats, par exemple deux feuilles de polymère munies d'électrodes, structure que Ton peut ensuite feuilleter entre deux verres pour constituer un vitrage. Ce type de vitrage est commercialisé par la société SAINT-GOBAIN GLASS sous la dénomination " Priva-Lite ". On peut en fait utiliser tous les dispositifs utilisant 0 des cristaux dits NCAP (Nematic Curvilinearly Aligned Phase) ou PDLC (Polymer Dispersed Liquid Crystal). Les systèmes à valves optiques utilisent généralement un film fonctionnel sous forme d'une matrice de polymère éventuellement réticulé, dans laquelle sont dispersées des microgouttelettes contenant des particules aptes à se placer selon une direction privilégiée sous l'action d'un champ électrique ou magnétique. En fonction notamment du potentiel appliqué et/ou de la nature et de la concentration de particules orientables, le film va présenter une transmission lumineuse variable, généralement associée à une diffusion lumineuse variable (sous tension, les particules interceptent beaucoup moins la lumière que hors tension). Un exemple en est décrit dans le brevet WO93/09460, avec un film comprenant une matrice en polyorganosiloxane réticulable et des particules absorbantes du type polyiodure.
Beaucoup d'applications ont été envisagées pour ces types de système, par exemple pour équiper des cloisons internes ou constituer des vitrages extérieurs de bâtiments, (notamment dans des bureaux), ou dans des moyens de locomotion terrestres (train, voiture), aériens (avion) ou maritimes.
Comme évoqué dans le brevet EP-823 653, une application originale consiste à les utiliser en tant qu'écran de rétro- projection fonctionnant en transmission, où le projecteur se trouve d'un côté de l'écran et le spectateur de l'autre. Les utilisations possibles sont nombreuses : pour équiper des vitrines, pour des panneaux publicitaires, pour les panneaux d'affichage des gares ou des aéroports, par exemple. L'utilisation de systèmes à cristaux liquides rend possible la projection sans avoir à obscurcir le local où s'effectue la projection. Cependant, avec un système standard, le contraste de l'image n'est pas très bon. C'est la raison pour laquelle le brevet EP-823 653 propose une solution pour améliorer ce contraste, qui consiste à juxtaposer au système à diffusion variable un système à transmission lumineuse variable du type électrochrome. Quand le système électrochrome est mis sous tension, il s'obscurcit et confère à l'image projetée sur l'écran un meilleur contraste, et pour le spectateur, un meilleur confort visuel dans un environnement en lumière naturelle ou artificielle ; il permet notamment d'absorber la lumière parasite réfléchie de manière diffuse sur l'écran provenant des moyens d'éclairage placés du côté du spectateur.
Cette solution est séduisante, car l'écran obtenu est extrêmement modulable dans ses propriétés optiques. Cependant, elle présente aussi des inconvénients : la fabrication de l'écran nécessitant la juxtaposition de deux systèmes fonctionnels n'est pas très simple, l'écran lui-même qui en résulte peut avoir à présenter une épaisseur significative, et il faut mettre en place un double système de connectique et d'alimentation électrique.
L'invention a alors pour but d'améliorer les performances d'un système à diffusion lumineuse variable tel que l'un de ceux décrits plus haut, notamment en vu d'une application en tant qu'écran de projection, et ceci par des moyens simples à fabriquer, simples à mettre en œuvre et simples à entretenir, et de fait moins onéreux.
L'invention a tout d'abord pour objet un élément à propriétés optiques variables comprenant : (a) - un système à diffusion lumineuse variable électrocommandée, du type système à valve optique ou à cristaux liquides, ou un système à particules en suspension ou un système non électrocommandé (a') comme un système holographique ou thermotrope ou, qui est associé à
(b) - au moins un élément absorbant au moins dans le domaine du visible. Dans le cadre de l'invention, on comprend par l'élément absorbant (b) un élément qui présente la propriété optique voulue dans le visible de façon permanente, sans nécessiter de commande électrique ou autre.
A noter que l'on peut aussi ranger les systèmes thermotropes parmi les systèmes électrocomandés quand on les associe à un ou des éléments chauffants (par exemple une couche conductrice chauffant par effet Joule), afin de les faire commuter à volonté, et non en fonction, notamment, des conditions climatiques auxquelles ils sont exposés.
L'invention a donc choisi d'ajouter une fonctionnalité à un système (a) ou
(a') standard, à savoir une absorption lumineuse que l'on peut choisir à la conception au niveau voulu, à un niveau supérieur qu'il a habituellement, mais sans avoir recours à un système nécessitant un pilotage électrique. De cette façon, la fabrication de l'ensemble est plus simple, en ayant recours à des éléments absorbants réalisables plus vite, plus facilement que des systèmes du type électrochrome. On obtient un excellent résultat en termes de performances optiques. Ainsi, pour une absorption donnée A conférée par l'élément absorbant, dans le cas d'une application du dispositif selon l'invention à un écran de rétro-projection fonctionnant en transmission, la réflexion de la lumière ambiante sur l'écran est réduite d'un facteur A2. Comme la lumière provenant de la source lumineuse de projection est elle aussi atténuée d'un facteur A, le gain en contraste de l'écran est de A2/A, c'est-à-dire égal à A. Selon un mode de réalisation de l'invention, le système (a) est un système à cristaux liquides comme décrit plus haut, comprenant un film de gouttelettes de cristaux liquides dispersées dans un médium et contenu par deux feuilles protectrices munies chacune d'une électrode. Ces feuilles peuvent être choisies à base de substrats rigides, de préférence essentiellement transparents (verre, polycarbonate PC suffisamment épais), semi-rigides ou flexibles (polymère de faible épaisseur, comme du PC mince). On peut avoir les deux feuilles de natures différentes (un verre et un substrat en polymère par exemple).
La variante préférée consiste à ce que les deux feuilles protectrices soient à base de polymère flexible, notamment transparentes du type PET (polyéthylène-téréphtalate).
Les éléments absorbants (b) peuvent être choisis de différentes natures. On peut en utiliser un ou plusieurs, de même nature ou de natures différentes, ils vont donc venir " ajouter " de l'absorption lumineuse au système (a) ou (a'), sur toute sa surface ou la majorité de sa surface. L'élément absorbant peut tout d'abord consister en un substrat rigide ou semi-rigide (verre, polymère) qui est teinté dans la masse, par des colorants appropriés. De préférence, on choisit des verres de transmission lumineuse TL de 10 à 60%, pour une épaisseur de l'ordre de 1à 8 mm, notamment de 1,5 à 6 mm. On peut tout particulièrement utiliser la gamme des verres commercialisés sous la dénomination PARSOL ou VENUS par la société SAINT-GOBAIN GLASS, ou choisir des compositions verrières telles que décrites dans les brevets... Généralement, on préfère que le verre ou le substrat en plastique ait une couleur en transmission la plus neutre possible, notamment dans les gris. Dans une application en tant qu'écran de rétro-projection, ce sont ces tonalités qui dénaturent le moins les couleurs originales des images projetées. L'élément absorbant peut également consister en une feuille de polymère flexible teintée dans la masse, notamment en thermoplastique, c'est-à-dire le type de feuille qu'on utilise comme feuille intercalaire dans les vitrages feuilletés. Il peut s'agir de polyvinylbutyral PVB, de polyuréthane PU, d'étylène vinyllacétate EVA. Ces feuilles teintées présentent par exemple une transmission lumineuse T de 25 à 60 % , notamment de 30 à 45% pour une épaisseur généralement comprise entre 0,2 et 0,8 mm (généralement aux environs de 0,38 mm). Pour la même raison que précédemment, on choisira de préférence une couleur en transmission neutre, dans les gris par exemple. On peut aussi utiliser une feuille à base de polymère à propriétés absorbantes que l'on vient caladrer à un substrat clair, par exemple un verre clair.
L'élément absorbant peut aussi se présenter sous forme d'une couche mince absorbante disposée sur l'une des faces d'un substrat rigide (verre, polymère), semi-rigide ou flexible (polymère) faisant partie de l'ensemble de l'élément à propriétés optiques variables. On entend par couche mince une couche d'épaisseur interferentielle (inférieure à 1 μm, notamment entre 1 et 100 nm ou 2 et 50 nm). Il peut aussi s'agir d'une superposition de couches minces, dont l'une au moins est absorbante dans le visible. Il peut par exemple s'agir de couches à base d'oxyde de nickel et/ou de fer et/ou de chrome, que l'on peut déposer par une technique de décomposition thermique (pyrolyse en phase gazeuse, sous forme de poudre ou en phase liquide), par une technique sous vide (pulvérisation cathodique notamment assistée par champ magnétique) ou par sol-gel. Quand il s'agit d'un procédé par pulvérisation cathodique, elle peut être réactive en présence d'éléments oxydants type O2 à partir de cibles métalliques ou de cibles d'oxyde sous-stoechiométrique, ou non réactive à partir de cibles d'oxyde. La couche absorbante peut aussi être essentiellement métallique, par exemple à base d'un des métaux suivants : nickel Ni, chrome Cr, alliage Ni-Cr, acier, alliage Inconel, Au ou alliage Au, argent Ag ou alliage Ag, cuivre. Elle est alors déposée de préférence par pulvérisation cathodique non réactive. Elle peut être aussi à base de nitrure(s) métallique(s), du type TiN ou ZrN, que l'on peut déposer par CVD ou par pulvérisation cathodique réactive en présence d'éléments nitrurants à partir de cibles métalliques. La couche absorbante peut aussi être à base de matériau électrochrome, comme de l'oxyde de tungstène éventuellement hydraté, de l'oxyde de nickel éventuellement hydraté, de l'oxyde d'iridium ou de tantale éventuellement hydraté.
Dans le cas où le système (a) est un système à cristaux liquides, un autre type d'élément absorbant (b) consiste à utiliser un colorant au sein du film fonctionnel. Il peut tout particulièrement s'agir de colorants dichroïques qui sont dissous au sein des gouttelettes de cristaux liquides et/ou dans le médium dans lequel elles sont dispersées.
Ces colorants dichroïques sont par exemple choisis dans la famille des dérivés de diazoquinone ou dans celle des dérivés d'anthraquinone. Le pourcentage ou poids de colorant par rapport aux cristaux liquides, quand ce dernier y est dissous, est de préférence compris entre 0,1 et 5%, notamment entre 0,5 et 2%. Dans la variante où le colorant est dans le médium, son pourcentage en poids par apport au médium peut être compris entre 20 et 30% par exemple.
Dans le cas où l'on utilise un système (a) électrocommandable, l'élément absorbant peut être une couche électroconductrice absorbante faisant partie d'une des électrodes qui alimentent en électricité le film fonctionnel. Il peut s'agir d'une couche à base d'oxyde métallique conducteur (que l'on peut déposer par pyrolyse ou par pulvérisation cathodique comme dans le cas de la couche absorbante mentionnée plus haut). L'oxyde (ou le mélange d'oxydes) est de préférence dopé. Le fait qu'il soit absorbant vient, dans une première variante, du fait qu'il se trouve à l'état réduit et/ou sous-stoechiométrique en oxygène (tout en restant conducteur électrique). Il peut s'agir par exemple d'oxyde d'indium (dopé à l'étain) et réduit, d'oxyde d'étain (dopé par exemple au fluor) et réduit, d'oxyde de zinc (dopé par exemple Al) et réduit. Il peut aussi s'agir d'oxydes conducteurs qui sont intrinsèquement absorbants, sans être à l'état réduit : c'est le cas de l'oxyde d'étain dopé à l'antimoine, qui à 30 nm, peut avoir une absorption lumineuse A de 10 à environ 62 % selon le pourcentage en dopant (2,5 à 10 % de dopant) . Dans une seconde variante, le fait que la couche conductrice faisant partie de l'électrode soit absorbante provient de la combinaison de sa nature chimique et du choix de son épaisseur. Ainsi, pour une couche à base d'oxyde métallique (dopé), celle-ci peut devenir suffisamment absorbante pour l'invention si elle est suffisamment épaisse . On peut choisir aussi une couche à base de métal du type Ni, Cr, NiCr, ou de nitrure métallique (TiN, ZrN ...) dont on ajuste l'épaisseur de façon appropriée (par exemple, une couche de TiN d'envion 25 nm a une absorption lumineuse d'environ 50%).
L'élément absorbant peit également être un film à base de matériau plastique, qui est absorbant et que l'on peut, par exemple calandrer à un substrat clair, un verre clair notamment.
Selon l'invention, l'élément à propriétés optiques, de par la présence du ou des éléments absorbants (b) voit son absorption lumineuse AL augmenter d'au moins 5% et/ou voit sa réflexion lumineuse R|_ diminuer d'au moins 5%, notamment d'au moins 8% . L'élément à propriétés optiques dans son ensemble présente une transmission lumineuse T notamment comprise entre 10 et 50%, de préférence entre 20 et 40% : cette gamme de TL est adéquate pour obtenir l'effet d'absorption voulu tout en gardant un niveau de transmission lumineuse suffisant, ce dernier point étant tout particulièrement important quand le système à diffusion variable electrocommandable se trouve à l'état " ON ", c'est-à-dire à l'état sous tension et transparent.
Le mode de réalisation préféré selon l'invention consiste à ce que l'élément à propriétés optiques variables comprenne aussi : (c) - au moins un élément anti-réfléchissant dans le visible (appelé antireflets dans la suite du texte).
L'élément antireflets (c) peut être constitué, selon une première variante, d'une alternance de couches minces d'épaisseur interferentielle à haut et bas indices de réfraction, selon une séquence (couche à haut indice/couche à bas indice)n, avec n > 1. Une séquence haut indice/bas indice, tout particulièrement la première à partir du substrat sur lequel se trouve l'anti reflets, peut être remplacée par une couche d'un matériau d'indice intermédiaire. Chaque " couche " peut être une mono-couche ou une superposition de plusieurs couches respectivement à haut ou bas indice. Les couches peuvent être déposées par pyrolyse ou par pulvérisation cathodique, comme les couches absorbantes mentionnées précédemment. Les couches à bas indice peuvent être en SiO2, AI2O3 ou mélange. Les couches à haut indice peuvent être en SnO2, Si3N4j TiO2, Nb2Os, AIN, ZnO. Les couches à indice intermédiaire peuvent être un mélange d'oxydes à haut et bas indices ou en SiON. Des exemples d'antireflets appropriés sont décrits dans les brevets EP-728 712, EP-911 302, WO97/43224, WO00/72053, FR99/14423. Un exmple est commercialisé sous le nom de Vision Lite par la société Saint-Gobain Glass II peut s'agir notamment d'un empilement du type Si3N4 ou Snθ2/Si02/Si3N4 ou Nb2θ5/SιO2 (le Si02 pouvant comprendre un peu de métal du type aluminium ou un peu de bore, notamment s'il est obtenu par pulvérisation cathodique). Selon un mode de réalisation intéressant, le revêtement anti-reflet peut comprendre une couche absorbante, par exemple en nitrure de type TiN ou ZrN : on a ainsi deux fonctions en même temps, avec un seul empilement de couches que l'on peut déposer les unes après les autres par le même mode de dépôt: effet anti- reflets et absorption.
Selon une seconde variante, l'élément antireflets est un film antireflets, que l'on peut appliquer par calandrage à la surface d'un substrat du type verre ou plastique. Il peut s'agir par exemple d'un film de polyéthylène téréphtalate PET muni d'un revêtement anti-reflets ou d'un film de triacétate de cellulose.
Dans les deux variantes, le revêtement antireflets est efficace quand il est déposé sur la face extérieure d'au moins un des substrats " extérieurs " de l'élément à propriétés optiques variables (on entend par substrat extérieur celui qui délimite l'élément, dont une face est accessible et tournée vers l'extérieur). L'ajout d'un élément antireflets (au moins) est très positif dans le cadre d'une application à un écran de rétro-projection pour transmission. En effet, il va diminuer la réflexion lumineuse, de préférence de la face extérieure de l'élément dans son ensemble qui est destinée à être tourné vers le spectateur. Il va donc permettre de diminuer la réflexion lumineuse provenant de l'éclairage parasite côté spectateur. Son effet est également bénéfique, mais beaucoup moins marqué, si on le dispose sur la face extérieure qui va se trouver du côté du projecteur .
Selon une troisième variante, on obtient le même type d'effet anti-reflet en modifiant superficiellement la surface extérieure de l'un au moins de ces substrats extérieurs : cette modification peut consister en une texturation de surface, une gravure superficielle laissant des excroissances calibrées, comme cela est décrit dans le brevet FR 00/ 08842 déposé le 6 juillet 2000 : à profondeur croissante, il y a de moins en moins de matériau et de plus en plus d'air, ce qui crée à la surface du matériau (du verre notamment) une couche d'indice intermédiaire entre le matériau en question et l'air, d'où un effet antireflets.
Au premier abord, il paraît surprenant de combiner dans un même élément un élément absorbant dans le visible (qui va donc aider à abaisser le niveau de transmission lumineuse) et un élément antireflets (qui va au contraire favoriser une augmentation de la transmission dans le visible au détriment de la réflexion). En fait, les inventeurs se sont aperçus qu'il y avait une synergie entre ces deux composants, qui permettait d'atteindre des niveaux de contraste excellents, quand on se servait de l'élément global comme écran de rétro- projection.
La configuration de l'élément " global " de l'invention peut être très variée : on peut avoir recours à une structure de vitrage au sens étroit du terme, c'est-à-dire utilisant au moins un substrat de verre. Il peut avoir, notamment, un, deux ou trois substrats de verre. Il est également possible de remplacer tout ou partie de ces verres par d'autres substrats rigides du type polycarbonate. On peut même envisager le cas où l'élément dans sa globalité ne contient pas de substrats rigides, et ne comprend par exemple que le film fonctionnel, du type à cristaux liquides, enserré entre deux feuilles de polymère flexible munies d'électrodes (du type PET/ITO ou PET/SnO2 dopé), sans compter bien sûr les éléments de connectique et les joints périphériques éventuels.
On a alors un écran flexible, que l'on peut enrouler ou tendre par un cadre ou d'autres moyens de tensions appropriés, à volonté, ou le disposer à proximité immédiate d'un vitrage traditionnel.
On peut avoir des structures de vitrage feuilleté, notamment du type : ® - Revêtement antireflets optionnel / verre 1 / feuille(s) de polymère thermoplastique / système à diffusion lumineuse variable / feuille(s) de polymère thermoplastique / verre 2 / revêtement antireflets optionnel, ou encore
® - Revêtement antireflets optionnel / verre 1 / feuille (s) de polymère thermoplastique / système à diffusion lumineuse variable / feuille(s) de polymère thermoplastique / verre 2 / feuille(s) de polymère thermoplastique / verre 3 / revêtement antireflets optionnel.
Une configuration à un seul verre peut être du type : (D - Revêtement antireflets optionnel / verre 1 / feuille(s) de polymère thermoplastique / système à diffusion lumineuse variable / feuille(s) de polymère protectrice optionnelle.
Dans ces configurations, c'est le verre 1 et/ou 2 et/ou 3 qui peut être teinté dans la masse et/ou être muni d'une couche absorbante, ou l'une des feuilles de polymère thermoplastique être teintée dans la masse. Comme on l'a vu, une configuration favorable consiste à ce que ce soit le verre le plus proche du spectateur qui soit ce verre absorbant (par coloration dans la masse ou par adjonction d'une couche).
Une variante préférée de cette configuration consiste à ce que ce soit ce verre absorbant qui soit muni d'un revêtement antireflets. L'invention a pour objet l'élément dans sa globalité décrit plus haut
(pouvant inclure toutes les connectiques, alimentations électriques, joints, cadre périphérique connus per se et adaptés à ce type de produit), cet élément faisant partie d'un écran de rétro- projection fonctionnant en transmission.
L'invention sera ci-après décrite plus en détails à l'aide des figures jointes qui représentent : Figure 1 : un vitrage feuilleté selon l'invention à deux verres, Figure 2 : un vitrage feuilleté selon l'invention à trois verres.
Ces figures sont extrêmement schématiques et ne sont pas à l'échelle pour en faciliter la lecture.
Dans tous les exemples qui suivent, le système à cristaux liquides 1 est de configuration : feuille de PET/électrode/film fonctionnel/électrode/feuille de PET, l'ensemble étant actuellement utilisé dans les vitrages Priva-Lite de SAINT- GOBAIN GLASS.
Le film fonctionnel comportant l'émulsion liquide de cristaux liquides nematiques est d'une épaisseur d'environ 10 à 30 μm (de préférence 20 à 25 micromètres). Les feuilles de PET ont une épaisseur d'environ 175 μm. Les deux électrodes sont constituées d'ITO (oxyde d'indium dopé à l'étain) de résistivité environ 100 ohms par carré.
On donne ci-après quelques détails sur les cristaux liquides et leur médium utilisables. En ce qui concerne les cristaux liquides, ceux-ci peuvent être du type " NCAP ", notamment ceux utilisés dans les vitrages " Priva-Lite " ou " PDLC " qui ont été mentionnés plus haut. En règle générale, leur biréfringence est comprise entre 0,1 et 0,2, elle est variable notamment en fonction du médium utilisé, de l'ordre de 0,1 si le polymère du médium est de type polyuréthane (PU) et de l'ordre de 0,2 s'il est de type alcool polyvinylique (PVA).
Le médium est en effet de préférence à base d'un polymère de la famille des PU (latex) et/ou des PVA, généralement préparé en phase aqueuse dans une proportion de polymères de 15 à 50% en poids par rapport à l'eau.
Les éléments actifs vis-à-vis de la diffusion lumineuse sont avantageusement sous forme de gouttelettes de diamètre moyen compris entre
0,5 et 3 μm, notamment entre 1 et 2,5 μm,' dispersées dans le médium. La taille des gouttelettes dépend d'un certain nombre de paramètres, dont notamment la facilité d'émulsion des éléments actifs dans le médium considéré. De préférence, ces gouttelettes représentent entre 120 et 220% en poids du médium, notamment entre 150 et 200% en poids, hormis le solvant, généralement aqueux dudit médium.
De manière particulièrement préférée, on choisit des cristaux liquides sous forme de gouttelettes d'un diamètre d'environ 2,5 μm quand le médium est à base de latex de polyuréthane (biréfringence d'environ 0,1 ) et d'un diamètre d'environ 1 μm quand le médium est plutôt à base de polyvinylalcool (biréfringence d'environ 0,2).
L'alimentation électrique utilise des tensions comprises entre 0 et 110 V. EXEMPLE 1 - Exemple comparatif
Celui-ci est un vitrage feuilleté à deux verres selon la figure 1 , de configuration : Verre clair 3 / EVA 4 / système à cristaux liquides prédéfini 1 / EVA 5 / verre clair 2 Les verres clairs étant des verres silico-sodo-calciques standards commercialisés par SAINT-GOBAIN GLASS sous l'appellation " Planilux " et de 2 mm d'épaisseur. La feuille d'EVA (éthylène vinylacétate) est d'épaisseur 380 micromètres.
Le feuilletage du système à cristaux liquides est obtenu de façon connue par mise sous pression et/ou chauffage vers 100°C. EXEMPLE 2
Celui-ci est un vitrage feuilleté de même configuration qu'à l'exemple 1 , mais on a substitué au verre 2 clair un verre coloré dans la masse, commercialisé sous la dénomination VENUS VG10 par SAINT-GOBAIN GLASS et d'épaisseur 2,1 mm. Ce verre VENUS a les caractéristiques suivantes : T comprise entre 25 et 30%. Dans le cas du verre utilisé ici, la TL est de 26,6% (selon Illuminant D65), sa couleur est grise. Ce vitrage est illustré par la figure 1 , avec le système à cristaux liquides
1, le verre teinté dans la masse 2, le verre clair 3, les deux feuilles d'EVA 4, 5. On y a aussi représenté schématiquement le projecteur pour montrer la façon la plus judicieuse de disposer l'écran par rapport audit projecteur (le verre teinté dans la masse du côté opposé à celui-ci). EXEMPLE 3 L'exemple 3 présente une configuration à trois verres selon la figure 2 : par rapport à la configuration de la figure 1 , il ajoute un verre 8 clair de 4 mm d'épaisseur feuilleté au verre 2 et muni en face extérieure d'un revêtement anti-reflets 7. Ce revêtement antireflets est composé de l'empilement de couches suivant : SnO2/SiO2/Nb2O5/SiO2:Al
Il est déposé de façon connue sur le verre par pulvérisation cathodique assistée par champ magnétique.
La figure 2 illustre ainsi un autre mode de réalisation, où le vitrage feuilleté a trois verres : on ajoute à la configuration selon la figure 1 , du côté du verre teinté dans la masse 2, une feuille thermoplastique intercalaire en polyuréthane 6 de 0,76 mm d'épaisseur, permettant de feuilleter le troisième verre 8, qui est un verre clair identique au verre clair 3 . Dans le cas où l'on utilise un revêtement antireflets 7, c'est donc sur la face extérieure de ce troisième verre 8 qu'on le dispose. EXEMPLE 4
L'exemple 4 reprend la configuration de l'exemple 3, et ajoute un second revêtement antireflets 7' (cf. figure 2) sur la face extérieure du verre clair 3. Le revêtement 7' est identique au revêtement 7 de l'exemple 3. Dans cet exemple, les verres 3 et 8 ont une épaisseur de 4 mm. EXEMPLE 5
L'exemple 5 reprend la configuration de l'exemple 2 à deux verres selon la figure 2, mais substitue au verre VENUS 2 coloré dans la masse un autre verre teinté dans la masse 2 de 5 mm d'épaisseur et commercialisé par SAINT-GOBAIN GLASS sous la dénomination " Parsol Gris ". Ses caractéristiques sont : TL de 48,5 %, couleur grise . EXEMPLE 6
L'exemple 6 est une configuration à trois verres selon la figure 2, reprenant en verre 2 le verre teinté de l'exemple 5, et ajoutant un verre clair 8 de 4 mm muni d'un revêtement antireflets 7 comme à l'exemple 3. EXEMPLE 7
L'exemple 7 reprend la configuration de l'exemple 6, et ajoute sur la face extérieure du verre clair 3 un revêtement antireflets T (identique à celui de l'exemple 4). Dans cet exemple, les verres clairs 3 et 8 ont chacun une épaisseur de 4 mm EXEMPLE 8
Cet exemple est un vitrage feuilleté de même configuration qu'à l'exemple 2, auquel est ajouté par calandrage sur la face extérieure du verre teinté 2 un film antireflets 7 (film en plastique) commercialisé par Murei Danki sous la référence "ReaLook 2201" EXEMPLE 9
Cet exemple est un vitrage feuilleté de même configuration qu'à l'exemple 5, auquel est ajouté par calandrage sur la face extérieure du verre teinté 2 un film antireflets 7 identique à celui utilisé dans l'exemple 8. Le tableau 1 ci-dessous résume pour ces neuf exemples : - Le type de verre et/ou le nombre de revêtements antireflets utilisé,
- Leur transmission lumineuse mesurée selon l'Illuminant DOS à l'état " OFF " : TLOFF, c'est-à-dire hors tension, et à l'état " ON " : TLON, c'est-à-dire quand le film fonctionnel est mis sous tension maximale de 110 V
- Leur réflexion lumineuse mesurée selon l'Illuminant DOS, côté verre teinté (côté spectateur si on se reporte aux figures) à l'état OFF : RLOFF et à l'état
" ON " : RLON TABLEAU 1
De ces résultats, on voit que l'utilisation d'un verre teinté à la place d'un verre clair permet d'abaisser le niveau de TL aussi bien à l'état " ON " qu'à l'état " OFF " de façon très significative (quasiment de 50% pour le verre VENUS, plus de 30% pour le verre Parsol Gris). En parallèle, il permet d'abaisser substantiellement la RLà l'état " ON " et à l'état " OFF " (environ 8 à 10%, qu'il s'agisse de verre VENUS ou de verre Parsol), ce qui est spectaculaire. Il n'était pas évident que l'augmentation d'absorption lumineuse apportée par le verre teinté dans la masse se fasse à la fois au détriment de la transmission lumineuse et de la réflexion lumineuse.
L'utilisation conjointe d'un verre teinté et d'un revêtement antireflets, le revêtement antireflets se trouvant de préférence sur le verre teinté, permet d'abaisser encore plus le niveau de RL, d'environ 4 à 6%, pour atteindre des valeurs vraiment très faibles (de l'ordre de 1 à 3%). Enfin, l'utilisation d'un second revêtement antireflets (sur le verre clair) permet d'abaisser encore légèrement le niveau de RL du vitrage. A noter que dans la configuration à trois verres, on peut inverser la position des verres 2 et 8, c'est-à-dire disposer le verre coloré dans la masse en verre extérieur, le verre intermédiaire étant le verre clair. Il est bien sûr mieux d'avoir des structures à deux verres plutôt qu'à trois verres, notamment en termes de poid, d'encombrement et de coût. Cependant, il est plus courant de déposer des empilements de couches minces anti-reflets sur un verre clair que sur un verre absorbant, et il peut donc être plus simple industriellement d'adopter la configuration à trois verres.

Claims

REVENDICATIONS
1. Elément à propriétés optiques variables comprenant :
(a) - un système à diffusion lumineuse variable électrocommandée du type système à valve optique ou à cristaux liquides, un système à particules en suspension, ou encore ou un système (a') holographique ou thermotrope, qui est associé à
(b) - au moins un élément absorbant au moins dans le domaine du visible.
2. Elément selon la revendication 1 , caractérisé en ce que le système (a) est un système à cristaux liquides (1 ), comprenant un film de gouttelettes de cristaux liquides dispersées dans un médium et contenu par deux feuilles protectrices munies chacune d'une électrode.
3. Elément selon la revendication 2, caractérisé en ce que les feuilles protectrices sont essentiellement transparentes et à base de polymère flexible, du type polyéthylène-téréphtalate.
4. Elément selon l'une des revendications précédentes, caractérisé en ce que le(s) élément(s) absorbant(s) (b) est (sont) choisi(s) parmi au moins un des éléments suivants : substrat rigide en verre ou en plastique teinté dans la masse (2), feuille de polymère flexible du type thermoplastique teintée dans la masse, film plastique calandrable à un substrat rigide, couche mince absorbante disposée sur une des face d'un substrat rigide en verre ou en plastique ou d'une feuille de polymère flexible.
5. Elément selon l'une des revendications précédentes, caractérisé en ce que le système (a) est un système à cristaux liquides (1 ) comprenant un film de gouttelettes de cristaux liquides dispersées dans un médium et contenu par deux feuilles protectrices munies chacune d'une électrode et en ce que le(s) élément(s) absorbant(s) (b) est (sont) choisi(s) parmi au moins un des éléments suivants : colorant au sein du film, couche électroconductrice absorbante faisant partie d'une des électrodes.
6. Elément selon l'une des revendications précédentes, caractérisé en ce que l'ensemble des éléments absorbants (b) augmente l'absorption lumineuse A de l'élément à~ propriétés optiques dans son ensemble d'au moins 5 %, et/ou abaisse la réflexion lumineuse R de l'élément à propriétés optiques dans son ensemble d'au moins 5 %, notamment d'au moins 8%.
7. Elément selon la revendication 4, caractérisé en ce que l'élément absorbant est un verre teinté dans la masse (2), d'une épaisseur de 1 à 8 mm, avec de préférence une couleur en transmission dans les gris.
8. Elément selon la revendication 4, caractérisé en ce que l'élément absorbant est une feuille thermoplastique du type PVB, PU, EVA, teintée dans la masse, avec de préférence une couleur en transmission dans les gris.
9. Elément selon la revendication 4 ou 7 ou 8, caractérisé en ce que l'élément absorbant est une couche mince d'épaisseur interferentielle à base d'oxydes de fer et/ou de chrome et/ou de nickel ou à base de métal du type Ni, Cr, Ni-Cr, acier, argent, or, cuivre, alliage Inconel, matériau électrochrome.
10. Elément selon la revendication 5, caractérisé en ce que l'élément absorbant est sous forme de colorants dichroïques dans le film à cristaux liquides, notamment dissous au sein des gouttelettes de cristaux liquides et/ou dans leur médium.
11. Elément selon la revendication 10, caractérisé en ce que les colorants dichroïques sont choisis dans la famille des dérivés de diazoquinone ou des dérivés d'anthraquinone, avec notamment un pourcentage en poids de colorants dichroïques par rapport aux cristaux liquides compris entre 0,1 et 5% quand ils sont au sein des gouttelettes de cristaux liquides, et un pourcentage en poids de colorants dichroïques par rapport au médium de 20 à 30 % quand il sont dispersés dans le médium.
12. Elément selon la revendication 5, caractérisé en ce que l'élément absorbant est une couche électroconductrice faisant partie d'une des électrodes qui est à base d'oxyde métallique conducteur, notamment dopé, qui se trouve à l'état réduit et/ou sous-stoechiométrique en oxygène, ou qui est absorbant à l'état non réduit.
13. Elément selon la revendication 12, caractérisé en ce que la couche électroconductrice est à base d'oxyde d'indium dopé, notamment à l'étain, ou d'oxyde d'étain dopé, notamment au fluor ou à l'antimoine, ou d'oxyde de zinc dopé.
14. Elément selon la revendication 5 ou la revendication 12 ou la revendication 13, caractérisé en ce que l'élément absorbant est une couche électroconductrice faisant partie de l'électrode à base d'oxyde métallique dopé ou de métal du type Ni, Cr, NiCr,argent, or, cuivre, ou de nitrure métallique.
15. Elément selon l'une des revendications précédents, caractérisé en ce qu'il comprend également : (c) au moins un élément anti-réfléchissant dans le visible (7, T).
16. Elément selon la revendication 15, caractérisé en ce que l'élément anti-réfléchissant (7, 7') est une alternance de couches minces d'épaisseur interferentielle à haut et bas indices de réfraction (couche haut indice/couche bas indice)n, avec n > 1 , une séquence couche haut indice/couche bas indice pouvant être remplacée par une couche unique à indice de réfraction intermédiaire, notamment la première séquence.
17. Elément selon la revendication 16 caractérisé en ce que l'élément anti-réfléchissant est une alternance de couches minces comprenant une couche absorbante, notamment du type nitrure métallique.
18. Elément selon la revendication 16, caractérisé en ce que l'élément anti- réfléchissant (7, T) comprend l'empilement de couches : Si3N4 ou Sn02/Si02/Si3N4 ou Nb2O5 /SiO2
19. Elément selon la revendication 15, caractérisé en ce que l'élément anti-réfléchissant est un film antireflets utilisant un film en matériau plastique, du type film de polyéthylène téréphtalate traité anti-reflets ou film de triacetate de cellulose, ou consiste en une texturation superficielle d'un des substrats extérieurs dudit élément.
20. Elément selon l'une des revendications précédentes, caractérisé en ce qu'il s'agit d'un vitrage à 1 , 2 ou 3 verres (3,2,8).
21. Elément selon la revendication 20, caractérisé en ce qu'il s'agit d'un vitrage feuilleté, ayant la structure : revêtement antireflets optionnel / verre 1 / feuille(s) de polymère thermoplastique / système à diffusion lumineuse variable / feuille(s) de polymère thermoplastique / verre 2 / revêtement antireflets optionnel, ou la structure : revêtement antireflets optionnel / verre 1 / feuille(s) de polymère thermoplastique / système à diffusion lumineuse variable / feuille(s) de polymère thermoplastique / verre 2 / feuille(s) de polymère thermoplastique / verre 3 / revêtement antireflets optionnel.
22. Elément selon la revendication 20 ou 21 , caractérisé en ce que le verre ou au moins un des verres est remplacé par un substrat rigide à base de polymère du type polycarbonate.
23. Elément selon la revendication 20 ou 22, caractérisé en ce qu'il s'agit d'un vitrage ayant la structure : revêtement antireflets optionnel / verre / feuille(s) de polymère thermoplastique / système à diffusion lumineuse variable / feuille(s) de polymère protectrice optionnelle(s).
24. Elément selon l'une des revendications 1 à 19, caractérisé en ce qu'il ne comprend que des feuilles à base de polymère flexible, en étant dépourvu de substrats rigides du type verre ou polycarbonate.
25. Elément selon la revendication 20, caractérisé en ce que le verre 1 et/ou 2 et/ou 3 est teinté dans la masse ou le verre 1 et/ou 2 et/ou 3 est muni d'une couche mince absorbante ou l'une des feuilles de polymère thermoplastique au moins est teintée dans la masse.
26. Elément selon la revendication 15, caractérisé en ce qu'il utilise au moins un revêtement anti-réfléchissant dans le visible déposé sur la face extérieure d'un verre teinté dans la masse.
27. Elément selon l'une des revendications précédentes, caractérisé en ce qu'il fait partie d'un écran de rétro-projection fonctionnant en transmission.
EP02764963A 2001-07-12 2002-07-10 Dispositif electrocommandable a proprietes optiques variables ou systeme holographique, thermotrope ou a particules en suspension Ceased EP1405131A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0109316 2001-07-12
FR0109316A FR2827397B1 (fr) 2001-07-12 2001-07-12 Dispositif electrocommandable a proprietes optiques variables ou systeme holographique, thermotrope ou a particules en suspension
PCT/FR2002/002413 WO2003007060A1 (fr) 2001-07-12 2002-07-10 Dispositif electrocommandable a proprietes optiques variables ou systeme holographique, thermotrope ou a particules en suspension

Publications (1)

Publication Number Publication Date
EP1405131A1 true EP1405131A1 (fr) 2004-04-07

Family

ID=8865446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02764963A Ceased EP1405131A1 (fr) 2001-07-12 2002-07-10 Dispositif electrocommandable a proprietes optiques variables ou systeme holographique, thermotrope ou a particules en suspension

Country Status (9)

Country Link
US (1) US7486342B2 (fr)
EP (1) EP1405131A1 (fr)
JP (1) JP5043285B2 (fr)
KR (1) KR100943023B1 (fr)
CN (1) CN1279390C (fr)
CZ (1) CZ20033382A3 (fr)
FR (1) FR2827397B1 (fr)
PL (1) PL364574A1 (fr)
WO (1) WO2003007060A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015101745A1 (fr) 2013-12-31 2015-07-09 Saint-Gobain Glass France Vitrage lumineux avec isolateur optique et sa fabrication
WO2015101744A1 (fr) 2013-12-31 2015-07-09 Saint-Gobain Glass France Vitrage lumineux avec isolateur optique et sa fabrication
WO2015118279A1 (fr) 2014-02-10 2015-08-13 Saint-Gobain Glass France Vitrage lumineux avec isolateur optique.

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2746934B1 (fr) * 1996-03-27 1998-05-07 Saint Gobain Vitrage Dispositif electrochimique
FR2827397B1 (fr) 2001-07-12 2003-09-19 Saint Gobain Dispositif electrocommandable a proprietes optiques variables ou systeme holographique, thermotrope ou a particules en suspension
FR2857467B1 (fr) * 2003-07-09 2005-08-19 Saint Gobain Dispositif electrocommandable a proprietes optiques et/ou energetiques variables
FR2857617B1 (fr) * 2003-07-16 2006-10-27 Saint Gobain Vitrage de securite fonctionnalise
GB0413121D0 (en) * 2004-06-11 2004-07-14 Pelikon Ltd Improved displays
GB0805751D0 (en) * 2008-03-29 2008-04-30 Pelikon Ltd Electoluminescent displays
US8698979B2 (en) * 2004-06-11 2014-04-15 Mflex Uk Limited Electroluminescent displays
US7417785B2 (en) * 2005-01-18 2008-08-26 Research Frontiers Incorporated Methods and circuits for distributing power to SPD loads
US7597964B2 (en) * 2005-08-02 2009-10-06 Guardian Industries Corp. Thermally tempered coated article with transparent conductive oxide (TCO) coating
WO2007065694A1 (fr) * 2005-12-10 2007-06-14 Isolar Isolierglaserzeugung Gmbh Élément de façade pour élément de projection en verre pour la projection en façade sur des bâtiments et son procédé de fabrication
GB0607743D0 (en) * 2006-04-20 2006-05-31 Pilkington Plc Laminated glazing
GB0607745D0 (en) 2006-04-20 2006-05-31 Pilkington Plc Glazing
WO2007138504A2 (fr) * 2006-05-31 2007-12-06 Koninklijke Philips Electronics N. V. Rétroaction de miroir après sélection d'objet physique
GB0625114D0 (en) * 2006-12-16 2007-01-24 Pelikon Ltd Electroluminescent displays
CN100465819C (zh) * 2007-02-09 2009-03-04 上海大学 基于悬浮粒子幕的光电再现空间影像装置
FR2933506B1 (fr) * 2008-07-04 2012-06-29 Saint Gobain Methode de regeneration des cristaux liquides de systeme(s) electrocommandable(s) a diffusion lumineuse variable, alimentation electrique et dispositif pour ladite regeneration
US20120050687A1 (en) * 2008-12-24 2012-03-01 Elizabeth Berry Creating a lighting effect
CN101950119A (zh) * 2009-05-18 2011-01-19 吴小平 光脉冲投影显示技术及用其所制造的投影机和屏幕
BE1019690A3 (fr) 2010-06-24 2012-10-02 Agc Glass Europe Vitrage isolant.
BE1019881A3 (fr) * 2011-03-16 2013-02-05 Agc Glass Europe Vitrage isolant.
BE1020313A3 (fr) * 2012-03-05 2013-07-02 Agc Glass Europe Vitrage isolant.
SG195397A1 (en) * 2012-05-08 2013-12-30 Playware Studios Asia Pte Ltd Projection screen
FR2991064B1 (fr) * 2012-05-25 2014-05-16 Saint Gobain Procede de projection ou de retroprojection sur un vitrage comprenant un element en couches transparent presentant des proprietes de reflexion diffuse
FR2991786B1 (fr) 2012-06-08 2014-06-20 Saint Gobain Ecran de projection fonctionnant en reflexion comprenant un systeme a diffusion lumineuse variable
ES2774977T3 (es) 2012-08-09 2020-07-23 Saint Gobain Disposición de vidrio laminado con conmutación eléctrica
US10082716B2 (en) 2012-08-21 2018-09-25 Saint-Gobain Glass France Composite panel with electrically switchable optical properties
FR2997516B1 (fr) * 2012-10-31 2015-11-13 Saint Gobain Vitrage comprenant un systeme a diffusion lumineuse variable et une paire d'elements absorbants
FR2999977B1 (fr) * 2012-12-21 2018-03-16 Saint Gobain Vitrage comprenant un systeme a diffusion lumineuse variable utilise comme ecran
JP5763114B2 (ja) * 2013-03-11 2015-08-12 株式会社東芝 照明装置および照明装置の制御方法
CN103488035B (zh) * 2013-08-30 2015-08-19 浙江大学 一种全息定向散射屏及其制作方法和装置
FR3015059B1 (fr) * 2013-12-12 2016-01-01 Saint Gobain Dispositif electrocommandable a proprietes optiques variables
KR101605093B1 (ko) * 2014-12-16 2016-03-21 (주)넥스트글라스 후면투사 스크린 세트 제조 방법
JP6096847B2 (ja) * 2015-08-07 2017-03-15 ▲き▼芯科技股▲ふん▼有限公司 高分子分散型液晶調光構成
JP6760365B2 (ja) * 2016-05-13 2020-09-23 Agc株式会社 映像投影用構造体、透明スクリーン、および映像投影用構造体の製造方法
JP2018132670A (ja) * 2017-02-16 2018-08-23 ソニー株式会社 投射スクリーンおよび投射型表示装置
MX2020010023A (es) 2018-03-26 2021-01-15 Saint Gobain Impresion optica mejorada de un cristal de pdlc de vehiculo a traves de una combinacion de pilas oscuras interiores y exteriores.
CN110007552B (zh) * 2018-12-14 2021-07-20 北京宝江科技有限公司 用于投影的透明薄膜和投影系统
EP4054842A4 (fr) * 2019-11-05 2024-03-06 Central Glass Co Ltd Vitrage feuilleté à revêtement de protection contre la lumière ultraviolette
FR3108990A1 (fr) * 2020-04-01 2021-10-08 Saint-Gobain Glass France DIspositif ELECTROCOMMANDABLE A DIFFUSION VARIABLE
CN116442629B (zh) * 2023-04-28 2024-01-26 深圳御光新材料有限公司 一种投影膜及其制造方法
CN116400539B (zh) * 2023-06-02 2023-10-24 合肥精卓光电有限责任公司 一种近黑色调光器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165153A (en) * 1978-04-25 1979-08-21 Polaroid Corporation Translucent screen
FR2597624A1 (fr) * 1986-04-18 1987-10-23 Grattarola Patrick Ecrans de retroprojection et appareils equipes d'un ecran selon l'invention
EP0825478A1 (fr) * 1996-08-22 1998-02-25 Saint-Gobain Vitrage Vitrage à propriétés optiques et/ou énergétiques variables
FR2781062A1 (fr) * 1998-07-09 2000-01-14 Saint Gobain Vitrage Vitrage a proprietes optiques et/ou energetiques electrocommandables
WO2000038005A1 (fr) * 1998-12-18 2000-06-29 Mitsubishi Rayon Co., Ltd. Ecran de transmission

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846011A (en) * 1971-12-17 1974-11-05 Hamilton Of Indiana Inc Chalkboard usable as a rear projection screen
JPH01116628A (ja) * 1987-10-30 1989-05-09 Fuji Photo Film Co Ltd アクティブスクリーン
GB8823490D0 (en) * 1988-10-06 1988-11-16 Emi Plc Thorn Method & apparatus for projecting scanned two/threedimensional modulated light pattern originating from light source
SG87736A1 (en) * 1993-03-29 2002-04-16 Seiko Epson Corp Display element and electronic apparatus
JPH06308614A (ja) * 1993-04-20 1994-11-04 Mitsubishi Electric Corp 投写型表示装置
FR2730990B1 (fr) * 1995-02-23 1997-04-04 Saint Gobain Vitrage Substrat transparent a revetement anti-reflets
US6710797B1 (en) * 1995-09-20 2004-03-23 Videotronic Systems Adaptable teleconferencing eye contact terminal
KR100219143B1 (ko) * 1996-05-13 1999-09-01 김광호 광학산 및/또는 광산란기능을 갖는 볼록한 돌기들을 구비한 홀로 그래픽 스크린
JP4135194B2 (ja) * 1996-05-30 2008-08-20 ソニー株式会社 平面型レンズとこれを用いた背面投射型プロジェクタ用スクリーン
JPH1073815A (ja) * 1996-06-19 1998-03-17 Seiko Instr Inc 反射型液晶表示装置
JPH1011407A (ja) * 1996-06-25 1998-01-16 Matsushita Electric Works Ltd マルチプロセッサの監視方法
FR2751097B1 (fr) * 1996-07-10 1998-09-11 Saint Gobain Vitrage Elements a proprietes optiques/energetiques variables
JPH10155308A (ja) * 1996-12-02 1998-06-16 Mitsubishi Agricult Mach Co Ltd 移動農機における傾斜制御装置
JPH10319507A (ja) * 1997-05-21 1998-12-04 Nitto Denko Corp 平面型レンズ
JPH1138455A (ja) * 1997-07-10 1999-02-12 Saint Gobain Vitrage 可変光学特性をもつ装置
FR2779839B1 (fr) * 1998-06-10 2003-06-06 Saint Gobain Vitrage Systeme electrocommandable a proprietes optiques variables
FR2811778B1 (fr) * 2000-07-13 2003-06-20 Saint Gobain Dispositif electrochimique du type electrochrome ou dispositif photovoltaique et ses moyens de connexion electrique
US20030163367A1 (en) * 2001-04-06 2003-08-28 3M Innovative Properties Company Screens and methods for displaying information
FR2827397B1 (fr) 2001-07-12 2003-09-19 Saint Gobain Dispositif electrocommandable a proprietes optiques variables ou systeme holographique, thermotrope ou a particules en suspension

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165153A (en) * 1978-04-25 1979-08-21 Polaroid Corporation Translucent screen
FR2597624A1 (fr) * 1986-04-18 1987-10-23 Grattarola Patrick Ecrans de retroprojection et appareils equipes d'un ecran selon l'invention
EP0825478A1 (fr) * 1996-08-22 1998-02-25 Saint-Gobain Vitrage Vitrage à propriétés optiques et/ou énergétiques variables
FR2781062A1 (fr) * 1998-07-09 2000-01-14 Saint Gobain Vitrage Vitrage a proprietes optiques et/ou energetiques electrocommandables
WO2000038005A1 (fr) * 1998-12-18 2000-06-29 Mitsubishi Rayon Co., Ltd. Ecran de transmission
EP1152286A1 (fr) * 1998-12-18 2001-11-07 Mitsubishi Rayon Co., Ltd. Ecran de transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO03007060A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015101745A1 (fr) 2013-12-31 2015-07-09 Saint-Gobain Glass France Vitrage lumineux avec isolateur optique et sa fabrication
WO2015101744A1 (fr) 2013-12-31 2015-07-09 Saint-Gobain Glass France Vitrage lumineux avec isolateur optique et sa fabrication
WO2015118279A1 (fr) 2014-02-10 2015-08-13 Saint-Gobain Glass France Vitrage lumineux avec isolateur optique.

Also Published As

Publication number Publication date
WO2003007060A1 (fr) 2003-01-23
CN1279390C (zh) 2006-10-11
CZ20033382A3 (en) 2004-04-14
FR2827397B1 (fr) 2003-09-19
JP5043285B2 (ja) 2012-10-10
JP2004534282A (ja) 2004-11-11
FR2827397A1 (fr) 2003-01-17
KR100943023B1 (ko) 2010-02-18
US7486342B2 (en) 2009-02-03
PL364574A1 (en) 2004-12-13
KR20040019047A (ko) 2004-03-04
US20040169789A1 (en) 2004-09-02
CN1526085A (zh) 2004-09-01

Similar Documents

Publication Publication Date Title
EP1405131A1 (fr) Dispositif electrocommandable a proprietes optiques variables ou systeme holographique, thermotrope ou a particules en suspension
CA2740130C (fr) Vitrage multiple incorporant au moins un revetement antireflet et utilisation d'un revetement antireflet dans un vitrage multiple
EP0964288B1 (fr) Système électrocommandable à propriétés optiques variables
EP0825478A1 (fr) Vitrage à propriétés optiques et/ou énergétiques variables
EP0823653A1 (fr) Eléments à propriétés optiques/énergétiques variables
EP2915005B1 (fr) Vitrage comprenant un système à diffusion lumineuse variable et une paire d'éléments absorbants
WO2000003290A1 (fr) Vitrage a proprietes optiques et/ou energetiques electrocommandables
FR2908229A1 (fr) Couche transparente a haute conductivite electrique avec grille metallique a tenue electrochimique optimisee adaptee pour subir un traitement thermique de type bombage, ou trempe
FR2961609A1 (fr) Dispositif a proprietes optiques et/ou energetiques electrocommandables
EP1883856A2 (fr) Electrode de dispositifs electrochimiques/electrocommandables
EP2859407B1 (fr) Ecran de projection fonctionnant en reflexion comprenant un systeme a diffusion lumineuse variable
WO2014068203A1 (fr) Systeme a diffusion lumineuse variable comprenant une couche pdlc
EP1509810A2 (fr) Dispositif electrocommandable a proprietes optiques et/ou energetiques variables
EP2201425A1 (fr) Perfectionnements apportés à des écrans de visualisation
EP3080659B1 (fr) Dispositif electrocommandable a proprietes optiques variables
WO2023237839A1 (fr) Vitrage lumineux feuilleté comprenant un revêtement fonctionnel
FR2908228A1 (fr) Couche transparente a haute conductivite electrique avec grille metallique a tenue electrochimique optimisee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20100505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20150504