EP1503918A1 - Vorrichtung zur induktiven energieversorgung und führung eines beweglichen objektes - Google Patents

Vorrichtung zur induktiven energieversorgung und führung eines beweglichen objektes

Info

Publication number
EP1503918A1
EP1503918A1 EP03704661A EP03704661A EP1503918A1 EP 1503918 A1 EP1503918 A1 EP 1503918A1 EP 03704661 A EP03704661 A EP 03704661A EP 03704661 A EP03704661 A EP 03704661A EP 1503918 A1 EP1503918 A1 EP 1503918A1
Authority
EP
European Patent Office
Prior art keywords
data
transmission
receiving
inductors
conductor loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03704661A
Other languages
English (en)
French (fr)
Inventor
Andrew Dr. Green
Frank Böhler
Roland Winterhalter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wampfler AG
Original Assignee
Wampfler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=28685028&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1503918(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wampfler AG filed Critical Wampfler AG
Publication of EP1503918A1 publication Critical patent/EP1503918A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/03Control of position or course in two dimensions using near-field transmission systems, e.g. inductive-loop type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to a device for inductive energy supply and guidance of a movable object.
  • Inductive energy transmission enables a mobile consumer to be supplied with energy without mechanical or electrical contact.
  • Devices provided for this purpose each comprise a primary and a secondary part, which are electromagnetically coupled similar to the principle of the transformer.
  • the primary part consists of feed electronics and a conductor loop laid along a route with an outgoing conductor and a return conductor, which run parallel to one another and merge into one another at the end of the route or are connected to one another.
  • One or more customers, each arranged on movable consumers, and the associated customer electronics form the secondary side.
  • the transformer of conventional design In contrast to the transformer of conventional design, it is a loosely coupled system that is operated at a relatively high frequency in the kilohertz range and can bridge large air gaps up to a few centimeters.
  • the advantages of this type of energy supply include, in particular, freedom from wear and maintenance, as well as protection against contact and high availability.
  • Typical applications are automatic material transport systems in manufacturing technology, but also passenger transport systems such as elevators and electrically powered buses.
  • the movement path of a consumer must not deviate from the course of the conductor loop, the consumer must be guided accordingly if it is not a rail-bound vehicle.
  • Such guidance can take place, for example, in that the vehicle has a rotatably mounted front axle, the angular position of which is determined directly by a rudder which slides in a groove running in the roadway.
  • the pickup is expediently arranged on this steered front axle so that it is always optimally aligned with the conductor loop embedded in the carriageway, even in curves.
  • the disadvantage of this solution is Effort for milling the groove, the unevenness of the road, and the inevitable mechanical wear of the rudder.
  • the magnetic field emanating from the conductor loop is detected by an inductive sensor arrangement, the output signals of which are fed to an evaluation device. This determines the position of the vehicle in the transverse direction to the conductor loop and controls the steering of the vehicle as a function of this.
  • the sensor arrangement provided is arranged in the center of the vehicle and consists of one sensor each with a vertical and horizontal sensitivity axis, the latter extending transversely to the direction of travel.
  • the signal from the sensor with the vertical sensitivity axis reaches a maximum when the vehicle is in the center of the conductor loop, while the signal from the other sensor has a zero crossing.
  • the object of the invention is to provide an expedient function for realizing data communication for a device for inductive energy supply and guiding a movable object.
  • Advantageous embodiments of the invention can be found in the subclaims.
  • a method designed for the operation of the device according to the invention is the subject of claim 28.
  • a major advantage of the invention is that the inductivities which are anyway required for determining the position on the mobile consumer are also used for data reception, ie only a single inductive antenna is required for guidance and data reception.
  • An arrangement of two rows of flat coils which are offset with respect to one another and which are arranged on the movable consumer transversely to the direction of movement and with a vertical axis direction is particularly suitable for this.
  • Such flat coils can be easily mounted on a circuit board and, in an extreme case, could even be implemented completely planar on a circuit board.
  • this receiving coil arrangement is wide enough to cover at least one of the conductors of the conductor loop serving for energy transmission laterally, and the data line is adjacent to a conductor of the loop, accurate positioning is also both in curved sections of the movement path of the consumer and also a coupling of at least one receiving inductance with the data line which is sufficient for interference-free data reception is ensured.
  • the antenna cannot be arranged in the center of the steered front axle of the moving consumer and therefore experiences a lateral deflection in a curve.
  • the conductor position can be determined very precisely from a comparison of the measurement signals of the individual receiving coils or from an interpolation of the amplitude profile between the individual receiving coils.
  • the reception inductances could also be used to send data signals, but it appears to be more advantageous to provide a separate arrangement of inductors with a ferromagnetic core for this purpose, in order to better concentrate the field on the data line, with two rows of inductances offset against one another represent particularly useful solution.
  • the transmission inductors as well as the reception inductors are always selected for the communication mode which has the best coupling to the data line due to its current lateral position.
  • this procedure can be applied to any inductive antenna arrangement with a plurality of transmitting and / or receiving coils.
  • FIG. 1 is a schematic cross-sectional view of part of a device according to the invention.
  • FIG. 2 shows a schematic top view of the part of the device according to FIG. 1,
  • FIG. 4 shows an enlarged and simplified section of a view as in FIG. 1,
  • FIG. 6 shows a schematic cross-sectional view of an arrangement of inductors suitable for bidirectional communication
  • FIG. 7 shows a schematic top view of the arrangement according to FIG. 6,
  • FIGS. 6 and 7 shows a block diagram of an evaluation, reception and transmission device for operation in connection with the inductance arrangement of FIGS. 6 and 7.
  • FIG. 1 part of a device according to the invention is shown schematically in cross section or in plan view.
  • a roadway 1 on which an electrically driven transport vehicle is to move two grooves 2a and 2b are machined.
  • the outgoing conductor 3a and the return conductor 3b of a conductor loop 3 are embedded, of which only a short section can be seen in FIG. 2.
  • the conductor loop 3 is fed with a high current by a feed electronics (not shown) and acts as a spatially distributed primary inductance of a transformer, the secondary inductance of which is formed by a customer mounted on the vehicle. In this way, the vehicle is supplied with the electrical energy required for its operation.
  • Typical operating parameters of such a system are 100 mm for the primary conductor center, 10 mm for the air gap, 100 A for the current and 20 kHz for the frequency.
  • a two-wire data line 4 with the wires 4a and 4b is arranged in the groove 2b.
  • the cross section of the data line 4 is perpendicular to the plane defined by the conductor loop 3, ie the connecting line between the centers of the wires 4a and 4b is perpendicular to the connecting line between the centers of the conductors 3a and 3b.
  • An inductive receiving antenna 5 consisting of five flat coils 5a-5e is attached to the vehicle, not shown, at a distance of the order of 10 mm from the surface of the roadway 1.
  • the coils 5a - 5e are all parallel to one another and with the end faces parallel or with the axes drawn in dashed lines in the figures perpendicular to the surface of the roadway 1.
  • the coils 5a - 5c form a straight row which, when the vehicle is correctly oriented, crosswise whose direction of movement, which then coincides with the longitudinal direction of the conductor loop 3, extends. This also applies to the coils 5d and 5e, which are shifted both in the longitudinal direction of the return conductor 3b and in the transverse direction with respect to the coil row 5a-5c.
  • the displacement in the longitudinal direction corresponds to slightly more than the dimension of a coil in this direction
  • the displacement in the transverse direction corresponds to half the dimension of a coil in this direction.
  • the representation of the coils with an oval cross section in Fig. 2 is meant purely by way of example, i.e. the cross section could just as well be circular or approximately rectangular.
  • the cross-sectional dimensions of the coils may, for example, be in the order of 10 to 30 mm.
  • the receiving coils 5a-5e are initially intended to measure the magnetic field of the current in the conductor loop 3 in order to determine the position of the antenna 5 and thus also of the vehicle to which it is attached, transversely to the direction of movement.
  • the coils 5a-5e are connected to an electronic evaluation device, which determines, compares and evaluates the amplitudes of the voltages induced by said magnetic field in the coils 5a-5e and determines a measure for the position of the antenna 5 relative to the return conductor 3b. Based on this position determination, control signals for one or more servomotors are generated by a controller in order to automatically steer the vehicle along a path that follows the course of the conductor loop 3.
  • the position determination is based on the fact that the amplitude of the induced voltage U as a function of the lateral position S of a receiving coil 5a-5e shows a characteristic course with several extreme values, with the vertical distance remaining the same.
  • this course is shown qualitatively, which reflects the field image of a double line with two unidirectional current-carrying wires.
  • the origin of the abscissa lies exactly in the middle between the outgoing conductor 3 a and the return conductor 3 b.
  • the positions of the conductors 3a and 3b are marked H and R in FIG. 3.
  • the radius of curvature of the conductor loop 3 in curves of the movement path of the vehicle must be large compared to the distance between the two rows of coils 5a-5c and 5d-5e in Longitudinal direction, so that the error caused by this longitudinal distance does not negate the gain in accuracy in curves.
  • a lateral curvature of the conductor loop 3 in a curve or at a branching point of two movement paths, hereinafter referred to as a switch as usual based on rail-bound systems, is noticeable in the fact that the location of a minimum determined by the evaluation device begins to migrate laterally. This deviation of the actual position from a target position predetermined by the position of the antenna 5 on the vehicle can be used to control the path of the vehicle.
  • Another function of the antenna 5 is the inductive reception of data signals which are sent from a central control unit (not shown) to the vehicle via the data line 4 arranged directly next to the return conductor 3b.
  • the position of the data line 4 to two flat receiving coils 5d and 5e, each with a vertical axis, is shown enlarged in FIG. 4.
  • a thin bridge of insulation mechanically connects the two conductors 4a and 4b and keeps them at a constant distance from each other.
  • the current in the data cable 4 as indicated by the cross and the point in the conductors 4a and 4b, penetrates the illustrated cross-sectional plane to the rear in the upper conductor 4a and to the front in the lower conductor 4b
  • the space between the line 4 and the receiving coils 5d and 5e has a magnetic field profile of the type shown, ie the field lines run in a clockwise direction around centers that lie above the upper conductor 4a on the connecting straight line of the conductor centers.
  • the horizontal components B H and the vertical components By of the magnetic flux density are entered as examples at two points in the sketched field line B.
  • the inductive coupling assumes a minimum due to the purely horizontal course of the magnetic field B there, ie it even disappears there theoretically.
  • the amount of the flux density B decreases as the distance of a coil 5d or 5e from the line 4 increases. It follows that for a given vertical distance between a coil 5d or 5e and the upper conductor 4a in the vicinity of the data line 4, but away from said central position gives a maximum of the inductive coupling.
  • one of the receiving coils 5a-5e is obviously always closest to this maximum and is therefore best suited for data reception.
  • the aforementioned evaluation device for position determination continuously selects the best lying receiving coil 5a-5e based on the position and connects only this to the data receiving device via a multiplexer.
  • the selection of the cheapest receiving coil 5a - 5e can change repeatedly in the course of the movement of the vehicle, in particular when changing direction in a curve or on a switch where the receiving antenna 5, despite the steering control, intermittently out of its normal position relative to the conductor loop 3 and thus also opposite the data line 4 migrates sideways. The latter is even inevitable if the antenna cannot be placed centrally under the steered front axle of the vehicle.
  • perfect data reception is guaranteed even in odd sections of the movement path.
  • an antenna 5 of the type described above could also be used to inductively transmit data from the vehicle on which it is mounted via the data line 4 to a central control center.
  • the left transmitter coil 6 is particularly suitable for use with a data line 4 with conductors 4a and 4b lying vertically one above the other, as is already shown in FIGS. 1 and 4.
  • the iron core 7 is U-shaped and the coil 6 is attached to the vehicle in such a way that the two legs of the U core 7 point vertically to the data line 4.
  • the winding 8 is located on the horizontal section between the two legs. In this arrangement, the inductive coupling is maximally in the shown central position of the coil 6 above the data line 4.
  • the right transmitter coil 9 is particularly suitable for use with a data line 4 with horizontally adjacent conductors 4a and 4b.
  • This conductor arrangement is less optimal than the vertical arrangement with regard to the undesired inductive coupling between the data line 4 and the conductor loop 3 and the mechanical flexibility with horizontal curvatures of the line assembly, but it is also fundamentally possible.
  • the iron core 10 is E-shaped and the coil 9 is attached to the vehicle in such a way that the three legs of the E core 10 point vertically to the data line 4.
  • the winding 11 is located on the middle leg.
  • the inductive coupling is at a maximum in the shown central position of the coil 9 above the data line 4.
  • an inductive transmission antenna consists of a plurality of transmission coils which are arranged regularly linearly transversely to the direction of movement of the vehicle, in order to ensure that constantly, i.e. even when cornering, a transmitter coil that is sufficiently well positioned for interference-free data transmission to data line 4 is available.
  • the advantage of an arrangement of two rows of coils lying behind one another and laterally offset from one another to increase the spatial resolution can also be transferred directly from the receiving antenna 5 to a transmitting antenna.
  • a transmitting antenna must be mounted in the transverse direction of the vehicle at the same location as the receiving antenna 5, so that it must be shifted in the longitudinal direction with respect to the receiving antenna.
  • the best transmitter coil As far as the selection of the best transmitter coil is concerned, this can be done with a fixed spatial assignment between receiver and transmitter coils on the basis of the selection of the best receiver coil.
  • the best transmitting coil does not necessarily have to be in the same lateral position as the best receiving coil, but a transmitting coil which is laterally offset with respect to the best receiving coil can also be in the most favorable position in a curved section of the movement path , Taking this effect into account in the selection of the transmitter coil requires temporary storage of movement path data by the evaluation device.
  • FIGS. 6 and 7 show a management and communication system according to the invention with maximum functionality in cross section or in plan view. It has one Receiving antenna 12, which corresponds in principle to that described above with reference to FIGS. 1 and 2, but in contrast to this not only covers the return conductor 3b but also the outgoing conductor 3a, that is to say the full width of the conductor loop 3. Shifted in the longitudinal direction with respect to the receiving antenna 12, an analog structured transmission antenna 13 is arranged which in the same way completely covers the conductor loop 3 and is composed of transmission coils 6 of the type shown on the left in FIG. 5. As can be seen in FIG. 6, a second data line 14 is also located in the vertical position in the groove 2a adjacent to the forward conductor 3a.
  • the advantage of the system according to FIGS. 6 and 7 is that it can also function in the area of switches (rail junctions), at which the vehicle and thus also the antennas 12 and 13 move away from one of the conductors 3a or 3b and temporarily only one of them Conductor 3a or 3b in the vicinity of antennas 12 and 13 is present.
  • switches rail junctions
  • each of the conductors 3a and 3b is assigned a data line 14 and 4, and that each of these data lines 14 and 4 is covered by the receive and transmit antennas 12 and 13, enables interference-free data communication at all times.
  • the block diagram of a combined evaluation and data communication device 15 is shown in FIG. 8.
  • the centerpiece of this device 15 is a microcomputer 16, which performs all digital processing functions of the device 15.
  • the microcomputer 16 has an AnalogXDigital converter 17 for reading in the analog position measurement signals received by the receiving antenna 12 and a digital input / output unit 18 for reading in the digital data signals received via the receiving antenna 12 from the data lines 4 and 14 and for outputting digital data signals which are to be transmitted via the transmission antenna 13 on the data lines 4 and 14.
  • the microcomputer 16 also has suitable digital interfaces for communication with the control electronics of the vehicle.
  • a separate CAN bus interface 19 can be provided to deliver the calculated position data to the steering control unit, while a serial RS232 can be used to issue control commands and to read in status information that is to be sent to a central control center via data lines 4 and 14 Interface is used.
  • z. B. RS485 are also suitable.
  • the receiving antenna 12 is connected to the device 15 via a multiplexer 21 which is controlled by the microcomputer 16 via a control bus 22. This means that only a single receive coil connection of the receive antenna 12 is always selected via the control bus 22 and is switched through by the multiplexer 21 to its output.
  • the multiplexer 21 is followed in parallel by two bandpass filters 23 and 24. While the bandpass filter 23 is tuned to the operating frequency of the conductor loop 3 used for energy transmission, which is, for example, in the order of 20 kHz, the bandpass filter 24 is adapted to that for data transmission on the data lines 4 and 14 selected frequency band, which can for example be in the order of 1 MHz.
  • bandpass filters 23 and 24 separate the position measurement signal originating from the magnetic field of the conductor loop 3 and the data signal originating from the data lines 4 and 14.
  • the position measurement signal from the first bandpass filter 23 is then fed to a sample and hold element 25 which, like the multiplexer 21, is controlled by the microcomputer 16 via further control lines 26.
  • the output of the sample and hold element 25 is connected to the input of the A / D converter 17.
  • the data signal from the second bandpass filter 24 is then fed to a demodulator 27, which recovers the digital baseband signal and outputs it to the digital input / output interface 18 of the microcomputer 16.
  • the counterpart to the demodulator 27 is a digital modulator 28.
  • This is supplied with data to be transmitted from the vehicle to the control center as a baseband signal from the digital input / output interface 18 of the microcomputer 16, which it modulates onto a carrier signal, for example by frequency shift keying (FSK). It transmits the transmission signal generated in this way to a driver unit 29 to which the transmission antenna 13 is connected.
  • This driver unit 29 amplifies the data signal arriving from the modulator 28 and switches it under the control of the microcomputer 16 exercised via the control bus 22 to only one transmission coil connection of the transmission antenna 13.
  • the driver unit 29 itself does not have another, in FIG. 8, specifically includes the multiplexer shown.
  • the control bus 22 contains separate address lines for the multiplexer 21 and the further multiplexer contained in the driver unit 29.
  • the microcomputer 16 makes the selection of the transmission and reception coil used at a specific point in time on the basis of the position of the antennas 12 and 13 calculated by it.
  • the position measurement signals of all reception coils of the reception antenna 12 are included in this calculation, which are successively switched through and read in via the multiplexer 21 become. Therefore, only the transmitting and receiving coil with the most favorable position is used for data communication.
  • the selection criterion for this could also be the amplitudes of the data signals supplied by the individual receiving coils of the receiving antenna 12, i.e.
  • the receiving antenna 12 can also be used to receive signals from transmitters arranged for position marking at predetermined locations along the conductor loop 3. Such position mark transmitters are usually used to signal an automatically controlled vehicle that predetermined positions have been reached or passed along a route.
  • Such a transmitter expediently has a transmitter coil, which is arranged next to the conductor loop 3 so that at least one of the coils of the receiving antenna 12 temporarily passes through an inductive coupling to the transmitter coil as it passes, thereby briefly transmitting a data signal from the stationary transmitter coil to the receiving antenna 12 is possible.
  • This data signal contains a digital code that indicates the position of the transmitter along the conductor loop 3.
  • the frequencies or frequency bands of the three fields must differ sufficiently, i.e. it must be possible to extract the position data signal by means of a further bandpass filter to be provided in addition to the filters 23 and 24.
  • a further demodulator must also be connected downstream of the bandpass filter, which corresponds to a duplication of the middle signal path 24-27-18 in FIG. 8. The decoding and forwarding of the position mark data can easily be taken over by the microcomputer 16 as an additional function.
  • the best reception coil for reception of the further data signal from one of the position mark transmitters can be determined in a simple manner, whereby it will usually be two different receiving coils.
  • the receiving antenna 12 can therefore even be used quasi simultaneously for receiving three different signals.
  • the invention represents a combined system for inductive energy supply and management of a moving object with simultaneous inductive data communication, with which the minimum requirements (single master, half duplex, 9600 baud transmission rate, 100 ms response time), which in the present context apply to a Data communication are provided, are feasible.
  • the performance data of the system can easily be adapted to an increased need. This applies not only to the transmission speed and the response time.
  • the provision of a second data line 14, as was described with reference to FIGS. 6 and 7, also opens up the possibility of full duplex operation.
  • the receiving antenna, the transmitting antenna and the evaluation and data communication device each form a structural unit, or even all of these components are combined into a single structural unit, this is not a prerequisite for realizing the present invention.
  • the use of a large number of separate coils and the implementation of the evaluation device and the data receiving device as integral components of central control electronics of the vehicle also represent embodiments of the invention, which are covered by the scope of the claims.

Abstract

Eine Vorrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes umfasst eine sich als Leiterschleife (3) entlang einer vorgesehenen Bewegungsbahn des Objektes erstreckende Primärinduktivität, eine an dem Objekt angeordnete und zur Energieübertragung magnetisch mit der Primärinduktivität koppelbare Sekundärinduktivität, mehrere an dem Objekt angeordnete Empfangsinduktivitäten, die vom Magnetfeld der Primärinduktivität abhängige Messsignale abgeben, und eine Auswertungseinrichtung, welche aus den Messsignalen ein Mass für die Position des Objektes in Bezug auf die Leiterschleife ermittelt. Um Datenkommunikation zu ermöglichen, sind die Empfangsinduktivitäten (5;12) mit einer Datenempfangseinrichtung (21,24,27,18,16) verbunden, die Mittel (24) zur Extraktion eines Datensignals aus der Ausgangsspannung mindestens einer der Empfangsinduktivitäten enthält. Entlang der vorgesehenen Bewegungsbahn des Objektes ist eine Datenleitung (4a,4b) angeordnet, die während der Bewegung des Objektes eine induktive Kopplung mit mindestens einer Empfangsinduktivität aufweist.

Description

Vorrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes
Die Erfindung betrifft eine Norrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes nach dem Oberbegriff des Anspruchs 1.
Die induktive Energieübertragung ermöglicht die Versorgung eines beweglichen Verbrauchers mit Energie ohne mechanischen oder elektrischen Kontakt. Hierfür vorgesehene Vorrichtungen, wie sie beispielsweise aus der WO 92/17929 bekannt sind, umfassen jeweils einen Primär- und einen Sekundärteil, die ähnlich dem Prinzip des Transformators elektromagnetisch gekoppelt sind. Der Primärteil besteht aus einer Einspeisungselektronik und einer entlang einer Strecke verlegten Leiterschleife mit einem Hinleiter und einem Rückleiter, die parallel zueinander verlaufen und am Ende der Strecke ineinander übergehen oder miteinander verbunden sind. Ein oder mehrere jeweils an beweglichen Verbrauchern angeordnete Abnehmer und die zugehörige Abnehmerelektronik bilden die Sekundärseite. Im Gegensatz zum Transformator üblicher Bauart handelt es sich um ein lose gekoppeltes System, das mit einer relativ hohen Frequenz im Kilohertzbereich betrieben wird und große Luftspalte bis zu einigen Zentimetern überbrücken kann. Zu den Vorteilen dieser Art der Energiezuführung zählen insbesondere die Verschleiß- und Wartungsfreiheit, sowie die Berülirungssicherheit und eine hohe Verfügbarkeit. Typische Anwendungen sind automatische Materialtransportsysteme in der Fertigungstechnik, aber auch Personentransportsysteme, wie Aufzüge und elektrisch angetriebene Busse.
Da bei einer solchen Vorrichtung die Bewegungsbahn eines Verbrauchers nicht vom Verlauf der Leiterschleife abweichen darf, muß der Verbraucher entsprechend geführt werden, wenn es sich dabei nicht um ein schienengebundenes Fahrzeug handelt. Eine solche Führung kann beispielsweise dadurch erfolgen, daß das Fahrzeug eine drehbar gelagerte Vorderachse besitzt, deren Winkelstellung unmittelbar durch ein Ruder bestimmt wird, welches in einer in der Fahrbahn verlaufenden Νut gleitet. Dabei ist zweckmäßigerweise der Abnehmer an dieser gelenkten Vorderachse angeordnet, damit er auch in Kurven stets bestmöglich zu der in der Fahrbahn eingebetteten Leiterschleife ausgerichtet ist. Nachteilig ist an dieser Lösung der Aufwand für das Fräsen der Nut, die Unebenheit der Fahrbahn, und der unvermeidliche mechanische Verschleiß des Ruders.
Eine elegantere Lösung, welche diese Nachteile vermeidet, ist die in der DE 198 16 762 AI beschriebene berührungslose induktive Führung. Hierbei wird das von der Leiterschleife ohnehin ausgehende Magnetfeld durch eine induktive Sensoranordnung erfaßt, deren Ausgangssignale einer Auswerteeinrichtung zugeführt werden. Diese ermittelt daraus die Position des Fahrzeugs in Querrichtung zur Leiterschleife und steuert in Abhängigkeit von dieser Servomotoren zur Lenkung des Fahrzeugs an. Die vorgesehene Sensoranordnung ist im Fahrzeug mittig angeordnet und besteht aus je einem Sensor mit vertikaler und horizontaler Empfindlichkeitsachse, wobei letztere quer zur Fahrtrichtung verläuft. Da der Strom im Hin- und Rückleiter der Leiterschleife zu jedem Zeitpunkt entgegengesetzt gleich ist, erreicht bei mittiger Position des Fahrzeugs in Bezug auf die Leiterschleife das Signal des Sensors mit vertikaler Empfindlichkeitsachse ein Maximum, während das Signal des anderen Sensors einen Nulldurchgang hat.
Häufig besteht bei automatischen Transportsystemen das Bedürfnis nach einer Datenkommunikation zwischen den Fahrzeugen und einer zentralen Leitstelle. Aus der DE 39 16 610 AI ist hierzu eine Einrichtung zur gleichzeitigen Spurführung und Datenübertragung bekannt, wobei allerdings die Spurführungsleitung ausschließlich zur Spurführung und nicht zur Energieversorgung des Fahrzeugs dient. Die zur Spurfuhrung vorgesehene Sensoranordnung stimmt mit der vorausgehend beschriebenen völlig überein, während die Sende- und Empfangseinrichtung zur Datenkommunikation nicht näher erläutert wird.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, für eine Vorrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes einen zweckmäßigen Weg zur Realisierung einer Datenkommunikation als weitere Funktion aufzuzeigen.
Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen. Ein für den Betrieb der erfindungsgemäßen Vorrichtung konzipiertes Verfahren ist Gegenstand des Anspruchs 28. Ein wesentlicher Vorteil der Erfindung liegt darin, daß die für die Positionsbestimmung auf dem beweglichen Verbraucher ohnehin benötigten Induktivitäten zugleich für den Datenempfang benutzt werden, d.h. daß für Führung und Datenempfang zusammen nur eine einzige induktive -Antenne benötigt wird. Besonders geeignet ist hierfür eine Anordnung von zwei gegeneinander versetzten Reihen flacher Spulen, die an dem beweglichen Verbraucher quer zur Bewegungsrichtung und mit vertikaler Achsenrichtung angeordnet sind. Solche flachen Spulen sind einfach auf einer Leiterplatte montierbar und könnten als Extremfall sogar völlig planar auf einer Leiterplatte realisiert werden.
Wenn diese Empfangsspulenanordnung breit genug ist, um zumindest einen der Leiter der zur Energieübertragung dienenden Leiterschleife seitlich weit zu überdecken, und die Datenleitung benachbart zu einem Leiter der Schleife liegt, ist auch in gekrümmten Abschnitten der Bewegungsbahn des Verbrauchers stets sowohl eine genaue Positionsbestimmung, als auch eine zum störungsfreien Datenempfang ausreichende Kopplung zumindest einer Empfangsinduktivität mit der Datenleitung gewährleistet. Dies gilt auch dann, wenn die Antenne nicht in der Mitte der gelenkten Vorderachse des beweglichen Verbrauchers angeordnet werden kann und deshalb in einer Kurve eine seitliche Auslenkung erfährt. Dabei läßt sich die Leiterposition aus einem Vergleich der Meßsignale der einzelnen Empfangsspulen bzw. aus einer Interpolation des Amplitudenverlaufs zwischen den einzelnen Empfangsspulen sehr genau ermitteln.
Im Grundsatz könnten die Empfangsinduktivitaten auch zum Senden von Datensignalen verwendet werden, doch erscheint es als vorteilhafter, hierfür eine separate Anordnung von Induktivitäten mit ferromagnetischem Kern vorzusehen, um das Feld besser auf die Datenleitung zu konzentrieren, wobei auch hier zwei gegeneinander versetzte Reihen von Induktivitäten eine besonders zweckmäßige Lösung darstellen. Sowohl unter den Sendeinduktivitäten, als auch unter den Empfangsinduktivitäten wird auf der Basis des Ergebnisses der Positionsbestimmung jeweils stets diejenige für den Kommunikationsbetrieb ausgewählt, welche aufgrund ihrer momentanen lateralen Position die beste Kopplung zur Datenleitung aufweist. Dieses Vorgehen ist im Grundsatz auf jede induktive Antennenanordnung mit mehreren Sende- und/oder Empfangsspulen anwendbar.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnungen beschrieben. In diesen zeigt Fig. 1 eine schematische Querschnittsansicht eines Teils einer erfindungsgemäßen Vorrichtung,
Fig. 2 eine schematische Draufsicht auf den Teil der Vorrichtung nach Fig. 1,
Fig. 3 den Verlauf der Ausgangsspannung einer Empfangsinduktivität in Abhängigkeit von der Position quer zur Bewegungsrichtung,
Fig. 4 einen vergrößerten und vereinfachten Ausschnitt einer Ansicht wie in Fig. 1,
Fig. 5 zwei Varianten einer Sendeinduktivität für die erfindungsgemäße Vorrichtung,
Fig. 6 eine schematische Querschnittsansicht einer zur bidirektionalen Kommunikation geeigneten Anordnung von Induktivitäten,
Fig. 7 eine schematische Draufsicht auf die Anordnung nach Fig. 6,
Fig. 8 ein Blockschaltbild einer Auswertungs-, Empfangs- und Sendeeinrichtung zum Betrieb in Verbindung mit der Induktivitätenanordnung der Figuren 6 und 7.
In den Figuren 1 und 2 ist ein Teil einer erfindungsgemäßen Vorrichtung schematisch im Querschnitt bzw. in der Draufsicht dargestellt. In einer Fahrbahn 1, auf der sich ein elektrisch angetriebenes Transportfahrzeug bewegen soll, sind zwei Nuten 2a und 2b ausgeftäst. In diesen Nuten 2a und 2b sind der Hinleiter 3 a und der Rückleiter 3b einer Leiterschleife 3 eingebettet, von der in Fig. 2 nur ein kurzer Abschnitt zu sehen ist. Die Leiterschleife 3 wird von einer nicht dargestellten Einspeisungselektronik mit einem hohen Strom gespeist und wirkt als räumlich verteilte Primärinduktivität eines Transformators, dessen Sekundärinduktivität von einem auf dem Fahrzeug angebrachten Abnehmer gebildet wird. Auf diese Weise wird das Fahrzeug mit der zu seinem Betrieb benötigten elektrischen Energie versorgt. Der Abnehmer und das Fahrzeug sind hier nicht von Interesse und daher in den Figuren nicht dargestellt. Typische Betriebsparameter eines solchen Systems sind für den Primärleitermittenab stand 100 mm, für den Luftspalt 10 mm , für den Strom 100 A und für die Frequenz 20 kHz. In der Nut 2b ist darüber hinaus noch eine zweiadrige Datenleitung 4 mit den Adern 4a und 4b angeordnet. Dabei steht die Datenleitung 4 im Querschnitt senkrecht zu der durch die Leiterschleife 3 definierten Ebene, d.h. die Verbindungslinie der Mittelpunkte der Adern 4a und 4b steht senkrecht zur Verbindungslinie der Mittelpunkte der Leiter 3 a und 3b. Hierdurch wird sowohl eine optimale induktive Entkopplung der Datenleitung 4 von der Leiterschleife 3 erzielt, als auch die Verlegung der Datenleitung 4 in Kurven erleichtert, da die als flache Zweidrahtleitung ausgebildete Datenleitung 4 in dieser Richtung wesentlich flexibler ist als in der anderen Richtung. Die beiden Nuten 2a und 2b sind der Einfachheit halber vom gleichen Querschnitt, so daß in der Nut 2a bei Bedarf noch Raum für eine weitere Datenleitung zur Verfügung steht. Für die vorliegende Erfindung kommt es nicht darauf an, auf welcher Seite eines der Leiter 3 a oder 3b die Datenleitung 4 angeordnet ist. So wäre ebensogut wie die in den Figuren gezeigte vertikale Anordnung an der Außenseite auch eine vertikale Anordnung an der Innenseite oder auch eine waagrechte Anordnung oberhalb eines Leiters 3 a oder 3b möglich.
An dem nicht dargestellten Fahrzeug ist in einem Abstand in der Größenordnung von 10 mm von der Oberfläche der Fahrbahn 1 eine aus fünf flachen Spulen 5a - 5e bestehende induktive Empfangsantenne 5 angebracht. Die Spulen 5a - 5e liegen alle parallel nebeneinander und mit den Endflächen parallel bzw. mit den in den Figuren gestrichelt eingezeichneten Achsen senkrecht zur Oberfläche der Fahrbahn 1. Die Spulen 5a - 5c bilden eine gerade Reihe, die sich bei korrekter Orientierung des Fahrzeugs quer zu dessen Bewegungsrichtung, die dann mit der Längsrichtung der Leiterschleife 3 übereinstimmt, erstreckt. Dies gilt ebenso für die Spulen 5d und 5e, die sowohl in Längsrichtung des Rückleiters 3b, als auch in Querrichtung gegenüber der Spulenreihe 5a - 5c verschoben sind. Die Verschiebung in Längsrichtung entspricht etwas mehr als der Abmessung einer Spule in dieser Richtung, die Verschiebung in Querrichtung der halben Abmessung einer Spule in dieser Richtung. Die Darstellung der Spulen mit ovalem Querschnitt in Fig 2. ist rein beispielhaft gemeint, d.h. der Querschnitt könnte ebensogut kreisförmig oder annähernd rechteckig sein. Die Querschnittsabmessungen der Spulen kömien beispielsweise in der Größenordnung von 10 bis 30 mm liegen.
Die Empfangsspulen 5a- 5e sind zunächst dazu bestimmt, das Magnetfeld des Stromes in der Leiterschleife 3 auszumessen, um anhand dessen die Lage der Antenne 5 und damit auch des Fahrzeugs, an dem sie angebracht ist, quer zur Bewegungsrichtung zu bestimmen. Zu diesem Zweck sind die Spulen 5a - 5e an eine elektronische Auswertungseinrichtung angeschlossen, welche die Amplituden der durch besagtes Magnetfeld in den Spulen 5a - 5e induzierten Spannungen feststellt, vergleicht, bewertet und ein Maß für die Lage der Antenne 5 zu dem Rückleiter 3b ermittelt. Basierend auf dieser Positionsbestimmung werden durch einen Regler Stellsignale für einen oder mehrere Servomotoren erzeugt, um so das Fahrzeug automatisch entlang einer Bahn zu lenken, die dem Verlauf der Leiterschleife 3 folgt.
Die Positionsbestimmung beruht darauf, daß die Amplitude der induzierten Spannung U in Abhängigkeit von der lateralen Position S einer Empfangsspule 5a - 5e bei gleichbleibendem vertikalem Abstand einen charakteristischen Verlauf mit mehreren Extremwerten zeigt. In Fig. 3 ist dieser Verlauf qualtitativ dargestellt, der das Feldbild einer Doppelleitung mit zwei ungleichsinnig stromdurchflossenen Adern widerspiegelt. Dabei liegt der Ursprung der Abszisse genau in der Mitte zwischen dem Hinleiter 3 a und dem Rückleiter 3b. Die Positionen der Leiter 3 a und 3b sind in Fig. 3 mit H bzw. R gekennzeichnet. Wegen des bekannten Verlaufs der magnetischen Feldlinien als Kreise, deren Mittelpunkte jeweils auf der Verbindungsgeraden der beiden Adern, jedoch alle außerhalb des Zwischenraumes H-R liegen, treten zwei symmetrische Minima bei Positionen etwas jenseits der Orte H und R auf. In einem solchen Minimum ist der verkettete Fluß wegen des dort horizontalen Verlaufs der Feldlinien nahezu Null. Das Maximum liegt genau in der Mitte und beruht auf der Addition gleich großer positiver Feldbeiträge beider Adern.
Es leuchtet ein, daß ein solcher Verlauf in einfacher Weise zur Positionsbestimmung durch Extremwertsuche benutzt werden kann, indem mehrere Spulen entlang des Weges S angeordnet werden und deren Ausgangsspannungen in einer elektronischen Auswertungseinrichtung verglichen und bewertet werden. Hierbei drängen sich die Minima wegen des deutlich steileren Kurvenverlaufs in ihrer Umgebung als günstigeres Kriterium auf. Da mit der Spulenanordnung nur diskrete Punkte entlang des Weges S abgetastet werden können, bietet es sich an, den Kurvenverlauf nach Fig. 3 zwischen diesen Stützstellen nichtlinear zu interpolieren. Der Versatz der zweiten Spulenreihe 5d - 5e gegenüber der ersten Reihe 5a - 5c um die halbe Querabmessung einer Spule bewirkt gegenüber der ersten Spulenreihe 5a - 5c eine Halbierung des räumlichen Abtastintervalls.
Allerdings muß der Krümmungsradius der Leiterschleife 3 in Kurven der Bewegungsbahn des Fahrzeugs groß gegenüber dem Abstand der beiden Spulenreihen 5a - 5c und 5d - 5e in Längsrichtung sein, damit der durch diesen Längsabstand verursachte Fehler den Gewinn an Genauigkeit in Kurven nicht zunichte macht. Eine seitliche Krümmung der Leiterschleife 3 in einer Kurve oder an einer Verzweigungsstelle zweier Bewegungsbahnen, nachfolgend wie üblich in Anlehnung an schienengebundene Systeme als Weiche bezeichnet, macht sich darin bemerkbar, daß der durch die Auswertungseinrichtung bestimmte Ort eines Minimums seitlich auszuwandern beginnt. Diese Abweichung der Istlage von einer durch die Position der Antenne 5 am Fahrzeug vorbestimmten Sollage kann zur Bahnregelung des Fahrzeugs benutzt werden.
Eine weitere Funktion der Antenne 5 ist der induktive Empfang von Datensignalen, die von einer nicht dargestellten zentralen Steuereinheit über die unmittelbar neben dem Rückleiter 3b angeordnete Datenleitung 4 an das Fahrzeug gesendet werden. Die Lage der Datenleitung 4 zu zwei flachen Empfangsspulen 5d und 5e mit jeweils vertikaler Achse ist in Fig. 4 vergrößert dargestellt. Sie hat wegen des relativ großen Abstandes zwischen den beiden Leitern 4a und 4b im Bereich von 10-20 mm einen relativ großen Wellenwiderstand und ist mit einem 300Ω- Antennenkabel früher üblicher Art vergleichbar. Ein dünner Steg der Isolation verbindet die beiden Leiter 4a und 4b mechanisch und hält sie überall auf konstantem Abstand zueinander.
Wenn der Strom in dem Datenlcabel 4, wie durch das Kreuz und den Punkt in den Leitern 4a und 4b angedeutet, zu einem bestimmten Zeitpunkt gerade im oberen Leiter 4a die dargestellte Querschnittsebene nach hinten und im unteren Leiter 4b nach vorne durchdringt, so ergibt sich in dem Raum zwischen der Leitung 4 und den Empfangsspulen 5d und 5e ein magnetischer Feldverlauf der dargestellten Art, d.h. die Feldlinien verlaufen im Uhrzeigersinn kreisförmig um Mittelpunkte herum, die oberhalb des oberen Leiters 4a auf der Verbindungsgeraden der Leitermittelpunkte liegen. An zwei Stellen der skizzierten Feldlinie B sind die Horizontalkomponenten BH und die Vertikalkomponenten By der magnetischen Flußdichte exemplarisch eingetragen.
Bei exakt mittiger Lage einer Empfangsspule 5d oder 5e oberhalb des Datenkabels 4 nimmt die induktive Kopplung wegen des dort rein horizontalen Verlaufs des Magnetfeldes B ein Minimum an, d.h. sie verschwindet dort sogar theoretisch. Andererseits nimmt der Betrag des Flußdichte B mit zunehmender Entfernung einer Spule 5d oder 5e von der Leitung 4 ab. Daraus folgt, daß es bei gegebenem vertikalem Abstand zwischen einer Spule 5d oder 5e und dem oberen Leiter 4a in der Nähe der Datenleitung 4, jedoch abseits besagter mittiger Lage ein Maximum der induktiven Kopplung gibt. Bei Verwendung einer regelmäßigen Anordnung einer Vielzahl von Empfangsspulen 5 a - 5e, wie sie Fig. 2 zeigt, liegt offensichtlich stets eine der Empfangsspulen 5a - 5e diesem Maximum am nächsten und ist somit am besten für den Datenempfang geeignet.
Davon wird Gebrauch gemacht, indem die erwähnte Auswertungseinrichtung für die Positionsbestimmung anhand der Position ständig die jeweils am besten liegende Empfangsspule 5a - 5e auswählt und über einen Multiplexer nur diese mit der Datenempfangseinrichtung verbindet. Dabei kann sich im Laufe der Bewegung des Fahrzeugs die Auswahl der günstigsten Empfangsspule 5a - 5e wiederholt ändern, insbesondere bei einem Richtungswechsel in einer Kurve oder an einer Weiche, wo die Empfangsantenne 5 trotz Lenkungsregelung zeitweise aus ihrer Normallage gegenüber der Leiterschleife 3 und damit auch gegenüber der Datenleitung 4 seitlich auswandert. Letzteres ist sogar unvermeidbar, wenn die Antenne nicht mittig unter der gelenkten Vorderachse des Fahrzeugs plaziert werden kann. Durch das ständige Umschalten auf die jeweils bestgelegene Empfangsspule 5a - 5e ist jedoch ein einwandfreier Datenempfang auch in ungeraden Abschnitten der Bewegungsbahn gewährleistet.
Im Grundsatz könnte eine Antenne 5 der vorausgehend beschriebenen Art ebenso dazu benutzt werden, Daten auch von dem Fahrzeug, an dem sie montiert ist, über die Datenleitung 4 induktiv zu einer zentralen Leitstelle zu übertragen. Um den Wirkungsgrad der Übertragung zu erhöhen, ist es jedoch von Vorteil, separate Sendespulen mit einem ferromagnetischen Kern zur Feldkonzentration auf die Datenleitung 4 zu verwenden. In Fig. 5 sind zwei mögliche Bauformen solcher Sendespulen 6 und 9 dargestellt.
Die linke Sendespule 6 eignet sich besonders zur Verwendung bei einer Datenleitung 4 mit vertikal übereinander liegenden Leitern 4a und 4b, wie sie bereits in den Figuren 1 und 4 gezeigt ist. Der Eisenkern 7 ist in diesem Fall U-förmig und die Spule 6 ist a dem Fahrzeug so angebracht, daß die beiden Schenkel des U-Kerns 7 vertikal zu der Datenleitung 4 weisen. Die Wicklung 8 befindet sich auf dem horizontalen Abschnitt zwischen den beiden Schenkeln. Die induktive Kopplung ist bei dieser Anordnung maximal in der gezeigten mittigen Position der Spule 6 über der Datenleitung 4. Die rechte Sendespule 9 eignet sich besonders zur Verwendung bei einer Datenleitung 4 mit horizontal nebeneinander liegenden Leitern 4a und 4b. Diese Leiteranordnung ist zwar im Hinblick auf die unerwünschte induktive Kopplung zwischen der Datenleitung 4 und der Leiterschleife 3 sowie auf die mechanische Flexibilität bei horziontalen Krümmungen des Leitungsverbundes weniger optimal als die vertikale Anordnung, doch kommt sie grundsätzlich auch in Betracht. Der Eisenkern 10 ist in diesem Fall E-förmig und die Spule 9 ist an dem Fahrzeug so angebracht, daß die drei Schenkel des E-Kerns 10 vertikal zu der Datenleitung 4 weisen. Die Wicklung 11 befindet sich auf dem mittleren Schenkel. Die induktive Kopplung ist auch bei dieser Anordnung maximal in der gezeigten mittigen Position der Spule 9 über der Datenleitung 4.
In völliger Analogie zur Empfangsantenne 5 besteht eine erfindungsgemäße induktive Sendeantenne aus einer Vielzahl von regelmäßig linear quer zur Bewegungsrichtung des Fahrzeugs angeordneten Sendespulen, um zu gewährleisten, daß ständig, d.h. auch bei Kurvenfahrt, eine für eine störungsfreie Datenübertragung zur Datenleitung 4 ausreichend gut positionierte Sendespule zur Verfügung steht. Auch der Vorteil einer Anordnung von zwei hintereinander liegenden und seitlich gegeneinander versetzten Reihen von Spulen zur Erhöhung der Ortsauflösung ist unmittelbar von der Empfangsantenne 5 auf eine Sendeantenne übertragbar. Logischerweise muß eine Sendantenne in Querrichtung des Fahrzeugs an der gleichen Stelle angebracht werden wie die Empfangsantenne 5, so daß sie in Längsrichtung gegenüber der Empfangsantenne verschoben sein muß.
Was die Auswahl der jeweils besten Sendespule anbelangt, so kann diese bei fester räumlicher Zuordnung zwischen Empfangs- und Sendespulen auf der Basis der Auswahl der besten Empfangsspule geschehen. Dabei muß sich bei einem Längsversatz der Sendeantenne gegenüber der Empfangsantenne die beste Sendespule nicht unbedingt in derselben lateralen Position wie die beste Empfangsspule befinden, sondern es kann in einem gekrümmten Abschnitt der Bewegungsbahn auch eine gegenüber der besten Empfangsspule seitlich versetzte Sendespule gerade in der günstigsten Position sein. Eine Berücksichtigung dieses Effektes bei der Sendespulenauswahl setzt eine temporäre Speicherung von Bewegungsbahndaten durch die Auswertungseinrichtung voraus.
In den Figuren 6 und 7 ist ein erfindungsgemäßes Führungs- und Kommunikationssystem mit maximalem Funktionsumfang im Querschnitt bzw. in der Draufsicht dargestellt. Es weist eine Empfangsantenne 12 auf, die im Prinzip der vorausgehend anhand der Figuren 1 und 2 beschriebenen entspricht, jedoch im Unterschied dazu nicht nur den Rückleiter 3b, sondern auch den Hinleiter 3 a, also die Leiterschleife 3 in ihrer vollen Breite überdeckt. In Längsrichtung gegenüber der Empfangsantenne 12 verschoben ist eine analog strukturierte Sendeantenne 13 angeordnet, die in gleicher Weise die Leiterschleife 3 komplett überdeckt und sich aus Sendespulen 6 der in Fig. 5 links gezeigten Art zusammensetzt. Wie in Fig. 6 erkennbar ist, befindet sich in der Nut 2a benachbart zu dem Hinleiter 3 a eine zweite Datenleitung 14 ebenfalls in vertikaler Position.
Der Vorteil des Systems nach den Figuren 6 und 7 ist die Funktionsfähigkeit auch im Bereich von Weichen (Bahnverzweigungen), an denen sich das Fahrzeug und damit auch die Antennen 12 und 13 von einem der Leiter 3 a oder 3b entfernen und vorübergehend nur noch einer der Leiter 3 a oder 3b in der Nähe der Antennen 12 und 13 vorhanden ist. Dadurch, daß jedem der Leiter 3a und 3b eine Datenleitung 14 bzw. 4 zugeordnet ist, und daß jede dieser Datenleitungen 14 und 4 von den Emfangs- und Sendeantennen 12 bzw. 13 überdeckt wird, ist zu jedem Zeitpunkt eine störungsfreie Datenkommunikation möglich.
Gleiches gilt sinngemäß auch für die Bahnführung des Fahrzeugs. Wenn nämlich, wie in den Figuren 1 und 2 dargestellt, nur einer der Leiter 3 a oder 3b von einer Empfangsantenne 5 überdeckt wird und sich die Bahn des Fahrzeugs an einer Weiche von diesem Leiter entfernt, dann ist solange keine Positionsbestimmung und folglich auch keine Lenkregelung möglich, bis die Antenne 5 wieder einen neuen Leiter 3a bzw. 3b findet. Bei einer -Antennenanordnung wie in den Figuren 6 und 7 ist hingegen stets die Nähe der Empfangsantenne 12 zu mindestens einem Leiter 3 a oder 3b, und damit eine ununterbrochene Positionsinformation auch im Bereich einer Weiche gewährleistet.
Wenn diesen Gesichtspunkten im einzelnen Anwendungsfall keine entscheidende Bedeutung zukommt, dann genügt für eine bidirektionale Datenkommunikation im Grundsatz eine Hälfte der in den Figuren 6 und 7 gezeigten Antennenanordnung 12, 13 und es kann auf die zweite Datenleitung 14 verzichtet werden. Dies entspricht der Anordnung der Figuren 1 und 2 mit zwei zusätzlichen, in Querrichtung gegeneinander versetzten Reihen von Sendespulen 6, die in Längsrichtung hinter den Empfangsspulen 5a - 5e liegen. Es versteht sich von selbst, daß die in den Figuren 1 und 2 gezeigte Anzahl von fünf Empfangsspulen 5a - 5e in zwei Reihen und die in den Figuren 6 und 7 gezeigte Anzahl von jeweils elf Sende- und Empfangsspulen in jeweils zwei Reihen rein beispielhaften Charakter haben. Im einzelnen Anwendungsfall kann zur Erreichung angestrebter Leistungsdaten sowohl eine geringere Anzahl von Spulen und/oder Reihen ausreichen, als auch eine größere Anzahl von Spulen und/oder Reihen notwendig sein.
Das Blockschaltbild einer kombinierten Auswertungs- und Datenkommunikationseinrichtung 15 ist in Fig. 8 dargestellt. Kernstück dieser Einrichtung 15 ist ein Mikrocomputer 16, der alle digitalen Verarbeitungsfunktionen der Einrichtung 15 wahrnimint. Der Mikrokomputer 16 verfügt über einen AnalogXDigital- Wandler 17 zum Einlesen der von der Empfangsantenne 12 aufgenommenen analogen Positionsmeßsignale und über eine digitale Ein-/ Ausgabeeinheit 18 zum Einlesen der über die Empfangsantenne 12 von den Datenleitungen 4 und 14 empfangenen digitalen Datensignale sowie zum Ausgeben digitaler Datensignale, die über die Sendeantenne 13 auf den Datenleitungen 4 und 14 gesendet werden sollen. Ferner verfügt der Mikrocomputer 16 über geeignete digitale Schnittstellen zur Kommunikation mit der Steuerelektronik des Fahrzeugs. Beispielsweise kann zur Abgabe der enechneten Positionsdaten an die Lenkregeleinheit eine eigene CAN-Bus-Schnittstelle 19 vorgesehen sein, während zur Abgabe von Steuerbefehlen sowie zum Einlesen von Statusinformationen, die über die Datenleitungen 4 und 14 an eine zentrale Leitstelle gesendet werden sollen, eine serielle RS232-Schnittstelle dient. Alternativ zu den genannten Schnittstellentypen würde sich z. B. auch RS485 eignen.
Die Empfangsantenne 12 ist an die Einrichtung 15 über einen Multiplexer 21 angeschlossen, der von dem Mikrocomputer 16 über einen Steuerbus 22 gesteuert wird. Das heißt, daß über den Steuerbus 22 stets nur ein einzelner Empfangsspulenanschluß der Empfangsantenne 12 ausgewählt und vom Multiplexer 21 auf seinen Ausgang durchgeschaltet wird. Dem Multiplexer 21 parallel nachgeschaltet sind zwei Bandpaßfilter 23 und 24. Während das Bandpaßfilter 23 auf die Betriebsfrequenz der zur Energieübertragung dienenden Leiterschleife 3, die beispielsweise in der Größenordnung von 20 kHz liegt, abgestimmt ist, ist das Bandpaßfilter 24 auf das zur Datenübertragung auf den Datenleitungen 4 und 14 ausgewählte Frequenzband, das beispielsweise in der Größenordnung um 1 MHz liegen kann, abgestimmt. Durch diese Bandpaßfilter 23 und 24 werden das vom Magnetfeld der Leiterschleife 3 herrührende Positionsmeßsignal und das von den Datenleitungen 4 und 14 ausgehende Datensignal voneinander getrennt. Das Positionsmeßsignal von dem ersten Bandpaßfilter 23 wird anschließend einem Abtast- und Halteglied 25 zugeführt, welches ebenso wie der Multiplexer 21 über weitere Steuerleitungen 26 von dem Mikrocomputer 16 gesteuert wird. Der Ausgang des Abtast- und Haltegliedes 25 ist mit dem Eingang des A/D-Wandlers 17 verbunden. Das Datensignal von dem zweiten Bandpaßfilter 24 wird anschließend einem Demodulator 27 zugeführt, der daraus das digitale Basisbandsignal zurückgewinnt und an die digitale Ein- Ausgabeschnittstelle 18 des Mikrocomputers 16 abgibt.
Das Gegenstück zu dem Demodulator 27 bildet ein digitaler Modulator 28. Diesem werden von dem Fahrzeug an die Leitstelle zu übertragende Daten als Basisbandsignal von der digitalen Ein- Ausgabeschnittstelle 18 des Mikrocomputers 16 zugeführt, die er beispielsweise durch Frequenzumtastung (FSK) einem Trägersignal aufmoduliert. Das so erzeugte Sendesignal gibt er an eine Treibereinheit 29 ab, an der die Sendeantenne 13 angeschlossen ist. Diese Treibereinheit 29 verstärkt das von dem Modulator 28 ankommende Datensignal und schaltet es unter der über den Steuerbus 22 ausgeübten Kontrolle des Mikrocomputers 16 auf nur einen Sendespulenanschluß der Sendeantenne 13. Dies heißt, daß die Treibereinheit 29 selbst einen weiteren, in Fig. 8 nicht eigens dargestellten Multiplexer beinhaltet. Um ausreichende Schaltraten zu gewährleisten, enthält der Steuerbus 22 getrennte Adreßleitungen für den Multiplexer 21 und den in der Treibereinheit 29 enthaltenen weiteren Multiplexer.
Die Auswahl der zu einem bestimmten Zeitpunkt benutzten Sende- und Empfangsspule trifft der Mikrocomputer 16 anhand der von ihm errechneten Position der Antennen 12 und 13. In diese Berechnung gehen die Positionsmeßsignale aller Empfangsspulen der Empfangsantenne 12 ein, die nacheinander über den Multiplexer 21 durchgeschaltet und eingelesen werden. Es wird also für die Datenkommunikation stets nur die Sende- und Empfangsspule mit der jeweils günstigsten Lage verwendet. Zwar köimten als Auswahlkriterium hierfür auch die Amplituden der von den einzelnen Empfangsspulen der Empfangsantenne 12 gelieferten Datensignale, d.h. die jeweils zugeordneten Ausgangssignale des Bandpaßfilters 24 verwendet werden, doch ist es bevorzugt, die Positionssignale, d.h. die jeweils zugeordneten Ausgangssignale des Bandpaßfilters 23 zu verwenden, da diese Signale wegen des gegenüber den Datenleitungen 4 und 14 um Größenordnungen höheren Stromes in der Leiterschleife 3 wesentlich stärker sind. Die Empfangsantenne 12 kann des weiteren auch dazu benutzt werden, Signale von zur Positionsmarkierung an vorbestimmten Stellen entlang der Leiterschleife 3 angeordneten Sendern zu empfangen. Solche Positionsmarkensender dienen üblicherweise dazu, einem automatisch gesteuerten Fahrzeug das Erreichen bzw. Passieren vorbestimmter Positionen entlang einer Strecke zu signalisieren. Zweckmäßigerweise verfügt ein solcher Sender jeweils über eine Sendespule, die neben der Leiterschleife 3 so angeordnet ist, daß mindestens eine der Spulen der Empfangsantenne 12 beim Passieren vorübergehend in eine induktive Kopplung zur Sendespule gelangt, wodurch kurzzeitig die Übertragung eines Datensignals von der stationären Sendespule zur Empfangsantenne 12 möglich ist.
Dieses Datensignal beinhaltet einen digitalen Code, der die Position des Senders entlang der Leiterschleife 3 angibt. Um eine Störung dieser unidirektionalen Positionsdatenübertragung durch die vorhandenen Felder zur Energieübertragung von der Leiterschleife 3 zum Fahrzeug und zur Datenübertragung zwischen der Datenleitung (4; 14) und dem Fahrzeug zu vermeiden, müssen sich die Frequenzen bzw. Frequenzbänder der drei Felder ausreichend deutlich unterscheiden, d.h. es muß die Extraktion des Positionsdatensignals durch ein weiteres, zusätzlich zu den Filtern 23 und 24 vorzusehendes Bandpaßfilter möglich sein. Selbstverständlich muß dem Bandpaßfilter auch ein weiterer Demodulator nachgeschaltet werden, was einer Duplizierung des mittleren Signalpfades 24-27-18 in Fig. 8 entspricht. Die Decodierung und Weiterleitung der Positionsmarkendaten kann ohne weiteres von dem Mikrocomputer 16 als zusätzliche Funktion übernommen werden.
Bei einem vorbestimmten seitlichen Abstand der Positionsmarkensender von der Leiterschleife 3 kann nach der Auswahl der besten Empfangsspule zum Empfang des Datensignals von der Datenleitung (4; 14) in einfacher Weise auch die beste Empfangsspule zum Empfang des weiteren Datensignals von einem der Positionsmarkensender bestimmt werden, wobei es sich in aller Regel um zwei verschiedene Empfangsspulen handeln wird. Die Empfangsantenne 12 kann demnach sogar quasi simultan zum Empfang dreier verschiedener Signale genutzt werden.
Die Erfindung stellt ein kombiniertes System zur induktiven Energieversorgung und Führung eines beweglichen Objektes mit gleichzeitiger induktiver Datenkommunikation dar, mit dem in jedem Fall die Mindestanforderungen (Single-Master, Halbduplex, 9600 Baud Übertragungsrate, 100 ms Reaktionszeit), die im vorliegenden Zusammenhang heute an eine Datenkommunikation gestellt werden, erfüllbar sind. Die Leistungsdaten des Systems können aber ohne weiteres an einen erhöhten Bedarf angepaßt werden. Dies gilt nicht nur für die Ubertragungsgeschwindigkeit und die Reaktionszeit. So eröffnet die Bereitstellung einer zweiten Datenleitung 14, wie sie anhand der Figuren 6 und 7 beschreiben wurde, auch die Möglichkeit eines Vollduplex-Betriebes.
Obgleich es zweckmäßig ist, wemi zumindest die Empfangsantenne, die Sendeantenne und die Auswertungs- und Datenkommunikationseinrichtung jeweils eine Baueinheit bilden, oder sogar alle diese Komponenten zu einer einzigen Baueinheit zusammengefaßt sind, ist dies keine Voraussetzung zur Verwirklichung der vorliegenden Erfindung. Auch die Verwendung einer Vielzahl separater Spulen und die Realisierung der Auswertungseinrichtung und der Datenempfangseinrichtung als integrale Bestandteile einer zentralen Steuerelektronik des Fahrzeugs stellen Ausführungsformen der Erfindung dar, die vom Schutzbereich der Ansprüche umfaßt sind.

Claims

Ansprüche
1. Vorrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes, mit einer sich als Leiterschleife entlang einer vorgesehenen Bewegungsbahn des Objektes erstreckenden Primärinduktivität, einer an dem Objekt angeordneten und zur Energieübertragung magnetisch mit der Primärinduktivität koppelbaren Sekundärinduktivität, mehreren an dem Objekt angeordneten Empfangsinduktivitäten, die vom Magnetfeld der Primärinduktivität abhängige Meßsignale abgeben, und mit einer Auswertungseinrichtung, welche aus den Meßsignalen ein Maß für die Position des Objektes in Bezug auf die Leiterschleife ermittelt, dadurch gekennzeichnet, daß die Empfangsinduktivitäten (5; 12) zugleich auch mit einer Datenempfangseinrichtung (21, 24, 27, 18, 16) verbunden sind, die Mittel (24) zur Extraktion eines Datensignals aus der Ausgangsspannung mindestens einer der Empfangsinduktivitäten (5; 12) enthält, und daß entlang der vorgesehenen Bewegungsbahn des Objektes mindestens eine Datenleitung angeordnet ist, die während der Bewegung des Objektes eine zur Übertragung eines Datensignals ausreichende induktive Kopplung mit mindestens einer der Empfangsinduktivitäten (5; 12) aufweist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Datenleitung mit der Leiterschleife (3) identisch ist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Datenleitung (4) separat von der Leiterschleife (3) ausgebildet ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine regelmäßige Anordnung von Empfangsinduktivitäten (5; 12) vorgesehen ist, die sich an dem Objekt zumindest quer zu dessen Bewegungsrichtung erstreckt.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Empfangsinduktivitäten (5; 12) untereinander gleichartige Spulen (5; 12) sind, die so angeordnet sind, daß ihre Längsachsen parallel zueinander verlaufen, und daß die axialen Enden aller Spulen in höchstens zwei zueinander parallelen Ebenen liegen.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Spulen (5; 12) planar als Leiterbahnen auf einer Leiterplatte realisiert sind.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Spulen (5; 12) an dem Objekt so angeordnet sind, daß ihre Längsachsen annähernd senkrecht zur Tangentialebene der Bewegungsbahn des Objektes verlaufen.
8. Vorrichtung nach einem der Ansprüche 1 bis 1, dadurch gekennzeichnet, daß sich die Anordnung der Empfangsinduktivitäten (5; 12) auch in der Bewegungsrichtung des Objektes erstreckt.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß mindestens zwei in Bewegungsrichtung des Objektes aufeinanderfolgende Reihen von Spulen (5; 12) vorgesehen sind, und daß diese Reihen in Querrichtung um die durch die Anzahl der Reihen geteilte Querabmessung einer der Spulen (5; 12) gegeneinander versetzt sind.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Auswertungseinrichtung (21, 23, 25, 17, 16) als Maß für die Position des Objektes in Bezug auf die Leiterschleife (3) mindestens ein Extremum des induzierten Meßsignals als Funktion des Ortes ermittelt.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die
Auswertungseinrichtung (21, 23, 25, 17, 16) zur Ermittlung des mindestens einen Extremums zwischen den Meßsignalen mehrerer Spulen (5; 12) nichtlinear interpoliert.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß an dem Objekt eine Datensendeeinrichtung (16, 18, 28, 29) vorgesehen und mit mindestens einer Sendeinduktivität verbunden ist, die eine zur Übertragung eines Datensignals ausreichende induktive Kopplung mit der Datenleitung aufweist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die mindestens eine Sendeinduktivität mit einer der mit der Auswertungseinrichtung (21, 23, 25, 17, 16) verbundenen Empfangsinduktivitaten (5; 12) identisch ist.
14. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß an dem Objekt eine sich zumindest quer zu dessen Bewegungsrichtung erstreckende, regelmäßige Anordnung einer Vielzahl von Sendeinduktivitäten (13) vorgesehen ist, die separat von den mit der Auswertungseimichtung (21, 23, 25, 17, 16) verbundenen Empfangsinduktivitäten (5; 12) ausgebildet sind.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Sendeinduktivitäten (13) untereinander gleichartige Spulen (6; 9) sind, die jeweils einen ferromagnetischen Kern (7; 10) aufweisen, der so geformt und angeordnet ist, daß die Ein- und Austrittsflächen des magnetischen Flusses annähernd senkrecht zur Tangentialebene der Bewegungsbahn des Objektes verlaufen.
16. Vorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß sich die Anordnung der Sendeinduktivitäten (13) auch in der Bewegungsrichtung des Objektes erstreckt.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß mindestens zwei in Bewegungsrichtung des Objektes aufeinanderfolgende Reihen von Sendeinduktivitäten (13) vorgesehen sind, und daß diese Reihen in Querrichtung um die durch die Anzahl der Reihen geteilte Querabmessung einer einzelnen Sendeinduktivität (6; 9) gegeneinander versetzt sind.
18. Vorrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß das für die Datenübertragung verwendete Frequenzband sich wesentlich von der Betriebsfrequenz der Energieversorgung unterscheidet, und daß mindestens eine Filtereinrichtung (23, 24) zur Trennung der Positionsmeßsignale und der Datensignale vorgesehen ist.
19. Vorrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Auswertungseinrichtung (21, 23, 25, 17, 16) anhand der von den Empfangsinduktivitäten (5; 12) gelieferten Meßsignale zu jedem Zeitpunkt für die Datenübertragung diejenige der Empfangsinduktivitäten (5; 12) auswählt, die sich gerade in der Position maximaler Kopplung mit der Datenleitung (4) befindet, und daß zu jedem Zeitpunkt die jeweils ausgewählte Empfangsinduktivität zum Empfangen eines Datensignals verwendet wird.
20. Vorrichtung nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, daß die Auswertungseinrichtung (21, 23, 25, 17, 16) anhand der von den Empfangsinduktivitäten (5; 12) gelieferten Meßsignale zu jedem Zeitpunkt für die Datenübertragung diejenige der Sendeinduktivitäten (13) auswählt, die sich gerade in der Position maximaler Kopplung mit der Datenleitung (4) befindet, und daß zu jedem Zeitpunkt die jeweils ausgewählte Sendeinduktivität zum Senden eines Datensignals verwendet wird.
21. Vorrichtung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß die Datenleitung (4) aus zwei Leitern (4a, 4b) besteht, die benachbart zu einem der beiden Leiter (3b) der Leiterschleife (3) so angeordnet sind, daß im Querschnitt die Verbindungslinie der Leitermittelpunkte der Datenleitung (4) annähernd senkrecht zur Verbindungslinie der Leitermittelpunkte der beiden Leiter (3 a, 3b) der Leiterschleife (3) steht.
22. Vorrichtung nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß zwei Datenleitungen (4, 14) vorgesehen sind, von denen eine benachbart zum Hinleiter (3a) und eine benachbart zum Rückleiter (3b) der Leiterschleife (3) angeordnet ist.
23. Vorrichtung nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß die Empfangsinduktivitaten (12) die gesamte Breite der Leiterschleife (3) überdecken.
24. Vorrichtung nach einem der Ansprüche 10 bis 23, dadurch gekennzeichnet, daß die Sendeinduktivitäten (13) die gesamte Breite der Leiterschleife (3) überdecken.
25. Vorrichtung nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Datenempfangseinrichtung (21, 24, 27, 18, 16) Mittel zur Extraktion eines weiteren Datensignals aus der Ausgangsspannung mindestens einer der Empfangsinduktivitäten (5; 12) enthält, und daß entlang der vorgesehenen Bewegungsbahn des Objektes mindestens ein Datensender angeordnet ist, der ein solches weiteres Datensignal über eine Sendeinduktivität aussendet, die nur während des Passierens des Objektes eine zur Übertragung des weiteren Datensignals ausreichende induktive Kopplung mit mindestens einer der Empfangsinduktivitäten (5; 12) aufweist.
26. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, daß der Datensender einen seine Position entlang der Leiterschleife (3) angebenden Code aussendet.
27. Vorrichtung nach Ansprach 25 oder 26, dadurch gekennzeichnet, daß der Datensender in einem Frequenzband sendet, das sich wesentlich sowohl von der Betriebsfrequenz der Energieversorgung, als auch vom Frequenzband der Datenübertragung zwischen dem Objekt und der Datenleitung (4; 14) unterscheidet, und daß zur Extraktion des weiteren Datensignals aus der Ausgangsspannung mindestens einer der Empfangsinduktivitaten (5; 12) eine eigene Filtereinrichtung vorgesehen ist.
28. Verfahren zur induktiven Datenübertragung zwischen einer stationär verlegten Datenleitung und einem beweglichen Objekt, das entlang einer parallel zu der Datenleitung verlaufenden Bewegungsbahn geführt wird, wozu fortlaufend die Position des Objektes quer zur Bewegungsrichtung gemessen und zur Bahnführung verwendet wird, dadurch gekennzeichnet, daß an dem Objekt eine Empfangs- und/oder eine Sendeantenne vorgesehen ist, die aus einer Vielzahl einzelner Empfangs- bzw. Sendeinduktivitäten (12; 13) besteht, und daß auf der Basis der zur Bahnführung gemessenen Position des Objektes zu jedem Zeitpunkt diejenige der Empfangs- bzw. Sendeinduktivitäten (12; 13) ausgewählt wird, die sich gerade in der Position maximaler Kopplung mit der Datenleitung (4; 14) befindet, und daß zu jedem Zeitpunkt die jeweils ausgewählte Empfangs- bzw. Sendeinduktivität zum Empfangen bzw. Senden eines Datensignals verwendet wird.
EP03704661A 2002-04-12 2003-02-20 Vorrichtung zur induktiven energieversorgung und führung eines beweglichen objektes Withdrawn EP1503918A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10216422A DE10216422C5 (de) 2002-04-12 2002-04-12 Vorrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes
DE10216422 2002-04-12
PCT/EP2003/001713 WO2003086807A1 (de) 2002-04-12 2003-02-20 Vorrichtung zur induktiven energieversorgung und führung eines beweglichen objektes

Publications (1)

Publication Number Publication Date
EP1503918A1 true EP1503918A1 (de) 2005-02-09

Family

ID=28685028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03704661A Withdrawn EP1503918A1 (de) 2002-04-12 2003-02-20 Vorrichtung zur induktiven energieversorgung und führung eines beweglichen objektes

Country Status (10)

Country Link
US (1) US7243752B2 (de)
EP (1) EP1503918A1 (de)
JP (1) JP2005528068A (de)
KR (1) KR100795439B1 (de)
CN (1) CN1738733A (de)
AU (1) AU2003206933A1 (de)
CA (1) CA2481445A1 (de)
DE (1) DE10216422C5 (de)
MX (1) MXPA04009521A (de)
WO (1) WO2003086807A1 (de)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216422C5 (de) 2002-04-12 2011-02-10 Conductix-Wampfler Ag Vorrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes
DE102004031580B4 (de) * 2004-06-29 2007-02-01 Sew-Eurodrive Gmbh & Co. Kg Anordnung zur berührungslosen induktiven Energieübertragung an bewegbare Vorrichtungen
JP4214533B2 (ja) * 2006-08-10 2009-01-28 村田機械株式会社 移動体システム
US7731994B2 (en) 2007-06-13 2010-06-08 Industry Academic Cooperation Foundation Of Kyunghee University Pharmaceutical composition for protecting neurons comprising extract of lithospermum erythrothizon SIEB. ET. Zucc or acetylshikonin isolated therefrom as an effective ingredient
TWI451084B (zh) * 2007-06-27 2014-09-01 Brooks Automation Inc 位置及間隙測定用感應器
GB2461577A (en) 2008-07-04 2010-01-06 Bombardier Transp Gmbh System and method for transferring electric energy to a vehicle
GB2461578A (en) 2008-07-04 2010-01-06 Bombardier Transp Gmbh Transferring electric energy to a vehicle
GB2463693A (en) 2008-09-19 2010-03-24 Bombardier Transp Gmbh A system for transferring electric energy to a vehicle
GB2463692A (en) 2008-09-19 2010-03-24 Bombardier Transp Gmbh An arrangement for providing a vehicle with electric energy
KR101789904B1 (ko) * 2008-09-27 2017-10-25 위트리시티 코포레이션 무선 에너지 전달 시스템
DE102008059194A1 (de) * 2008-11-27 2010-06-02 Schaeffler Kg Linearführung, mit einem auf einer Führungsschiene längsverschieblichen Führungswagen sowie Verfahren zum Betreiben einer derartigen Linearführung
US8967051B2 (en) 2009-01-23 2015-03-03 Magnemotion, Inc. Transport system powered by short block linear synchronous motors and switching mechanism
US8616134B2 (en) * 2009-01-23 2013-12-31 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
US9032880B2 (en) 2009-01-23 2015-05-19 Magnemotion, Inc. Transport system powered by short block linear synchronous motors and switching mechanism
FR2945724B1 (fr) * 2009-05-22 2012-11-16 Gen Electric Appareil a rayons x
DE102010012356B4 (de) * 2010-03-22 2021-04-29 Sew-Eurodrive Gmbh & Co Kg System zur berührungslosen Energieübertragung an ein Fahrzeug
JP5848005B2 (ja) * 2010-04-23 2016-01-27 ゼネラル・エレクトリック・カンパニイ 可動式画像取得における被検体の位置決めの自動式支援のシステム
JP6144195B2 (ja) * 2010-05-19 2017-07-12 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited 誘導電力転送システム1次トラックトポロジー
DE102011010792A1 (de) 2011-02-09 2012-08-09 Conductix-Wampfler Ag Vorrichtung zur Energieübertragung und zur induktiven Kommunikation
DE102011010793A1 (de) 2011-02-09 2012-08-09 Conductix-Wampfler Ag Verwendung eines Modems
DE202011002561U1 (de) 2011-02-09 2012-05-11 Conductix-Wampfler Ag Vorrichtung zur Energieübertragung und zur induktiven Kommunikation
DE202011002552U1 (de) 2011-02-09 2012-05-11 Conductix-Wampfler Ag Verwendung eines Modems
WO2012107490A2 (de) 2011-02-09 2012-08-16 Conductix-Wampfler Ag Vorrichtung zur energieübertragung und zur induktiven kommunikation
US20120217817A1 (en) * 2011-02-28 2012-08-30 Bingnan Wang Tuning Electromagnetic Fields Characteristics for Wireless Energy Transfer Using Arrays of Resonant Objects
DE102011018633B4 (de) 2011-04-21 2021-10-07 Sew-Eurodrive Gmbh & Co Kg System zur induktiven Energie-Übertragung an einen Verbraucher
CN107415768B (zh) 2011-06-07 2020-03-27 麦克纳莫绅有限公司 线性同步电机推进系统的通用控制
JPWO2013001636A1 (ja) * 2011-06-30 2015-02-23 トヨタ自動車株式会社 送電装置、受電装置、および電力伝送システム
WO2013001636A1 (ja) * 2011-06-30 2013-01-03 トヨタ自動車株式会社 送電装置、受電装置、および電力伝送システム
DE102011080169A1 (de) * 2011-08-01 2013-02-07 Robert Bosch Gmbh Kommunikationsanbindung für Sensorik in Fahrzeug-Regelsystemen
EP2743150B1 (de) * 2011-08-08 2016-05-25 Toyota Jidosha Kabushiki Kaisha Fahrzeug, verfahren und vorrichtung zur fahrzeugsteuerung
DE102011115092C5 (de) 2011-10-07 2018-04-05 Sew-Eurodrive Gmbh & Co Kg System zur kontaktlosen Übertragung von Energie und Daten
GB2496187A (en) * 2011-11-04 2013-05-08 Bombardier Transp Gmbh Providing a vehicle with electric energy using a receiving device for an alternating electromagnetic field
DE202012100419U1 (de) 2012-02-08 2013-05-10 Conductix-Wampfler Gmbh Vorrichtung zur Energieübertragung und zur induktiven Kommunikation
JP6696771B2 (ja) * 2012-11-05 2020-05-20 アップル インコーポレイテッドApple Inc. 誘導結合型の電力伝送方法及びシステム
JP6633516B2 (ja) 2013-09-21 2020-01-22 マグネモーション インコーポレイテッド パッケージングおよび他の用途のためのリニアモータ輸送
GB2520990A (en) * 2013-12-06 2015-06-10 Bombardier Transp Gmbh Inductive power transfer for transferring electric energy to a vehicle
JP6217388B2 (ja) * 2013-12-27 2017-10-25 トヨタ自動車株式会社 受電装置およびそれを備える車両
GB2521676B (en) * 2013-12-31 2016-08-03 Electric Road Ltd System and method for powering an electric vehicle on a road
GB2522852A (en) * 2014-02-05 2015-08-12 Bombardier Transp Gmbh A method of communication between a vehicle and a wayside control unit for controlling an inductive energy transfer to the vehicle, a vehicle, a wayside contr
US9532666B2 (en) * 2014-06-24 2017-01-03 Apex Industrial Technologies Llc Modular storage system
DE202016101808U1 (de) * 2016-04-06 2016-04-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zur drahtlosen Übertragung von Energie und Daten
US11526176B2 (en) 2017-02-14 2022-12-13 Volvo Truck Corporation Sensing arrangement for determining a displacement of a vehicle with respect to an electrical road system
CN110999029A (zh) 2017-05-30 2020-04-10 无线先进车辆电气化有限公司 单点馈电多垫式无线充电
US10770928B2 (en) * 2017-06-06 2020-09-08 Apple Inc. Wireless charging device with multi-tone data receiver
DE102017216726A1 (de) * 2017-09-21 2019-03-21 Robert Bosch Gmbh Verfahren zum Betrieb einer induktiven Übertragungseinrichtung
US10850634B2 (en) * 2017-10-20 2020-12-01 Toyota Motor Engineering & Manufacturing North America, Inc. Multi-turn configurable grid charging coil
US10615648B2 (en) 2017-12-13 2020-04-07 Apple Inc. Wireless charging device with multi-tone data receiver and active power supply noise cancellation circuitry
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad
DE102018111715A1 (de) * 2018-05-16 2019-11-21 Beckhoff Automation Gmbh Lineares transportsystem und system zur kontaktlosen energie- und datenübertragung
CN109368549B (zh) * 2018-12-27 2020-12-08 昆山同日工业自动化有限公司 一种磁条导航叉车系统及其控制方法
JP7343448B2 (ja) 2020-06-23 2023-09-12 ヤンマーホールディングス株式会社 旋回作業機

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006790A (en) * 1974-01-11 1977-02-08 Hitachi, Ltd. Electromagnetic guidance system
DE3150380A1 (de) * 1981-12-17 1983-07-14 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Einrichtung zur datenuebertragung mittels einer induktionsschleife
US4742283A (en) * 1986-11-28 1988-05-03 Inductran Corporation Guidance system for inductively coupled electric vehicles
FR2645980B1 (fr) * 1989-04-14 1996-05-31 Alsthom Gec Dispositif de guidage de vehicules sur une voie non materialisee
DE3916610A1 (de) * 1989-05-22 1989-12-07 Goetting Hans Heinrich Jun Einrichtung zur datenuebertragung und spurfuehrung von fahrzeugen
US5175480A (en) * 1990-01-18 1992-12-29 Mckeefery James Vehicle guidance and control systems and methods for controllably guiding a vehicle along a predetermined pathway
DE4020548A1 (de) * 1990-06-28 1992-01-02 Richard Sirotzki System zur informationsuebermittlung im strassenverkehr
US5293308A (en) * 1991-03-26 1994-03-08 Auckland Uniservices Limited Inductive power distribution system
US5347456A (en) * 1991-05-22 1994-09-13 The Regents Of The University Of California Intelligent roadway reference system for vehicle lateral guidance and control
JPH0767271A (ja) 1993-08-26 1995-03-10 Sumitomo Electric Ind Ltd 移動体の非接触給電装置における変位検出装置
JPH0767270A (ja) 1993-08-26 1995-03-10 Sumitomo Electric Ind Ltd 移動体の非接触給電装置における変位検出装置
JPH0761350A (ja) 1993-08-26 1995-03-07 Sumitomo Electric Ind Ltd 移動体の非接触給電装置における情報伝達装置
JPH0833112A (ja) 1994-07-20 1996-02-02 Sumitomo Electric Ind Ltd 車両の非接触集電装置
US5629595A (en) * 1995-06-19 1997-05-13 The Walt Disney Company Method and apparatus for an amusement ride having an interactive guided vehicle
US5927657A (en) * 1996-07-17 1999-07-27 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Antenna mounting structure for movable member conveying system
DE19649682C2 (de) * 1996-11-29 2003-03-13 Schleifring Und Appbau Gmbh Vorrichtung zur breitbandigen Signal- bzw. Energieübertragung zwischen gegeneinander beweglichen Einheiten
DE69810797T2 (de) * 1997-09-29 2003-06-12 Aichi Steel Works Ltd Magnetische vorrichtung zum erfassen einer fahrzeugposition
DE19816762A1 (de) * 1998-04-16 1999-10-28 Goetting Jun Verfahren zur Energieversorgung sowie Positionierung und/oder Führung eines Objektes
US6437561B1 (en) * 1999-11-17 2002-08-20 3M Innovative Properties Company System for determining the position of an object with respect to a magnetic field sources
DE10014954A1 (de) 2000-03-22 2001-10-04 Lju Industrieelektronik Gmbh Elektrohängebahn mit berührungsloser Energieübertragung
DE10216422C5 (de) 2002-04-12 2011-02-10 Conductix-Wampfler Ag Vorrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03086807A1 *

Also Published As

Publication number Publication date
DE10216422C5 (de) 2011-02-10
KR100795439B1 (ko) 2008-01-17
CN1738733A (zh) 2006-02-22
CA2481445A1 (en) 2003-10-23
US7243752B2 (en) 2007-07-17
MXPA04009521A (es) 2005-01-25
WO2003086807A1 (de) 2003-10-23
JP2005528068A (ja) 2005-09-15
DE10216422A1 (de) 2003-10-30
WO2003086807A8 (de) 2005-02-17
AU2003206933A1 (en) 2003-10-27
KR20040102090A (ko) 2004-12-03
DE10216422B4 (de) 2006-07-06
US20050103545A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
DE10216422C5 (de) Vorrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes
AT393657B (de) Verfahren zur uebertragung von informationen und/oder befehlen
DE10115444A1 (de) Navigationsverfahren und -vorrichtung für ein autonomes Fahrzeug
CH656100A5 (de) Punktfoermige einrichtung zur uebertragung von information zwischen einer trasse und auf dieser gefuehrten fahrzeugen.
EP3776807B1 (de) Lineares transportsystem und system zur kontaktlosen energie- und datenübertragung
WO1998001377A1 (de) Spurgeführtes transportsystem mit transportfahrzeugen
EP2225814B1 (de) Vorrichtung zur berührungslosen energieübertragung und anlage mit elektrischen verbrauchern
DE10147859B4 (de) Elektrohängebahn mit berührungsloser Energie- und Datenübertragung
DE1780040C2 (de) Zuganwesenheits-Signalsystem
EP2673157B1 (de) Vorrichtung zur energieübertragung und zur induktiven kommunikation
EP2700140B1 (de) System zur induktiven energie-übertragung an einen verbraucher
EP2531389B1 (de) Förderanlage zum transport von gegenständen
WO2009153050A1 (de) Automatisierungseinheit in fördertechnischen anlagen
DE1588331C3 (de) Anordnung zur automatischen Abstandssicherung von gleislosen Transportfahrzeugen
DE2254799C3 (de) Anordnung zur Abstandsteuerung und -sicherung von spurgebundenen Objekten im Bereich einer Verzweigung
EP0816201B1 (de) Einrichtung zur Eigenortung eines Eisenbahnfahrzeugs
DE4409483C1 (de) Verfahren und Vorrichtung zur Kontrolle von Fahrdrähten
DE3435522C2 (de)
DE2814348C3 (de) Orientierungseinrichtung für ein spurgebundenes Fahrzeug
DE3619009A1 (de) Einrichtung zur steuerung von fahrzeugen
DE3108599A1 (de) Einrichtung zur aufnahme von eisenbahnfahrzeugen in die linienfoermige zugbeeinflussung
DE1947088C3 (de) Einrichtung zur Signalübertragung für Schienenfahrzeuge
DE3435524C2 (de)
DE3446253C2 (de)
DE1530459C3 (de) Isolierstossfreie Gleisstromkreise für Eisenbahnsicherungsanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050223