EP1602705A1 - Process for upgrading a gasoline fraction and transforming in gasoils with additional treatment for increasing the efficiency of the gasoil fraction - Google Patents

Process for upgrading a gasoline fraction and transforming in gasoils with additional treatment for increasing the efficiency of the gasoil fraction Download PDF

Info

Publication number
EP1602705A1
EP1602705A1 EP05291115A EP05291115A EP1602705A1 EP 1602705 A1 EP1602705 A1 EP 1602705A1 EP 05291115 A EP05291115 A EP 05291115A EP 05291115 A EP05291115 A EP 05291115A EP 1602705 A1 EP1602705 A1 EP 1602705A1
Authority
EP
European Patent Office
Prior art keywords
cut
membrane
unit
separation
olefins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05291115A
Other languages
German (de)
French (fr)
Other versions
EP1602705B1 (en
Inventor
Patrick Briot
Arnaud Baudot
Vincent Coupard
Stéphane Morin
Alain Methivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1602705A1 publication Critical patent/EP1602705A1/en
Application granted granted Critical
Publication of EP1602705B1 publication Critical patent/EP1602705B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/10Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/307Cetane number, cetane index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • the present invention relates to a method for a simple and economical way to modulate the respective productions of gasoline and diesel. More precisely, according to the process object of the present application, it is possible to transform an initial charge of hydrocarbons in the petrol section, comprising from 4 to 15 carbon atoms and preferably from 4 to 11 carbon atoms, in a gasoline fraction of octane number improved with respect to the load, and a diesel fraction with a high cetane number.
  • the object of the present invention is, from any gasoline cut, to produce an improved octane gasoline cut with respect to the starting gasoline cut, and a diesel fuel cut of cetane number at least equal to 45 and preferably greater than 50.
  • the effluents resulting from the processes of conversion of residues more or less heavy contain an olefin content between 10 and 80%.
  • One of the objects of the present invention is to separate from an initial fuel charge the linear olefins of branched olefins.
  • Another object of the present invention is to provide an alternative allowing a increased flexibility in the management of products from the refinery.
  • the use of the present process can advantageously Modulate the gasoline / diesel proportions obtained at the refinery outlet according to the needs of the market.
  • the isobutane addition processes of alkenes having between 2 and 5 carbon atoms make it possible to produce highly branched molecules having between 7 and 9 carbon atoms, and generally characterized by high octane numbers.
  • the oligomerization processes based essentially on the dimerization and trimerization of light olefins from the catalytic cracking process and possessing between 2 and 4 carbon atoms, allow the production of cuts essences or distillates.
  • An example of such a process is described in patent EP 0734766.
  • US Pat. No. 5,382,705 proposes to couple the previously described oligomerization and etherification processes in order to produce, from a C 4 fraction, tertiary alkyl ethers such as MTBE or ETBE and lubricants.
  • the ⁇ cut resulting from the separation step by distillation and comprising the majority of linear paraffins and a part of olefins linear is introduced directly into a catalytic reforming unit supposed to exist on the production site.
  • the section ⁇ resulting from the dehydrogenation (F) is recycled at least in part to the entrance of the membrane separation unit (B), the other part of said section ⁇ being sent in mixture with the section ⁇ to form a high octane gasoline.
  • the ⁇ cut resulting from the hydrogenation (G) is not completely recycled at the inlet of the membrane separation unit (B), at least one part is mixed with the ⁇ cut to form a high octane gasoline.
  • the oligomerization step is carried out at a pressure of between 0.2 and 10 MPa, with a volume flow rate ratio of catalyst volume (called VVH) between 0.05 and 50 liters / liter / hour, and at a temperature between 15 ° C and 300 ° C.
  • VVH volume flow rate ratio of catalyst volume
  • the oligomerization step is generally carried out in the presence of a catalyst comprising at least one Group VIB metal of the Periodic Table.
  • the step of separating linear olefins and paraffins from the olefins and branched paraffins is carried out in a so-called separation unit by membrane which will be able to use very diverse types of membrane, the invention being not related to a particular type of membrane.
  • membranes that may be used in the context of the invention are preferentially membranes used in nanofiltration and in reverse osmosis (membranes falling under the category of membranes for filtration processes) or membranes used in permeation in gas phase or in pervaporation (re-entrant membrane in the category of membranes for permeation processes).
  • these membranes could be either membranes of the type zeolitic, either membranes of polymeric (or organic) type, or even membranes of the ceramic (or mineral) type, that is to say of composite type in the sense that they may consist of a polymer and at least one mineral compound.
  • the membranes that can be used in the process which is the subject of the invention may also be movie base.
  • membranes based on zeolites mention may be made more particularly membrane based on zeolites of type MFI or ZSM-5, native or having been exchanged with H + ions; Na +; K +; Cs +; Ca +; Ba + and the zeolite membrane type LTA.
  • the method according to the invention may comprise an elimination step at least a part of the nitrogen or basic impurities contained in the initial charge hydrocarbons.
  • the initial charge of hydrocarbons will result from a cracking process catalytic, thermal cracking or dehydrogenation of paraffins. It can be introduced in the method that is the subject of the present invention either alone or in admixture with other charges.
  • FIG. 1 corresponds to the diagram of FIG. according to the invention and in which the dotted lines optional, the other units in solid lines being obligatory.
  • the hydrocarbon feedstock is conveyed by line 1 to a unit A of purification.
  • This unit A makes it possible to eliminate a large part of the nitrogenous and / or basic compounds contained in the load. This elimination, although optional, is necessary when the filler comprises a high level of nitrogen and / or basic compounds, as these constitute a poison for the catalysts of the following steps of the present process.
  • Said compounds can be removed by adsorption on an acidic solid.
  • This solid can be selected from the group formed by silicoaluminates, titanosilicates, oxides mixed titanium alumina, clays, resins.
  • the solid may also be chosen from mixed oxides obtained by grafting from less an organometallic compound, organosoluble or water-soluble, of at least one element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum, niobium, on at least one oxide support such as alumina (forms gamma, delta, eta, alone or in admixture) silica, silica aluminas, titanium silicas, zirconia silicas, Amberlyst type ion exchange resins, or any other solid having any acidity.
  • organometallic compound organosoluble or water-soluble
  • oxide support such as alumina (forms gamma, delta, eta, alone or in admixture) silica, silica aluminas, titanium silicas, zirconia
  • a particular embodiment of the invention may consist in implementing a mixture of at least two of the previously described catalysts.
  • the pressure of the purification unit (A) of the charge is between the pressure atmospheric pressure and 10 MPa, preferably between atmospheric pressure and 5 MPa, and will preferably choose a pressure under which the charge is in the liquid state.
  • VVH The ratio of the volume flow rate of charge to the volume of catalytic solid
  • the temperature of the purification unit (A) is between 15 ° C and 300 ° C, preferably between 15 ° C and 150 ° C, and more preferably between 15 ° C and 60 ° C.
  • the removal of the nitrogenous and / or basic compounds contained in the feed may also be carried out by washing with an acidic aqueous solution, or by any equivalent means known to those skilled in the art.
  • the purified ⁇ -cut feed is conveyed via line 2 to the separation unit (B). on membrane.
  • the linear olefins and paraffins forming the ⁇ -section are separated by a membrane from the rest of the petrol cut (forming the ⁇ cut), and are evacuated via line 3 to feed an oligomerization unit (C).
  • the depleted fraction of olefins and linear paraffins is removed from the unit (B) by the line 7.
  • This section called ⁇ cut whose linear olefin content has significantly decreased since it mainly contains only branched olefins, has a subscript improved octane compared to the initial gasoline cut or ⁇ cut.
  • any type of membrane making it possible to effect the separation between paraffins and linear olefins on the one hand, and paraffins and branched olefins on the other hand, can be used, whether organic or polymeric membranes (for example, the Sulzer Chemtech Membrane Systems PDMS 1060 Membrane), Ceramics or (for example at least partly of zeolite, silica, alumina, glass or carbon), or composites consisting of polymer and at least one mineral compound or ceramic (for example, the Sulzer Chemtech Membrane PDMS 1070 membrane Systems).
  • organic or polymeric membranes for example, the Sulzer Chemtech Membrane Systems PDMS 1060 Membrane
  • Ceramics or for example at least partly of zeolite, silica, alumina, glass or carbon
  • composites consisting of polymer and at least one mineral compound or ceramic for example, the Sulzer Chemtech Membrane PDMS 1070 membrane Systems.
  • membranes based on MFI zeolites be they membranes based of silicalite, based on MFI zeolite completely dealuminated, exhibit a selectivity normal / isoparaffins and can therefore be used in the context of the present invention.
  • the selectivity of this type of membrane is essentially based on a difference in diffusivity between linear compounds, diffusing faster because offering a diameter significantly lower kinetics than the micropore diameter of the zeolite, and the connected compounds, diffusing more slowly because having a kinetic diameter close to that of micropores.
  • the operating temperature of the membrane will be between the temperature ambient temperature and 400 ° C, and preferably between 80 ° C and 300 ° C.
  • the linear olefins and paraffins ( ⁇ -section) separated from the petrol fraction in unit B, are sent to an oligomerization reactor, represented by unit C, by via line 3.
  • This unit C contains an acid catalyst.
  • the hydrocarbons present in the mixture of paraffins and linear olefins will undergo moderate oligomerization reactions, this is to say in general dimerizations or trimerizations, the conditions of the reaction being optimized for the production of a majority of hydrocarbons with carbon numbers is predominantly between 9 and 25, and preferably between 10 and 20.
  • the catalyst of unit C can be chosen from the group formed by silicoaluminates, titanosilicates, mixed titanium alumina, clays, resins, mixed oxides obtained by grafting at least one organometallic, organosoluble or water-soluble compound (selected from the group consisting of alkys and / or alkoxy metals having at least one such as titanium, zirconium silicon, germanium, tin, tantalum, niobium) on an oxide support such as alumina (gamma, delta, eta forms, alone or in mixture), silica, silica aluminas, titanium silicas, zirconia silicas, or any other solid having any acidity.
  • organometallic, organosoluble or water-soluble compound selected from the group consisting of alkys and / or alkoxy metals having at least one such as titanium, zirconium silicon, germanium, tin, tantalum, niobium
  • an oxide support such as alumina (gamma
  • the catalyst used to carry out the oligomerization comprises at least a metal of group VIB of the periodic table, and advantageously an oxide of said metal.
  • Said catalyst may further comprise an oxide support selected from the group formed by aluminas, titanates, silicas, zirconia, alumino-silicates.
  • a particular embodiment of the invention consists in implementing a mixture of at least two of the catalysts mentioned above.
  • the pressure of the unit C is most often such that the charge is in liquid form. This pressure is in principle between 0.2 MPa and 10 MPa, preferably between 0.3 and 6 MPa, and more preferably between 0.3 and 4 MPa.
  • the volume flow ratio of load on the catalyst volume (also called hourly volume velocity or VVH) can be between 0.05 liter / liter.hour and 50 liters / liter.hour, preferably between 0.1 liter / liter.hour and 20 liters / liter.hour, and even more preferably between 0.2 liter / liter.hour and 10 liters / liter.hour.
  • reaction temperature should have been between 15 ° C and 300 ° C, preferably between 60 ° C and 250 ° C, and more particularly between 100 ° C and 250 ° C for optimize the quality of the products obtained.
  • the effluent from the unit (C) is then sent via line 4 in one or several distillation columns shown in the diagram of Figure 1 by the unit (D).
  • This cut consists mainly of olefins and diolefins resulting from the polymerization of linear olefins.
  • This cup can be hydrogenated in a unit conventional hydrogenation in the presence of a catalyst and under operating conditions well known to those skilled in the art. These olefins are then converted into paraffins linear.
  • the effluent of the hydrogenation unit (E) is a cetane gas oil greater than 45 and preferably greater than 50.
  • the ⁇ cut consists mainly of non-reactive linear paraffins during the oligomerization reaction.
  • This cut conveyed by line 5, is mixed with the hydrogen, conveyed via line 10, is injected into a dehydrogenation unit (F).
  • Water or any other compound likely to decompose into water under the conditions of dehydrogenation may be added to the charge.
  • the amount of water present in the load hydrocarbons, (this water may be generated by the decomposition of another compound, as for example an alcohol, an aldehyde, a ketone, an ether), will be between 1 and 10000 ppm weight of water relative to the hydrocarbon charge.
  • the dehydrogenation unit (F) operates under temperature conditions between 400 ° C and 520 ° C, preferably between 450 ° C and 490 ° C.
  • the pressures of the dehydrogenation unit (F) are between 0.05 MPa and 1 MPa, preferably between 0.1 MPa and 0.5 MPa.
  • the ratio of the volume flow rate of the feedstock to the catalyst volume is between 1 h -1 and 500 h -1 , preferably between 15 h -1 and 300 h -1 .
  • the molar ratio of hydrogen to hydrocarbon is between 1 and 20 mol / mol, and preferably between 4 and 12 mol / mol.
  • the dehydrogenation catalyst of the unit (F) may be chosen from catalysts known to those skilled in the art for the dehydrogenation of short paraffins ranging from C 2 to C 5 or long paraffins ranging from C 10 to C 14.
  • the catalyst thus consists of a metal phase supported on a support whose specific surface is advantageously between 5 and 300 m 2 / g.
  • This catalyst support comprises at least one refractory oxide which is generally selected from the group IIA, IIIA, IIIB, IVA or IVB metal oxides of the periodic classification of elements such as, for example, magnesium oxides, aluminum, silicon, zirconium alone or mixed with each other, or as a mixture with oxides of other elements of the Periodic Table. We can also use the coal.
  • the dehydrogenation catalyst of the unit (F) may also contain a sulfur compound, at a weight content of sulfur element generally between 0.005 and 1% with respect to the catalyst mass.
  • the catalyst of the unit (F) may also contain one or more additional elements typically allowing to limit the acidity of the support such as alkaline or alkaline earth, with a weight percentage of 0.01% to 3%.
  • alkaline and / or alkaline earth compounds on the one hand, and halogenated substances may be adjusted to modify the content of alkylaromatics, and / or branched paraffins formed during the reaction of dehydrogenation.
  • the diesel cut will for example be favored by the use of a catalyst of dehydrogenation having from 0.01% to 3% of at least one alkaline and / or alkaline earth metal and less than 0.2% of halogenated compound.
  • the proportion of aromatic compounds resulting from this dehydrogenation step may also be minimized by a judicious choice of operating conditions, known to those skilled in the art.
  • VVH charge-to-volume ratio
  • H2 / HC ratio makes it possible to limit the formation of aromatics during the dehydrogenation step (F).
  • a VVH value of between 15 and 300 h -1 , and an H 2 / HC value of between 4 and 12 will generally be preferred.
  • the petrol cut will for example be favored by the use of a catalyst of dehydrogenation having 0.1% to 3% of a halogenated compound, and less than 0.5% of an alkaline and / or alkaline earth metal.
  • the catalyst may in some cases not contain alkali metal or alkaline earth metal.
  • the proportion of aromatic compounds resulting from this dehydrogenation step (F) may also be optimized by a judicious choice of operating conditions, known to those skilled in the art.
  • VVH charge-to-volume ratio of catalyst
  • the step of dehydrogenating paraffins to olefins is also accompanied, in addition to branched aromatic and paraffin compounds, diolefin formation and optionally other unsaturated compounds such as alkynes, triolefins.
  • diolefins The formation of diolefins is strongly influenced by the thermodynamic equilibrium between paraffins / olefins / diolefins.
  • the effluent from the unit (F) discharged via the line (11) is mixed with hydrogen supplied by the line (12) and then sent to a selective hydrogenation unit (G) whose purpose is the elimination by hydrogenation of the small quantities of diolefins and possible alkynes and triolefins, without affecting the olefins and aromatic compounds formed in the unit (F).
  • This selective hydrogenation operates in pressure ranges between 1 MPa and 8 MPa, and preferably between 2 MPa and 6 MPa.
  • the temperature is between 40 ° C and 350 ° C, and preferably between 40 ° C and 250 ° C.
  • the ratio of the volume flow rate of charge to the volume of catalyst is between 0.5 and 10 m 3 / m 3 / hour and preferably between 1 and 5 m 3 / m 3 / hour.
  • the catalyst of the hydrogenation unit (G) consists of a support based on silica, or of alumina on which is deposited a metal type nickel, platinum or palladium.
  • the catalyst of the hydrogenation unit (G) may also consist of mixtures of nickel and molybdenum or mixtures of nickel and tungsten.
  • the effluent of the unit (G) contains mainly linear paraffins, olefins and aromatics. This so-called cup ⁇ cut, is then recycled in whole or in part by the line (13) at the entrance of the unit (B).
  • Example 1 corresponds to the invention and will be better understood by following FIG.
  • Example 2 is a comparative example
  • the load is a FCC gasoline with a boiling point between 40 ° C and 150 ° C.
  • This gasoline contains 10 ppm nitrogen.
  • This charge is sent to a purification reactor A containing a solid a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type.
  • the zeolite used in the present example has a silicon / aluminum ratio of 45.
  • the pressure of the purification unit is 0.2 MPa.
  • the ratio of the liquid volume flow rate of the charge to the acid solid volume (VVH) is of 1 liter / liter.hour.
  • the temperature of the reactor is 20 ° C.
  • Table 1 gives the composition of the initial charge and that of the effluent from unit A ( ⁇ cut).
  • the charge rate used is 1 kg / h. characteristics of the charge and effluent of unit A.
  • Charge A Effluent of unit A Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1
  • the effluent from unit A ( ⁇ cut) is then sent to a membrane reactor B consisting of a support based on ⁇ -alumina on which is deposited a layer of zeolite MFI with a thickness of between 5 and 15 ⁇ m.
  • the pressure of the membrane reactor B is equal to 0.1 MPa and the temperature is equal to 150 ° C.
  • Table 2 gives the composition of effluents from unit B ( ⁇ cut and ⁇ cut). effluent characteristics of stage B (before recycling). ⁇ cut ⁇ cup Yield (%) (relative to the ⁇ cut) 8.8 91.2 Production (g / h) 88 912 Paraffins (% wt) 45.5 23.1 Naphthenes (% wt) 10.7 Aromatic (% by weight) 38.5 Olefins (% by weight) 54.5 27.7
  • the ⁇ cut from the membrane separation unit is injected into an oligomerization reactor (C) containing a catalyst consisting of a mixture of 50% by weight of zirconia and 50% by weight of H 3 PW 12 O 40 .
  • the pressure of the unit is 2 MPa, the ratio of the volumetric load flow on the volume of catalyst (VVH) is equal to 1.5 liters / liter.hour.
  • the temperature is set at 170 ° C.
  • the heavy cut ⁇ is sent to a hydrogenation reactor (E) containing a catalyst comprising an alumina support on which nickel and molybdenum (marketed by AXENS under the trade name HR348, brand Mark).
  • the pressure of the unit is 5 MPa, the ratio of the volumetric load flow on the volume of catalyst (VVH) is equal to 2 liters / liter.hour.
  • the ratio of the injected hydrogen flow rate to the feed rate is equal to 600 liters / liter.
  • the reactor temperature is 320 ° C.
  • the light cut ⁇ distillation range 40 ° C-200 ° C from the distillation step (D), is mixed with hydrogen with a hydrogen to hydrocarbon molar ratio of 6 moles / mole, then sent to the dehydrogenation unit (F).
  • the total pressure of the dehydrogenation unit (F) is equal to 0.3 MPa, and the temperature is 475 ° C.
  • the ratio of the volume flow rate of charge to the volume of catalyst (VVH) is equal to 20 liters / liter.hour.
  • the catalyst used in the dehydrogenation unit (F) is sold by AXENS under the reference DP 805, registered trademark.
  • composition of the section ⁇ resulting from the dehydrogenation (F) or ⁇ section is presented in Table 5 and compared to the charge of the dehydrogenation unit (F) or cut ⁇ .
  • characteristics of the effluent from unit F ( ⁇ section) Cup ⁇ ⁇ section Linear paraffins (% by weight) 100 85.1 Branched paraffins (% by weight) 0.3 Olefins (% by weight) 12 Aromatic (%) 2 Diolefins (% by weight) 0.6
  • This section ⁇ is mixed with hydrogen and sent to a reactor hydrogenation product (G) containing a catalyst marketed by AXENS under the reference LD 265, registered trademark.
  • the pressure of the unit is 2.8 MPa, the temperature is equal to 90 ° C, and the flow ratio
  • the volume of charge on the volume of catalyst (VVH) is equal to 3 liters / liter / hour.
  • composition of the ⁇ -section resulting from this selective hydrogenation is compared with that of the ⁇ -section in Table 6.
  • characteristics of the effluent from unit G ⁇ cut
  • ⁇ section ⁇ cut Linear paraffins (% by weight) 85.1 85.2 Branched paraffins (% by weight) 0.3 0.3 Olefins (% by weight) 12 12.5 Aromatic (%) 2 2 Diolefins (% by weight) 0.6 0
  • This section ⁇ is completely recycled at the entrance of the membrane reactor (B).
  • Paraffins and linear olefins are thus found in the new ⁇ -section obtained after recycling and thereby increase the diesel yield.
  • the present method makes it possible to obtain, from a petrol cut from an FCC, a cut gasoline ( ⁇ cut) with an improved octane number compared to that of the cut initial (97 against 92) and a diesel cut, effluent of the unit (E), with high cetane number (55), perfectly compatible with marketing to European specifications and US.
  • Example 2 corresponds to the prior art and consists in sending directly to a unit of oligomerization (C) a gasoline fraction of FCC ( ⁇ cut) whose boiling point is between 40 ° C and 150 ° C.
  • C unit of oligomerization
  • ⁇ cut gasoline fraction of FCC
  • This gasoline contains 10 ppm nitrogen.
  • This charge is sent to a purification reactor A containing a solid a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type.
  • the zeolite used in the present example has a silicon / aluminum ratio of 45.
  • the pressure of the purification unit is 0.2 MPa.
  • the ratio of the liquid volume flow rate of the charge to the acid solid volume (VVH) is of 1 liter / liter.hour.
  • the temperature of the reactor is 20 ° C.
  • Table 7 gives the composition of the initial charge and that of the effluent from unit A.
  • the charge rate used is 1 kg / h. characteristics of the charge and effluent of unit A.
  • Charge A Effluent of unit A Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1
  • the heavy cut ⁇ ' is sent to a hydrogenation reactor (E) containing a Alumina catalyst on which nickel and molybdenum are deposited.
  • the pressure of the unit (E) is 5 MPa
  • the ratio of the flow rate of charge on the catalyst volume (VVH) is equal to 2 liters / liter.hour.
  • the ratio of hydrogen flow injected on the charge flow is equal to 600 liters / liter.
  • the reactor temperature of the unit (E) is 320 ° C.
  • the characteristics of the effluent from the unit (E) which are those of a diesel fuel, are presented in Table 8. characteristics of the effluent from unit E Effluent of unit E Density at 20 ° C (kg / l) 0.787 Sulfur (ppm) 1 Motor cetane index 35
  • the gas oil obtained according to the scheme of Example 2 is unfit for marketing, which is not the case of that obtained in Example 1 according to the invention.
  • the final gasoline cut ⁇ ' has an octane number of 85, lower than obtained in Example 1, which can make marketing problematic.

Abstract

Process for the adjustment of the relative productions of petrol and gasoil from a petrol cut comprsing 4 - 15 C hydrocarbons to obtain a petrol with an improved octane index and a gasoil fraction with a high cetane index. The process is carried out in the following stages (1) membrane separation, B, of the hydrocarbon charge to obtain a selective separation of most of the linear olefins,cut beta , from the branched chain olefins, cut gamma , comprising petrols of higher octane index than the original charge; (2) (b) oligomerisation, C, of the linear olefins, beta cut, in the effluents from the membrane separation; (c) (3) separation by distillation, D, of the effluents from oligomerisation to give two cuts ; cut delta comprises hydrocarbons of final boiling points lower than 150 - 200[deg]C, and a cut , comprising hydrocarbons of initial boiling points greater than 150 - 200[deg]C; (4) (d) hydrogenation, E, of the cut to obtain a gasoil of cetane index of at least 45; (5) (e) dehydrogenation, F, of the cut delta to convert paraffins to olefins, producing a cut mu which is partly recycled to the membrane separation stage.

Description

Domaine de l'invention:Field of the invention

La présente invention se rapporte à un procédé permettant de façon simple et économique de moduler les productions respectives d'essence et de gazole. Plus précisément, selon le procédé objet de la présente demande, il est possible de transformer une charge initiale d'hydrocarbures se situant dans la coupe essence, comprenant de 4 à 15 atomes de carbone et de préférence de 4 à 11 atomes de carbone, en une fraction essence d'indice d'octane amélioré par rapport à la charge, et une fraction gazole à fort indice de cétane.The present invention relates to a method for a simple and economical way to modulate the respective productions of gasoline and diesel. More precisely, according to the process object of the present application, it is possible to transform an initial charge of hydrocarbons in the petrol section, comprising from 4 to 15 carbon atoms and preferably from 4 to 11 carbon atoms, in a gasoline fraction of octane number improved with respect to the load, and a diesel fraction with a high cetane number.

La présente demande constitue une amélioration de la demande intitulé" Procédé d'amélioration de coupes essences et de transformation en gazoles" des mêmes inventeurs et déposée le même jour que la présente demande.This application is an improvement of the application entitled "Process improvement of gasoline cuts and conversion to diesel "the same inventors and filed on the same day as this application.

Les effets de cette amélioration portent sur le rendement de la coupe gazole obtenue, sur l'indice d'octane de la coupe essence obtenue, et enfin sur le fait que la coupe essence de départ peut être de composition absolument quelconque en respectant seulement l'intervalle de nombre d'atomes de carbone.The effects of this improvement relate to the efficiency of the diesel fuel obtained, the octane number of the petrol cut obtained, and finally the fact that the essence cut of departure can be of absolutely any composition respecting only the interval number of carbon atoms.

Il est connu (Carburants et Moteurs de J.C. Guibet, Edition Technip, tome I (1987)) que la nature chimique des oléfines contenues dans les essences contribuent fortement à l'indice d'octane desdites essences. Les oléfines peuvent être classées pour cette raison en deux catégories distinctes :

  • a) les oléfines ramifiées qui possèdent de bons indices d'octane. Cet indice d'octane augmente avec le nombre de ramifications et diminue avec la longueur de chaíne.
  • b) les oléfines linéaires qui possèdent un faible indice d'octane, cet indice d'octane diminuant fortement avec la longueur de chaíne.
  • It is known (Fuels and Engines of JC Guibet, Technip Edition, volume I (1987)) that the chemical nature of the olefins contained in the species contributes strongly to the octane number of said gasolines. Olefins can be classified for this reason in two distinct categories:
  • a) branched olefins which have good octane numbers. This octane number increases with the number of branches and decreases with the chain length.
  • b) linear olefins which have a low octane number, this octane number decreasing strongly with the length of chain.
  • Le but de la présente invention est, à partir d'une coupe essence quelconque, de produire une coupe essence à indice d'octane amélioré par rapport à la coupe essence de départ, et une coupe gazole d'indice de cétane au moins égal à 45 et préférentiellement supérieur à 50.The object of the present invention is, from any gasoline cut, to produce an improved octane gasoline cut with respect to the starting gasoline cut, and a diesel fuel cut of cetane number at least equal to 45 and preferably greater than 50.

    Par ailleurs, les effluents issus des procédés de conversion de résidus plus ou moins lourds, tels que par exemple les coupes essences issues du procédé de craquage catalytique en lit fluidisé (FCC), contiennent une teneur en oléfines comprise entre 10 et 80%.Moreover, the effluents resulting from the processes of conversion of residues more or less heavy, such as, for example, gasoline cuts from the catalytic cracking process in bed fluidized (FCC) contain an olefin content between 10 and 80%.

    Lesdits effluents entrent dans la composition des essences commerciales à hauteur de 20 à 40% selon l'origine géographique (27% en Europe de l'Ouest et 36% aux USA). These effluents are used in the composition of commercial species for 20 to 40% according to geographical origin (27% in Western Europe and 36% in the USA).

    Il est vraisemblable que dans le cadre de la protection de l'environnement, les normes concernant les essences commerciales soient orientées dans les années à venir vers une réduction de la teneur en oléfines autorisées dans les essences.It is likely that in the context of the protection of the environment, commercial species will be oriented in the coming years towards a reduction of the olefin content allowed in the species.

    Il découle des différents points qui précèdent que la production d'essences à faible taux d'oléfines, mais conservant un indice d'octane acceptable ne pourra se faire qu'en sélectionnant comme base pour essence, exclusivement ou en très fortes proportions, les oléfines ramifiées à fort indice d'octane.It follows from the foregoing points that the production of low-grade species olefins, but maintaining an acceptable octane number, can only be selecting as the basis for petrol, exclusively or in very large proportions, the branched olefins with a high octane number.

    L'un des objets de la présente invention est de séparer d'une charge essence initiale les oléfines linéaires des oléfines ramifiées.One of the objects of the present invention is to separate from an initial fuel charge the linear olefins of branched olefins.

    Un autre objet de la présente invention est de fournir une alternative permettant une flexibilité accrue de la gestion des produits issus la raffinerie.Another object of the present invention is to provide an alternative allowing a increased flexibility in the management of products from the refinery.

    Plus précisément, l'utilisation du présent procédé peut permettre de façon avantageuse de moduler les proportions essence/gazole obtenues en sortie de raffinerie suivant les besoins du marché.More specifically, the use of the present process can advantageously Modulate the gasoline / diesel proportions obtained at the refinery outlet according to the needs of the market.

    Examen de l'art antérieurExamination of the prior art

    On connaít différents procédés de transformation des oléfines permettant d'augmenter leur indice d'octane.There are various processes for the transformation of olefins to increase their octane number.

    Par exemple, on peut citer l'alkylation aliphatique entre des paraffines et des oléfines afin de produire des coupes essences à haut indice d'octane. Ce procédé peut utiliser des acides minéraux tel que l'acide sulfurique (Symposium on Hydrogen Transfer in Hydrocarbon Processing, 208th National Meeting, American Chemical Society -Août 1994, qu'on peut traduire par "Symposium sur le transfert d'hydrogène dans les procédés portant sur des charges hydrocarbonnées"), des catalyseurs solubles dans un solvant (EP 0714871) ou des catalyseurs hétérogènes (US 4,956,518).For example, there may be mentioned aliphatic alkylation between paraffins and olefins to produce high octane gasoline cuts. This process can utilize mineral acids such as sulfuric acid (Symposium on Hydrogen Transfer in Hydrocarbon Processing, 208 th National Meeting, American Chemical Society - August 1994, which can be translated as "Symposium on Hydrogen Transfer in processes for hydrocarbon feedstocks "), solvent-soluble catalysts (EP 0714871) or heterogeneous catalysts (US Pat. No. 4,956,518).

    A titre d'exemple, les procédés d'addition sur l'isobutane d'alcènes possédant entre 2 et 5 atomes de carbone permettent de produire des molécules très ramifiées possédant entre 7 et 9 atomes de carbone, et en général caractérisées par de hauts indices d'octane.By way of example, the isobutane addition processes of alkenes having between 2 and 5 carbon atoms make it possible to produce highly branched molecules having between 7 and 9 carbon atoms, and generally characterized by high octane numbers.

    On connaít d'autres transformations mettant en oeuvre des procédés d'éthérification des oléfines ramifiées, tels que par exemple ceux décrits dans les brevets US 5,633,416 et EP 0451989. Ces procédés permettent de produire des éthers de type MTBE (méthyl tertio butyl éther), ETBE (ethyl tertio butyl éther) et TAME (tertio amyl méthyl éther), composés bien connus pour améliorer l'indice d'octane des essences.Other transformations using etherification methods are known. branched olefins, such as, for example, those described in patents US 5,633,416 and EP 0451989. These processes make it possible to produce MTBE type ethers (methyl tertio butyl ether), ETBE (ethyl tertiary butyl ether) and TAME (tertiary amyl methyl ether), compounds well known for improving the octane number of gasolines.

    Selon une troisième voie, les procédés d'oligomérisation, basés essentiellement sur la dimérisation et la trimérisation d'oléfines légères issues du procédé de craquage catalytique et possédant entre 2 et 4 atomes de carbone, permettent la production de coupes essences ou de distillats. Un exemple d'un tel procédé est décrit dans le brevet EP 0734766.In a third way, the oligomerization processes, based essentially on the dimerization and trimerization of light olefins from the catalytic cracking process and possessing between 2 and 4 carbon atoms, allow the production of cuts essences or distillates. An example of such a process is described in patent EP 0734766.

    Il permet d'obtenir principalement des produits ayant 6 atomes de carbone quand l'oléfine utilisée est du propylène, et 8 atomes de carbone quand l'oléfine est du butène linéaire.It makes it possible to obtain mainly products having 6 carbon atoms when the olefin used is propylene, and 8 carbon atoms when the olefin is linear butene.

    Ces procédés d'oligomérisation sont connus pour donner des coupes essences possédant de bons indices d'octane, mais lorsqu'ils sont réalisés dans des conditions favorisant la formation de coupes plus lourdes, ils génèrent des coupes gasoils à très faible indice de cétane.These oligomerization processes are known to give gasoline cuts with good octane numbers, but when done under conditions favoring the formation of heavier cuts, they generate gasoil cuts with a very low index of cetane.

    De tels exemples sont par ailleurs illustrés par les brevet US 4,456,779 et US 4,211,640.Such examples are furthermore illustrated by US Pat. Nos. 4,456,779 and 4,211,640.

    Le brevet US 5,382,705 propose de coupler les procédés d'oligomérisation et d'éthérification précédemment décrits afin de produire à partir d'une coupe C4, des éthers alkyls tertiaires tel que le MTBE ou L'ETBE et des lubrifiants.US Pat. No. 5,382,705 proposes to couple the previously described oligomerization and etherification processes in order to produce, from a C 4 fraction, tertiary alkyl ethers such as MTBE or ETBE and lubricants.

    Description sommaire de l'invention:Brief description of the invention:

    L'invention concerne un procédé de transformation d'une charge d'hydrocarbures contenant de 4 à 15 atomes de carbone et de préférence de 4 à 11 atomes de carbone, et ayant une composition quelconque en paraffines, oléfines et aromatiques, ledit procédé comprenant les étapes suivantes :

  • a) une étape de séparation par membrane de la charge hydrocarbonée (coupe α) dans des conditions permettant la séparation sélective de la majorité des oléfines linéaires présentes dans ladite charge (coupe β), la coupe contenant la majorité des oléfines ramifiées (coupe γ) constituant une essence à fort indice d'octane, c'est à dire supérieur à celui de la charge.
  • b) une étape de traitement des oléfines linéaires contenues dans les effluents issus de l'étape de séparation sur membrane (coupe β) dans des conditions d'oligomérisation modérées,
  • c) une étape de séparation par distillation des effluents issus de l'étape d'oligomérisation en au moins deux coupes :
    • une coupe légère dite coupe δ, comprenant les hydrocarbures dont le point d'ébullition final est inférieur à une température comprise entre 150°C et 200°C,
    • une coupe lourde dite coupe η, comprenant les hydrocarbures dont le point d'ébullition initial est supérieur à une température comprise entre 150°C et 200°C,
  • d) une étape d' hydrogénation de la coupe η dans des conditions d'obtention d'un gazole à fort indice de cétane, c'est à dire au moins égal à 45, et préférentiellement supérieur à 50.
  • e) une étape de déshydrogénation (F) de la coupe légère δ, issue de l'étape de séparation par distillation, et produisant une coupe µ qui est au moins en partie recyclée à l'entrée de l'étape de séparation par membrane.
  • f) facultativement, une étape d'hydrogénation sélective (G) de la coupe µ produisant une coupe λ qui est au moins en partie recyclée à l'entrée de l'étape de séparation par membrane.
  • The invention relates to a process for converting a hydrocarbon feedstock containing from 4 to 15 carbon atoms and preferably from 4 to 11 carbon atoms, and having any composition of paraffins, olefins and aromatics, said process comprising the following steps :
  • a) a membrane separation step of the hydrocarbon feedstock (α cut) under conditions allowing the selective separation of the majority of linear olefins present in said feed (β cut), the cut containing the majority of branched olefins (γ cut) constituting a gasoline with high octane number, ie higher than that of the charge.
  • b) a step of treatment of the linear olefins contained in the effluents resulting from the membrane separation step (β-cut) under moderate oligomerization conditions,
  • c) a step of separation by distillation of the effluents from the oligomerization step in at least two sections:
    • a light section called δ cut, comprising hydrocarbons whose final boiling point is below a temperature of between 150 ° C and 200 ° C,
    • a heavy sectional cut, η, comprising hydrocarbons whose initial boiling point is greater than a temperature of between 150 ° C. and 200 ° C.,
  • d) a step of hydrogenation of the section η under conditions of obtaining a gas oil with a high cetane number, that is to say at least 45, and preferably greater than 50.
  • e) a step of dehydrogenation (F) of the light cut δ, resulting from the step of separation by distillation, and producing a section μ which is at least partly recycled at the entrance of the membrane separation step.
  • f) optionally, a step of selective hydrogenation (G) of the section μ producing a cut λ which is at least partly recycled at the entrance of the membrane separation step.
  • Selon une première variante du procédé, la coupe δ issue de l'étape de séparation par distillation et comprenant la majorité des paraffines linéaires et une partie des oléfines linéaires, est directement introduite dans une unité de reformage catalytique des essences supposée existant sur le site de production.According to a first variant of the process, the δ cut resulting from the separation step by distillation and comprising the majority of linear paraffins and a part of olefins linear, is introduced directly into a catalytic reforming unit supposed to exist on the production site.

    Selon une autre variante de l'invention, la coupe µ issue de la déshydrogénation (F) est recyclée au moins en partie à l'entrée de l'unité de séparation par membrane (B), l'autre partie de la dite coupe µ étant envoyée en mélange avec la coupe γ pour former une essence à haut indice d'octane.According to another variant of the invention, the section μ resulting from the dehydrogenation (F) is recycled at least in part to the entrance of the membrane separation unit (B), the other part of said section μ being sent in mixture with the section γ to form a high octane gasoline.

    Selon une autre variante de l'invention, la coupe λ issue de l'hydrogénation (G) n'est pas intégralement recyclée à l'entrée de l'unité de séparation par membrane (B), au moins une partie est mélangée avec la coupe γ pour former une essence à haut indice d'octane.According to another variant of the invention, the λ cut resulting from the hydrogenation (G) is not completely recycled at the inlet of the membrane separation unit (B), at least one part is mixed with the γ cut to form a high octane gasoline.

    De manière générale, dans le cadre de l'invention, l'étape d'oligomérisation est effectuée à une pression comprise entre 0,2 et 10 MPa, avec un rapport débit volumique de charge sur volume de catalyseur (appelé VVH) compris entre 0,05 et 50 litres /litre.heure, et à une température comprise entre 15°C et 300°C. In general, in the context of the invention, the oligomerization step is carried out at a pressure of between 0.2 and 10 MPa, with a volume flow rate ratio of catalyst volume (called VVH) between 0.05 and 50 liters / liter / hour, and at a temperature between 15 ° C and 300 ° C.

    L'étape d'oligomérisation est généralement effectuée en présence d'un catalyseur comprenant au moins un métal du groupe VIB de la classification périodique.The oligomerization step is generally carried out in the presence of a catalyst comprising at least one Group VIB metal of the Periodic Table.

    L'étape de séparation des oléfines et paraffines linéaires d'une part, et des oléfines et paraffines ramifiées d'autre part, est réalisée dans une unité dite de séparation par membrane qui pourra utiliser des types de membrane très divers, l'invention n'étant aucunement liée à un type de membrane particulier.The step of separating linear olefins and paraffins from the olefins and branched paraffins on the other hand, is carried out in a so-called separation unit by membrane which will be able to use very diverse types of membrane, the invention being not related to a particular type of membrane.

    Les membranes qui pourront être utilisées dans le cadre de l'invention sont préférentiellement des membranes utilisées en nanofiltration et en osmose inverse (membranes rentrant dans la catégorie des membranes pour procédés de filtration) ou des membranes utilisées en perméation en phase gaz ou en pervaporation (membrane rentrant dans la catégorie des membranes pour procédés de perméation).The membranes that may be used in the context of the invention are preferentially membranes used in nanofiltration and in reverse osmosis (membranes falling under the category of membranes for filtration processes) or membranes used in permeation in gas phase or in pervaporation (re-entrant membrane in the category of membranes for permeation processes).

    Du point de vue des matériaux, ces membranes pourront être soit des membranes de type zéolithique, soit des membranes de type polymères (ou organique), soit encore des membranes de type céramique (ou minéral), soit encore de type composite au sens où elles peuvent être constituées d'un polymère et d'au moins un composé minéral.From the point of view of the materials, these membranes could be either membranes of the type zeolitic, either membranes of polymeric (or organic) type, or even membranes of the ceramic (or mineral) type, that is to say of composite type in the sense that they may consist of a polymer and at least one mineral compound.

    Les membranes utilisables dans le procédé objet de l'invention pourront également être à base de film. Par exemple, on peut citer dans cette dernière catégorie les membranes à base de film formé de tamis moléculaire, ou les membranes à base de film formé de tamis moléculaire de type silicates, aluminosilicates, aluminophosphates, silicoalumino-phosphates, métalloaluminophosphates, stanosilicates, ou un mélange d'au moins un de ces deux types de constituants.The membranes that can be used in the process which is the subject of the invention may also be movie base. For example, in this last category, mention may be made of membranes based on of molecular sieve film, or sieve film-based membranes molecular silicates, aluminosilicates, aluminophosphates, silicoaluminophosphates, metalloaluminophosphates, stanosilicates, or a mixture of at least one of these two types of constituents.

    En ce qui concerne les membranes à base de zéolithes, on peut plus particulièrement citer les membrane à base de zéolithes de type MFI ou ZSM-5, natives ou ayant été échangées avec des ions H+; Na +; K+; Cs+; Ca+; Ba+ et les membrane à base de zéolithes de type LTA.With regard to membranes based on zeolites, mention may be made more particularly membrane based on zeolites of type MFI or ZSM-5, native or having been exchanged with H + ions; Na +; K +; Cs +; Ca +; Ba + and the zeolite membrane type LTA.

    Dans certains cas, le procédé selon l'invention pourra comprendre une étape d'élimination d'au moins une partie des impuretés azotés ou basiques contenues dans la charge initiale d'hydrocarbures.In some cases, the method according to the invention may comprise an elimination step at least a part of the nitrogen or basic impurities contained in the initial charge hydrocarbons.

    Généralement, la charge initiale d'hydrocarbures sera issue d'un procédé de craquage catalytique, de craquage thermique ou de déshydrogénation des paraffines. Elle pourra être introduite dans le procédé objet de la présente invention soit seule, soit en mélange avec d'autres charges.Generally, the initial charge of hydrocarbons will result from a cracking process catalytic, thermal cracking or dehydrogenation of paraffins. It can be introduced in the method that is the subject of the present invention either alone or in admixture with other charges.

    Description détaillée de l'invention:Detailed description of the invention

    L'invention sera mieux comprise à la lecture de la figure 1 qui correspond au schéma de procédé selon l'invention et dans laquelle on a indiqué en trait pointillé les unités facultatives, les autres unités en trait plein étant obligatoires.The invention will be better understood on reading FIG. 1 which corresponds to the diagram of FIG. according to the invention and in which the dotted lines optional, the other units in solid lines being obligatory.

    Selon la figure 1, la charge hydrocarbonée est acheminée par la ligne 1 vers une unité A de purification.According to FIG. 1, the hydrocarbon feedstock is conveyed by line 1 to a unit A of purification.

    Cette unité A permet d'éliminer une grande partie des composés azotés et/ou basiques contenues dans la charge. Cette élimination, bien que facultative, est nécessaire lorsque la charge comprend un fort taux de composés azotés et/ou basiques, car ceux-ci constituent un poison pour les catalyseurs des étapes suivantes du présent procédé.This unit A makes it possible to eliminate a large part of the nitrogenous and / or basic compounds contained in the load. This elimination, although optional, is necessary when the filler comprises a high level of nitrogen and / or basic compounds, as these constitute a poison for the catalysts of the following steps of the present process.

    Lesdits composés peuvent être éliminés par adsorption sur un solide acide. Ce solide peut être choisi dans le groupe formé par les silicoaluminates, les titanosilicates, les oxydes mixtes alumine titane, les argiles, les résines.Said compounds can be removed by adsorption on an acidic solid. This solid can be selected from the group formed by silicoaluminates, titanosilicates, oxides mixed titanium alumina, clays, resins.

    Le solide peut également être choisi parmi les oxydes mixtes obtenus par greffage d'au moins un composé organométallique, organosoluble ou aquasoluble, d'au moins un élément choisi dans le groupe constitué par le titane, le zirconium, le silicium, le germanium, l'étain, le tantale, le niobium, sur au moins un support oxyde tel que l'alumine (formes gamma, delta, éta, seules ou en mélange) la silice, les silices alumines, les silices titane, les silices zircone, les résines échangeuses d'ions type Amberlyst, ou tout autre solide présentant une acidité quelconque.The solid may also be chosen from mixed oxides obtained by grafting from less an organometallic compound, organosoluble or water-soluble, of at least one element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum, niobium, on at least one oxide support such as alumina (forms gamma, delta, eta, alone or in admixture) silica, silica aluminas, titanium silicas, zirconia silicas, Amberlyst type ion exchange resins, or any other solid having any acidity.

    Un mode particulier de réalisation de l'invention peut consister à mettre en oeuvre un mélange d'au moins deux des catalyseurs précédemment décrits.A particular embodiment of the invention may consist in implementing a mixture of at least two of the previously described catalysts.

    La pression de l'unité de purification (A) de la charge est comprise entre la pression atmosphérique et 10 MPa, de préférence entre la pression atmosphérique et 5 MPa, et on choisira de préférence une pression sous laquelle la charge se trouve à l'état liquide.The pressure of the purification unit (A) of the charge is between the pressure atmospheric pressure and 10 MPa, preferably between atmospheric pressure and 5 MPa, and will preferably choose a pressure under which the charge is in the liquid state.

    Le rapport du débit volumique de charge sur le volume de solide catalytique (appelé VVH) est le plus souvent compris entre 0,05 litre/litre.heure et 50 litres/litre.heure, de préférence compris entre 0,1 litre/litre.heure et 20 litres/litre.heure, et de manière encore préférée, entre 0,2 litre /litre.heure et 10 litres /litre.heure.The ratio of the volume flow rate of charge to the volume of catalytic solid (called VVH) is most often between 0.05 liter / liter.hour and 50 liters / liter.hour, preferably between 0.1 liter / liter.hour and 20 liters / liter.hour, and even more preferably, between 0.2 liter / liter / hour and 10 liters / liter / hour.

    La température de l'unité de purification (A) est comprise entre 15°C et 300°C, de préférence entre 15°C et 150°C, et de manière encore préférée entre 15°C et 60°C.The temperature of the purification unit (A) is between 15 ° C and 300 ° C, preferably between 15 ° C and 150 ° C, and more preferably between 15 ° C and 60 ° C.

    L'élimination des composés azotés et/ou basiques contenus dans la charge peut également être effectuée par lavage par une solution aqueuse acide, ou par tout moyen équivalent connu de l'homme de l'art.The removal of the nitrogenous and / or basic compounds contained in the feed may also be carried out by washing with an acidic aqueous solution, or by any equivalent means known to those skilled in the art.

    La charge purifiée dite coupe α est acheminée par la ligne 2 vers l'unité (B) de séparation sur membrane. Dans l'unité (B), les oléfines et paraffines linéaires formant la coupe β, sont séparées par une membrane du reste de la coupe essence (formant la coupe γ), et sont évacuées par la ligne 3 pour alimenter une unité d'oligomérisation (C).The purified α-cut feed is conveyed via line 2 to the separation unit (B). on membrane. In unit (B), the linear olefins and paraffins forming the β-section are separated by a membrane from the rest of the petrol cut (forming the γ cut), and are evacuated via line 3 to feed an oligomerization unit (C).

    La coupe appauvrie en oléfines et paraffines linéaires est évacuée de l'unité (B) par la ligne 7. Cette coupe dite coupe γ, dont la teneur en oléfines linéaires a notablement diminué puisqu'elle ne contient principalement que les oléfines branchées, possède un indice d'octane amélioré par rapport à la coupe essence initiale ou coupe α.The depleted fraction of olefins and linear paraffins is removed from the unit (B) by the line 7. This section called γ cut, whose linear olefin content has significantly decreased since it mainly contains only branched olefins, has a subscript improved octane compared to the initial gasoline cut or α cut.

    Plus précisément, tout type de membrane permettant d'effectuer la séparation entre les paraffines et oléfines linéaires d'une part, et les paraffines et oléfines branchées d'autre part, peut être utilisé, que ce soit des membranes organiques ou polymères (par exemple, la membrane PDMS 1060 de Sulzer Chemtech Membrane Systems), céramiques ou minérales (composées par exemple au moins en partie de zéolithe, silice, alumine, verre ou carbone), ou composites constituées de polymère et d'au moins un composé minéral ou céramique (par exemple, la membrane PDMS 1070 de Sulzer Chemtech Membrane Systems).More specifically, any type of membrane making it possible to effect the separation between paraffins and linear olefins on the one hand, and paraffins and branched olefins on the other hand, can be used, whether organic or polymeric membranes (for example, the Sulzer Chemtech Membrane Systems PDMS 1060 Membrane), Ceramics or (for example at least partly of zeolite, silica, alumina, glass or carbon), or composites consisting of polymer and at least one mineral compound or ceramic (for example, the Sulzer Chemtech Membrane PDMS 1070 membrane Systems).

    De nombreux travaux de la littérature font référence aux membranes à base de film formé de tamis moléculaire, tels que les zéolithes de type MFI, qui permettent de séparer de manière très efficace les paraffines linéaires des paraffines branchées grâce à un mécanisme de sélectivité diffusionnelle.Many works of literature refer to formed film-based membranes molecular sieves, such as MFI-type zeolites, which make it possible to separate very efficiently paraffins linear branched paraffins through a mechanism of diffusional selectivity.

    Tous les types de membrane à base de zéolithes MFI, que ce soient les membranes à base de silicalite, à base de zéolithe MFI complètement désaluminée, présentent une sélectivité normale/isoparaffines et peuvent donc être utilisées dans le cadre de la présente invention. All types of membranes based on MFI zeolites, be they membranes based of silicalite, based on MFI zeolite completely dealuminated, exhibit a selectivity normal / isoparaffins and can therefore be used in the context of the present invention.

    Parmi ces zéolithes de type MFI, on peut citer celles décrites dans les articles ou communications suivants:

    • van de Graaf, J.M., van der Bijl, E., Stol, A., Kapteijn, F., Moulijn, J.A., dans Industrial Engineering Chemistry Research ("Recherche en genie des procédés industriels"), 37, 1998, 4071-4083;
    • Gora, L., Nishiyama, N., Jansen, J.C., Kapteijn, F., Teplyakov, V., Maschmeyer, Th., dans Separation Purification Technology ("Technologies de séparation/purification"), 22-23, 2001, 223-229;
    • Nishiyama, N., Gora, L., Teplyakov, V., Kapteijn, F., Moulijn, J.A., dans Separation
    Among these MFI-type zeolites, mention may be made of those described in the following articles or communications:
    • van de Graaf, JM, van der Bijl, E., Stol, A., Kapteijn, F., Moulijn, JA, in Industrial Engineering Chemistry Research , 37, 1998, 4071-4083 ;
    • Gora, L., Nishiyama, N., Jansen, JC, Kapteijn, F., Teplyakov, V., Maschmeyer, Th., In Separation Purification Technology ("Separation / Purification Technologies"), 22-23, 2001, 223 -229;
    • Nishiyama, N., Gora, L., Teplyakov, V., Kapteijn, F., Moulijn, JA, in Separation

    Purification Technology ("Technologies de séparation /purification"), 22-23, 2001, 295-307. Purification Technology ("Separation / Purification Technologies"), 22-23, 2001, 295-307.

    Parmi les membranes à base de zéolithes ZSM-5 natives, on peut citer les communications suivantes:

    • Coronas, J., Falconer, J.L., Noble, R.D., dans AIChE Journal ("Journal de l'Association de Ingénieurs en Génie des Procédés"), 43, 1997, 1797-1812;
    • Gump, C.J., Lin, X., Falconer, J.L., Noble, R.D., dans Journal of Membrane Science ("Journal de la science des membranes"), 173, 2000, 35-52.
    Among the native ZSM-5 zeolite membranes, the following communications can be cited:
    • Coronas, J., Falconer, JL, Noble, RD, in AIChE Journal ("Journal of the Association of Process Engineering Engineers"), 43, 1997, 1797-1812;
    • Gump, CJ, Lin, X., Falconer, JL, Noble, RD, in Journal of Membrane Science , 173, 2000, 35-52.

    Enfin parmi les membranes ayant été échangées avec des ions de type H+, Na+, K+, Cs+, Ca+ ou Ba+ on peut citer Aoki, K., Tuan, V.A., Falconer, J.L., Noble, R.D., dans Microporous Mesoporous Materials ("Matériaux microporeux et mésoporeux"), 39, 2000, 485-492.Finally, among the membranes that have been exchanged with ions of the H +, Na +, K +, Cs +, Ca + or Ba + type, mention may be made of Aoki, K., Tuan, VA, Falconer, JL, Noble, RD, in Microporous Mesoporous Materials ("Materials microporous and mesoporous "), 39, 2000, 485-492.

    Les valeurs publiées de sélectivité n-C4/i-C4 en mélange, obtenues avec ce type de membrane, varient entre 10 et 50 suivant les conditions opératoires. On pourra sur ce point consulter la publication van de Graaf, J.M., van der Bijl, E., Stol, A., Kapteijn, F., Moulijn, J.A., dans Industrial Engineering Chemistry Research ("Recherche en génie des procédés industriels"), 37, 1998, 4071-4083.
    Les sélectivités de séparation observées avec des membranes à base de zéolithes MFI appliquées à la séparation n-hexane / diméthylbutane sont encore plus élevées :

    • 200 à 400 tel que cité dans la publication de Coronas, J., Noble, R.D., Falconer, J.L., dans Industrial Engeneering and Chemical Research ("Recherche en génie des procédés industriels"), 37, 1998, 166-176;
    • de 100 à 700 (Gump, C.J., Noble, R.D., Falconer, J.L., dans Industrial Engeneering and Chemical Research ("Recherche en génie des procédés industriels"), 38, 1999,2775-2781;
    • de 600 à plus de 2000 (Keizer, K., Burggraaf, A.J., Vroon, Z.A.E.P., Verweij, H., dans
    The published values of selectivity n-C4 / i-C4 in mixture, obtained with this type of membrane, vary between 10 and 50 according to the operating conditions. On this point it is possible to consult the publication van de Graaf, JM, van der Bijl, E., Stol, A., Kapteijn, F., Moulijn, JA, in Industrial Engineering Chemistry Research ("Research in engineering of industrial processes") , 37, 1998, 4071-4083.
    The separation selectivities observed with membranes based on MFI zeolites applied to the separation n-hexane / dimethylbutane are even higher:
    • 200 to 400 as cited in the publication of Coronas, J., Noble, RD, Falconer, JL, in Industrial Engeneering and Chemical Research ("Industrial Process Engineering Research"), 37, 1998, 166-176;
    • from 100 to 700 (Gump, CJ, Noble, RD, Falconer, JL, in Industrial Engeneering and Chemical Research, 38, 1999 , 2775-2781;
    • from 600 to over 2000 (Keizer, K., Burggraaf, AJ, Vroon, ZAEP, Verweij, H., in

    Journal of Membrane Science ("Journal de la science des membranes"), 147, 1998, 159-172. Journal of Membrane Science , 147, 1998, 159-172.

    La sélectivité de ce type de membrane est essentiellement basée sur une différence de diffusivité entre les composés linéaires, diffusants plus rapidement car offrant un diamètre cinétique sensiblement plus faible que le diamètre des micropores de la zéolithe, et les composés branchés, diffusants plus lentement car ayant un diamètre cinétique proche de celui des micropores.The selectivity of this type of membrane is essentially based on a difference in diffusivity between linear compounds, diffusing faster because offering a diameter significantly lower kinetics than the micropore diameter of the zeolite, and the connected compounds, diffusing more slowly because having a kinetic diameter close to that of micropores.

    Les paraffines et leurs homologues oléfiniques branchées ou linéaires ayant un diamètre cinétique très proche, les membranes à base de zéolithe MFI offrent finalement des sélectivités normale/iso oléfines élevées, proches de celles observées pour des normale/iso paraffines dans des conditions opératoires similaires.Paraffins and their branched or linear olefinic homologues having a diameter very close kinetics, the MFI zeolite-based membranes finally offer normal selectivities / high iso olefins, close to those observed for normal / iso paraffins under similar operating conditions.

    On peut également envisager d'utiliser des membranes à base de zéolithe de type structural LTA, zéolithe qui possède une très bonne sélectivité de forme vis à vis des normales paraffines.It is also possible to envisage using zeolite membranes of structural type LTA, zeolite which has a very good form selectivity with respect to normal paraffins.

    La température de fonctionnement de la membrane sera comprise entre la température ambiante et 400°C, et de façon préférentielle entre 80°C et 300°C.The operating temperature of the membrane will be between the temperature ambient temperature and 400 ° C, and preferably between 80 ° C and 300 ° C.

    Les oléfines et paraffines linéaires (coupe β) séparées de la coupe essence dans l'unité B, sont envoyées dans un réacteur d'oligomérisation, représenté par l'unité C, par l'intermédiaire de la ligne 3.The linear olefins and paraffins (β-section) separated from the petrol fraction in unit B, are sent to an oligomerization reactor, represented by unit C, by via line 3.

    Cette unité C contient un catalyseur acide. Les hydrocarbures présents dans le mélange de paraffines et d' oléfines linéaires vont subir des réactions d'oligomérisation modérées, c'est à dire en général des dimérisations ou des trimérisations, les conditions de la réaction étant optimisées pour la production d'une majorité d'hydrocarbures dont le nombre de carbone est majoritairement compris entre 9 et 25, et de préférence entre 10 et 20. This unit C contains an acid catalyst. The hydrocarbons present in the mixture of paraffins and linear olefins will undergo moderate oligomerization reactions, this is to say in general dimerizations or trimerizations, the conditions of the reaction being optimized for the production of a majority of hydrocarbons with carbon numbers is predominantly between 9 and 25, and preferably between 10 and 20.

    Le catalyseur de l'unité C peut être choisi dans le groupe formé par les silicoaluminates, les titanosilicates, les mixtes alumine titane, les argiles, les résines, les oxydes mixtes obtenus par greffage d'au moins un composé organométallique, organosoluble ou aquasoluble (choisi dans le groupe formé par les alkys. et/ou les alcoxy. métaux ayant au moins un élément tels que le titane, le zirconium le silicium, le germanium, l'étain, le tantale, le niobium) sur un support oxyde tel que l'alumine (formes gamma, delta, éta, seules ou en mélange), la silice, les silices alumines, les silices titane, les silices zircone, ou tout autre solide présentant une acidité quelconque.The catalyst of unit C can be chosen from the group formed by silicoaluminates, titanosilicates, mixed titanium alumina, clays, resins, mixed oxides obtained by grafting at least one organometallic, organosoluble or water-soluble compound (selected from the group consisting of alkys and / or alkoxy metals having at least one such as titanium, zirconium silicon, germanium, tin, tantalum, niobium) on an oxide support such as alumina (gamma, delta, eta forms, alone or in mixture), silica, silica aluminas, titanium silicas, zirconia silicas, or any other solid having any acidity.

    Préférentiellement, le catalyseur utilisé pour effectuer l'oligomérisation comprend au moins un métal du groupe VIB de la classification périodique, et avantageusement un oxyde dudit métal. Ledit catalyseur peut comprendre en outre un support oxyde choisi dans le groupe formé par les alumines, les titanates, les silices, les zircones, les alumino-silicates.Preferably, the catalyst used to carry out the oligomerization comprises at least a metal of group VIB of the periodic table, and advantageously an oxide of said metal. Said catalyst may further comprise an oxide support selected from the group formed by aluminas, titanates, silicas, zirconia, alumino-silicates.

    Un mode particulier de réalisation de l'invention consiste à mettre en oeuvre un mélange physique d'au moins deux des catalyseurs cités précédemment.A particular embodiment of the invention consists in implementing a mixture of at least two of the catalysts mentioned above.

    La pression de l'unité C est le plus souvent telle que la charge se trouve sous forme liquide. Cette pression est en principe comprise entre 0,2 MPa et 10 MPa, de préférence entre 0,3 et 6 MPa, et de manière encore préférée entre 0,3 et 4 MPa. Le rapport du débit volumique de charge sur le volume de catalyseur (encore appelé vitesse volumique horaire ou VVH) peut être compris entre 0,05 litre/litre.heure et 50 litres/litre.heure, de préférence entre 0,1 litre/litre.heure et 20 litres/litre.heure, et de manière encore préférée entre 0,2 litre/litre.heure et 10 litres/litre.heure .The pressure of the unit C is most often such that the charge is in liquid form. This pressure is in principle between 0.2 MPa and 10 MPa, preferably between 0.3 and 6 MPa, and more preferably between 0.3 and 4 MPa. The volume flow ratio of load on the catalyst volume (also called hourly volume velocity or VVH) can be between 0.05 liter / liter.hour and 50 liters / liter.hour, preferably between 0.1 liter / liter.hour and 20 liters / liter.hour, and even more preferably between 0.2 liter / liter.hour and 10 liters / liter.hour.

    Il a été trouvé par le demandeur que, dans les conditions de pression et de VVH précédentes, la température de réaction devait être comprise entre 15°C et 300°C, de préférence entre 60°C et 250°C, et plus particulièrement entre 100°C et 250°C pour optimiser la qualité des produits obtenus.It was found by the plaintiff that under pressure and VVH conditions above, the reaction temperature should have been between 15 ° C and 300 ° C, preferably between 60 ° C and 250 ° C, and more particularly between 100 ° C and 250 ° C for optimize the quality of the products obtained.

    L'effluent issu de l'unité (C) est alors envoyé par l'intermédiaire de la ligne 4 dans une ou plusieurs colonnes de distillation représentées sur le schéma de la figure 1 par l'unité (D).The effluent from the unit (C) is then sent via line 4 in one or several distillation columns shown in the diagram of Figure 1 by the unit (D).

    L'unité (D) peut également être constituée d' un ballon flash ou de tout autre moyen connu de l'homme de l'art permettant de séparer les effluents en au moins deux coupes distinctes par leur point d'ébullition :

    • une coupe δ dite légère dont le point final de distillation est compris entre environ 150°C et environ 200°C, de préférence entre 150°C et 180°C.
    • une coupe η dite lourde dont le point initial d'ébullition est compris entre environ 150°C et environ 200°C, de préférence entre 150°C et 180°C. Cette coupe est transportée par la ligne 6 vers l'unité (E).
    La coupe lourde η est une coupe dont le point initial correspond une coupe gazole.The unit (D) may also consist of a flash balloon or any other means known to those skilled in the art for separating the effluents in at least two distinct sections by their boiling point:
    • a so-called light cup whose final distillation point is between about 150 ° C. and about 200 ° C., preferably between 150 ° C. and 180 ° C.
    • a so-called heavy section whose initial boiling point is between about 150 ° C and about 200 ° C, preferably between 150 ° C and 180 ° C. This section is transported by line 6 to the unit (E).
    The heavy cut η is a section whose initial point corresponds to a diesel cut.

    Cette coupe est constituée en majorité d'oléfines et de dioléfines résultant de la polymérisation des oléfines linéaires. Cette coupe peut être hydrogénée dans une unité d'hydrogénation classique en présence d'un catalyseur et dans des conditions opératoires bien connues de l'homme de l'art. Ces oléfines sont alors transformées en paraffines linéaires. L'effluent de l'unité d'hydrogénation (E) constitue un gazole à indice de cétane supérieur à 45 et préférentiellement supérieur à 50.This cut consists mainly of olefins and diolefins resulting from the polymerization of linear olefins. This cup can be hydrogenated in a unit conventional hydrogenation in the presence of a catalyst and under operating conditions well known to those skilled in the art. These olefins are then converted into paraffins linear. The effluent of the hydrogenation unit (E) is a cetane gas oil greater than 45 and preferably greater than 50.

    La coupe δ est constituée principalement de paraffines linéaires non réactives lors de la réaction d'oligomérisation. Cette coupe, acheminée par la ligne 5, est mélangée à de l'hydrogène, acheminée par la ligne 10, est injectée dans une unité de déshydrogénation (F). De l'eau ou tout autre composé susceptible de se décomposer en eau dans les conditions de déshydrogénation pourra être ajouté à la charge. La quantité d'eau présente dans la charge d'hydrocarbures, (cette eau pouvant être générée par la décomposition d'un autre composé, tel que par exemple un alcool, une aldéhyde, une cétone, un éther), sera comprise entre 1 et 10000 ppm poids d'eau par rapport à la charge d'hydrocarbures.The δ cut consists mainly of non-reactive linear paraffins during the oligomerization reaction. This cut, conveyed by line 5, is mixed with the hydrogen, conveyed via line 10, is injected into a dehydrogenation unit (F). Water or any other compound likely to decompose into water under the conditions of dehydrogenation may be added to the charge. The amount of water present in the load hydrocarbons, (this water may be generated by the decomposition of another compound, as for example an alcohol, an aldehyde, a ketone, an ether), will be between 1 and 10000 ppm weight of water relative to the hydrocarbon charge.

    L'unité de déshydrogénation (F) fonctionne dans des conditions de températures comprises entre 400°C et 520°C, de préférence entre 450°C et 490°C.The dehydrogenation unit (F) operates under temperature conditions between 400 ° C and 520 ° C, preferably between 450 ° C and 490 ° C.

    Les pressions de l'unité de déshydrogénation (F) sont comprise entre 0,05 MPa et 1 MPa, de préférence entre 0,1 MPa et 0,5 MPa.The pressures of the dehydrogenation unit (F) are between 0.05 MPa and 1 MPa, preferably between 0.1 MPa and 0.5 MPa.

    Le rapport du débit volumique de la charge sur le volume de catalyseur est compris entre 1 h-1 et 500 h-1, de préférence entre 15 h-1 et 300 h-1. Le rapport molaire hydrogène sur hydrocarbure est compris entre 1 et 20 moles/mole, et de préférence entre 4 et 12 moles/mole. The ratio of the volume flow rate of the feedstock to the catalyst volume is between 1 h -1 and 500 h -1 , preferably between 15 h -1 and 300 h -1 . The molar ratio of hydrogen to hydrocarbon is between 1 and 20 mol / mol, and preferably between 4 and 12 mol / mol.

    Le catalyseur de déshydrogénation de l'unité (F) peut être choisi parmi les catalyseurs connus de l'homme de l'art pour la déshydrogénation des paraffines courtes allant de C2 à C5 ou les normales-paraffines longues allant de C10 à C 14. Le catalyseur est ainsi constitué d'une phase métallique supportée sur un support dont la surface spécifique est avantageusement comprise entre 5 et 300 m2/g.The dehydrogenation catalyst of the unit (F) may be chosen from catalysts known to those skilled in the art for the dehydrogenation of short paraffins ranging from C 2 to C 5 or long paraffins ranging from C 10 to C 14. The catalyst thus consists of a metal phase supported on a support whose specific surface is advantageously between 5 and 300 m 2 / g.

    Ce support de catalyseur comporte au moins un oxyde réfractaire qui est généralement choisi parmi les oxydes de métaux des groupes IIA, IIIA, IIIB, IVA ou IVB de la classification périodique des éléments tels que par exemple les oxydes de magnésium, d'aluminium, de silicium, de zirconium pris seuls ou en mélange entre eux, ou en mélange avec des oxydes d'autres éléments de la classification périodique. On peut aussi utiliser le charbon.This catalyst support comprises at least one refractory oxide which is generally selected from the group IIA, IIIA, IIIB, IVA or IVB metal oxides of the periodic classification of elements such as, for example, magnesium oxides, aluminum, silicon, zirconium alone or mixed with each other, or as a mixture with oxides of other elements of the Periodic Table. We can also use the coal.

    Le catalyseur de l'unité de déshydrogénation (F) renferme outre ce support :

  • a) au moins un métal du groupe VIII choisi parmi l'iridium, le nickel, le palladium, le platine, le rhodium et le ruthénium. Le platine sera généralement le métal préféré. Le pourcentage pondéral est choisi entre 0,01 et 5%, et de préférence entre 0,02 et 1 %.
  • b) au moins un élément additionnel choisi dans le groupe constitué par le germanium, l'étain, le plomb, le rhénium, le gallium, le fer, l'indium et le thallium. Le pourcentage pondéral est choisi entre 0,01% et 10%, et de préférence entre 0,02% et 5%. On peut avantageusement dans certains cas utiliser à la fois au moins deux des métaux de ce groupe.
  • The catalyst of the dehydrogenation unit (F) contains in addition to this support:
  • a) at least one Group VIII metal selected from iridium, nickel, palladium, platinum, rhodium and ruthenium. Platinum will usually be the preferred metal. The weight percentage is chosen between 0.01 and 5%, and preferably between 0.02 and 1%.
  • b) at least one additional element selected from the group consisting of germanium, tin, lead, rhenium, gallium, iron, indium and thallium. The weight percentage is chosen between 0.01% and 10%, and preferably between 0.02% and 5%. In some cases, it is advantageous to use at least two of the metals of this group.
  • Optionnellement, le catalyseur de déshydrogénation de l'unité (F) pourra aussi contenir un composé soufré, à une teneur pondéral en élément soufre généralement comprise entre 0,005 et 1% par rapport à la masse de catalyseur.Optionally, the dehydrogenation catalyst of the unit (F) may also contain a sulfur compound, at a weight content of sulfur element generally between 0.005 and 1% with respect to the catalyst mass.

    Le catalyseur de l'unité (F) pourra aussi contenir un ou plusieurs éléments additionnels permettant classiquement de limiter l'acidité du support tels que les alcalins ou alcalino-terreux, avec un pourcentage pondéral de 0,01% à 3%.The catalyst of the unit (F) may also contain one or more additional elements typically allowing to limit the acidity of the support such as alkaline or alkaline earth, with a weight percentage of 0.01% to 3%.

    Il pourra aussi contenir de 0,01 % à 3% d'un halogène ou composé halogéné.It may also contain from 0.01% to 3% of a halogen or halogenated compound.

    Les quantités de ces composés alcalins et/ou alcalino-terreux d'une part, et composés halogénés d'autre part, pourront être ajustées de façon à modifier la teneur en composés alkyl-aromatiques, et/ou paraffines branchées formés lors de la réaction de déshydrogénation.The amounts of these alkaline and / or alkaline earth compounds on the one hand, and halogenated substances, may be adjusted to modify the content of alkylaromatics, and / or branched paraffins formed during the reaction of dehydrogenation.

    Ces composés sont en effet des produits successifs de la réaction de déshydrogénation des paraffines traitées dans ce procédé.These compounds are in fact successive products of the dehydrogenation reaction of paraffins processed in this process.

    Il est connu que les composés aromatiques ainsi que les paraffines branchées ont un bien meilleur indice d'octane que les paraffines linéaires. Puisque ces produits ne sont pas affectés par l'étape d'hydrogénation sélective, leur production au niveau de l'étape de déshydrogénation (F) permettra d'enrichir la coupe essence (évacuée par la ligne (7)) après l'étape de séparation par membrane (B).It is known that aromatic compounds as well as branched paraffins have a good better octane number than linear paraffins. Since these products are not affected by the step of selective hydrogenation, their production at the stage of dehydrogenation (F) will enrich the petrol cut (evacuated by line (7)) after the membrane separation step (B).

    Ainsi, la coupe gazole sera par exemple favorisée par l'utilisation d'un catalyseur de déshydrogénation présentant de 0,01% à 3% d' au moins un alcalin et/ou alcalino-terreux et moins de 0,2% de composé halogéné.Thus, the diesel cut will for example be favored by the use of a catalyst of dehydrogenation having from 0.01% to 3% of at least one alkaline and / or alkaline earth metal and less than 0.2% of halogenated compound.

    Selon une première variante, la proportion de composés aromatiques issus de cette étape de déshydrogénation pourra aussi être minimisée par un choix judicieux de conditions opératoires, connues de l'homme de l'art. L'utilisation d'un fort rapport débit de charge sur volume de catalyseur (VVH), ou d'un fort rapport H2/HC permet de limiter la formation des aromatiques lors de l'étape de déshydrogénation (F). Une valeur de VVH comprise entre 15 et 300 h-1, et une valeur de H2/HC comprise entre 4 et 12 seront généralement préférées.According to a first variant, the proportion of aromatic compounds resulting from this dehydrogenation step may also be minimized by a judicious choice of operating conditions, known to those skilled in the art. The use of a high charge-to-volume ratio (VVH) or a high H2 / HC ratio makes it possible to limit the formation of aromatics during the dehydrogenation step (F). A VVH value of between 15 and 300 h -1 , and an H 2 / HC value of between 4 and 12 will generally be preferred.

    La coupe essence sera par exemple favorisée par l'utilisation d'un catalyseur de déshydrogénation présentant de 0,1% à 3% d'un composé halogéné, et moins de 0,5% d' un alcalin et/ou alcalino-terreux. Le catalyseur pourra dans certains cas ne pas contenir de métal alcalin ou alcalino-terreux.The petrol cut will for example be favored by the use of a catalyst of dehydrogenation having 0.1% to 3% of a halogenated compound, and less than 0.5% of an alkaline and / or alkaline earth metal. The catalyst may in some cases not contain alkali metal or alkaline earth metal.

    Selon une seconde variante, la proportion de composés aromatiques issus de cette étape de déshydrogénation (F) pourra aussi être optimisée par un choix judicieux de conditions opératoires, connu de l'homme de l'art. L'utilisation d'un faible rapport débit de charge sur volume de catalyseur (VVH) permet par exemple d'augmenter la formation des aromatiques vis à vis de la formation d'oléfines. Une valeur de VVH comprise entre 1 et 50 h-1 sera dans ce cas généralement préférée. According to a second variant, the proportion of aromatic compounds resulting from this dehydrogenation step (F) may also be optimized by a judicious choice of operating conditions, known to those skilled in the art. The use of a low charge-to-volume ratio of catalyst (VVH) makes it possible, for example, to increase the formation of aromatics with respect to the formation of olefins. A VVH value of between 1 and 50 h -1 will in this case be generally preferred.

    Dans l'unité (F), l'étape de déshydrogénation des paraffines en oléfines s'accompagne aussi, en plus des composés aromatiques et paraffines branchées, de la formation de dioléfines et éventuellement d'autres composés insaturés tels que les alcynes, les trioléfines.In unit (F), the step of dehydrogenating paraffins to olefins is also accompanied, in addition to branched aromatic and paraffin compounds, diolefin formation and optionally other unsaturated compounds such as alkynes, triolefins.

    La formation des dioléfines est fortement influencée par l'équilibre thermodynamique entre les paraffines / oléfines / dioléfines.The formation of diolefins is strongly influenced by the thermodynamic equilibrium between paraffins / olefins / diolefins.

    L'effluent de l'unité (F) évacué par la ligne (11), est mélangé à de l'hydrogène amené par la ligne (12) et ensuite envoyé dans une unité d'hydrogénation sélective (G) dont le but est l'élimination par hydrogénation des faibles quantités de dioléfines et d'éventuels alcynes et trioléfines, sans toucher aux oléfines et aux composés aromatiques formés dans l'unité (F). Cette hydrogénation sélective fonctionne dans des gammes de pression comprises entre 1 MPa et 8 MPa, et de préférence entre 2 MPa et 6 MPa. La température est comprise entre 40°C et 350°C, et de préférence entre 40°C et 250°C.The effluent from the unit (F) discharged via the line (11) is mixed with hydrogen supplied by the line (12) and then sent to a selective hydrogenation unit (G) whose purpose is the elimination by hydrogenation of the small quantities of diolefins and possible alkynes and triolefins, without affecting the olefins and aromatic compounds formed in the unit (F). This selective hydrogenation operates in pressure ranges between 1 MPa and 8 MPa, and preferably between 2 MPa and 6 MPa. The temperature is between 40 ° C and 350 ° C, and preferably between 40 ° C and 250 ° C.

    Le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est compris entre 0,5 et 10 m3/m3.heure et de préférence entre 1 et 5 m3/m3.heure.The ratio of the volume flow rate of charge to the volume of catalyst (VVH) is between 0.5 and 10 m 3 / m 3 / hour and preferably between 1 and 5 m 3 / m 3 / hour.

    Le catalyseur de l'unité d'hydrogénation (G) est constitué d'un support à base de silice, ou d'alumine sur lequel est déposé un métal type nickel, platine ou palladium. Le catalyseur de l'unité d'hydrogénation (G) peut aussi être constitué de mélanges de nickel et molybdène ou de mélanges de nickel et de tungstène.The catalyst of the hydrogenation unit (G) consists of a support based on silica, or of alumina on which is deposited a metal type nickel, platinum or palladium. The catalyst of the hydrogenation unit (G) may also consist of mixtures of nickel and molybdenum or mixtures of nickel and tungsten.

    A l'issue de l'hydrogénation sélective (G), l'effluent de l'unité (G) contient majoritairement des paraffines linéaires, des oléfines et des aromatiques. Cette coupe dite coupe λ, est alors recyclée tout ou en partie par la ligne (13) à l'entrée de l'unité (B).At the end of the selective hydrogenation (G), the effluent of the unit (G) contains mainly linear paraffins, olefins and aromatics. This so-called cup λ cut, is then recycled in whole or in part by the line (13) at the entrance of the unit (B).

    Exemples:Examples:

    Les exemples qui suivent permettent d'illustrer les avantages liés à la présente invention.The following examples illustrate the advantages of the present invention.

    L' exemple 1 correspond à l'invention et sera mieux compris en suivant la figure 1.Example 1 corresponds to the invention and will be better understood by following FIG.

    L'exemple 2 est un exemple comparatif Example 2 is a comparative example

    Exemple 1: (selon l'invention) Example 1 (according to the invention)

    Dans cet exemple, la charge est une essence de FCC de point d'ébullition compris entre 40°C et 150°C. Cette essence contient 10 ppm d'azote.In this example, the load is a FCC gasoline with a boiling point between 40 ° C and 150 ° C. This gasoline contains 10 ppm nitrogen.

    Cette charge est envoyée dans un réacteur de purification A contenant un solide constitué d'un mélange de 20% d'alumine et 80% poids de zéolithe du type mordénite. La zéolithe utilisée dans le présent exemple possède un rapport silicium/aluminium de 45.This charge is sent to a purification reactor A containing a solid a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type. The zeolite used in the present example has a silicon / aluminum ratio of 45.

    La pression de l'unité de purification est de 0,2 MPa.The pressure of the purification unit is 0.2 MPa.

    Le rapport du débit volumique liquide de la charge sur le volume de solide acide (VVH) est de 1 litre /litre.heure. La température du réacteur est de 20°C.The ratio of the liquid volume flow rate of the charge to the acid solid volume (VVH) is of 1 liter / liter.hour. The temperature of the reactor is 20 ° C.

    Le tableau 1 donne la composition de la charge initiale et celle de l'effluent issu de l'unité A (coupe α). Le débit de charge utilisé est de 1 kg/h. caractéristiques de la charge et de l'effluent de l'unité A. Charge A Effluent de l'unité A Azote (ppm) 10 0,2 Paraffines (%poids) 25,2 25,1 Naphtènes (% poids) 9,6 9,8 Aromatiques (% poids) 34,9 35 Oléfines (% poids) 30,3 30,1 Table 1 gives the composition of the initial charge and that of the effluent from unit A (α cut). The charge rate used is 1 kg / h. characteristics of the charge and effluent of unit A. Charge A Effluent of unit A Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1

    L'effluent de l'unité A (coupe α) est ensuite envoyé dans un réacteur membranaire B constitué d'un support à base d'alumine α sur lequel est déposée une couche de zéolithe MFI d'une épaisseur comprise entre 5 et 15 µm.The effluent from unit A (α cut) is then sent to a membrane reactor B consisting of a support based on α-alumina on which is deposited a layer of zeolite MFI with a thickness of between 5 and 15 μm.

    La pression du réacteur membranaire B est égale à 0,1 MPa et la température est égale à 150°C. The pressure of the membrane reactor B is equal to 0.1 MPa and the temperature is equal to 150 ° C.

    Le tableau 2 donne la composition des effluents issus de l'unité B (coupe β et coupe γ). caractéristiques des effluents de l'étape B (avant recyclage). Coupe β Coupe γ Rendement (%) (par rapport à la coupe α) 8,8 91,2 Production (g/h) 88 912 Paraffines (%poids) 45,5 23,1 Naphtènes (% poids) 10,7 Aromatiques (% poids) 38,5 Oléfines (% poids) 54,5 27,7 Table 2 gives the composition of effluents from unit B (β cut and γ cut). effluent characteristics of stage B (before recycling). Β cut Γ cup Yield (%) (relative to the α cut) 8.8 91.2 Production (g / h) 88 912 Paraffins (% wt) 45.5 23.1 Naphthenes (% wt) 10.7 Aromatic (% by weight) 38.5 Olefins (% by weight) 54.5 27.7

    La coupe β issue de l'unité de séparation par membrane est injectée dans un réacteur d'oligomérisation (C) contenant un catalyseur constitué d'un mélange à 50% poids de zircone et à 50% poids de H3PW12O40.The β cut from the membrane separation unit is injected into an oligomerization reactor (C) containing a catalyst consisting of a mixture of 50% by weight of zirconia and 50% by weight of H 3 PW 12 O 40 .

    La pression de l'unité est de 2 MPa, le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est égale à 1,5 litres /litre.heure. La température est fixée à 170°C.The pressure of the unit is 2 MPa, the ratio of the volumetric load flow on the volume of catalyst (VVH) is equal to 1.5 liters / liter.hour. The temperature is set at 170 ° C.

    On obtient en sortie du réacteur de l'unité d'oligomérisation (C) un effluent qui est ensuite séparé en deux coupes au moyen d'une colonne à distiller (D): une coupe légère δ, et une coupe lourde η dont les compositions et rendements sont donnés dans le tableau 3 ci dessous: Production et composition des coupes δ et η Coupe δ Coupe η Production (g/h) 39,6 48 Paraffines (%) 100 Oléfines (%) 100 At the outlet of the reactor of the oligomerization unit (C), an effluent is obtained which is then separated into two sections by means of a distillation column (D): a light cut δ, and a heavy cut η whose compositions and yields are given in Table 3 below: Production and composition of δ and η sections Cup δ Cup η Production (g / h) 39.6 48 Paraffins (%) 100 Olefins (%) 100

    La coupe lourde η est envoyée dans un réacteur d'hydrogénation (E) contenant un catalyseur comprenant un support alumine sur lequel sont déposés du nickel et du molybdène (commercialisé par AXENS sous l'appellation commerciale HR348, marque déposée).The heavy cut η is sent to a hydrogenation reactor (E) containing a catalyst comprising an alumina support on which nickel and molybdenum (marketed by AXENS under the trade name HR348, brand Mark).

    La pression de l'unité est de 5 MPa, le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est égale à 2 litres/litre.heure.The pressure of the unit is 5 MPa, the ratio of the volumetric load flow on the volume of catalyst (VVH) is equal to 2 liters / liter.hour.

    Le rapport du débit d'hydrogène injecté sur le débit de charge est égale à 600 litres/litre.The ratio of the injected hydrogen flow rate to the feed rate is equal to 600 liters / liter.

    La température du réacteur est de 320°C.The reactor temperature is 320 ° C.

    Les caractéristiques de l'effluent issu de l'étape (E) qui sont celles d'un gazole, sont présentées dans le tableau 4. caractéristiques de l'effluent issu de l'unité E effluent de l'unité E Densité à 20°C (kg/l) 0,787 Soufre (ppm) 1 Cétane moteur 55 The characteristics of the effluent from step (E) which are those of a diesel fuel, are presented in Table 4. characteristics of effluent from unit E effluent from unit E Density at 20 ° C (kg / l) 0.787 Sulfur (ppm) 1 Cetane engine 55

    La coupe légère δ d'intervalle de distillation 40°C-200°C issue de l'étape de distillation (D), est mélangée à de l'hydrogène avec un rapport molaire hydrogène sur hydrocarbure de 6 moles/mole, puis envoyée dans l'unité de déshydrogénation (F).The light cut δ distillation range 40 ° C-200 ° C from the distillation step (D), is mixed with hydrogen with a hydrogen to hydrocarbon molar ratio of 6 moles / mole, then sent to the dehydrogenation unit (F).

    La pression totale de l'unité de déshydrogénation (F) est égale à 0,3 MPa, et la température est de 475°C. Le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est égale à 20 litres/litre.heure. Le catalyseur utilisé dans l'unité de déshydrogénation (F) est commercialisé par la société AXENS sous la référence DP 805, marque déposée.The total pressure of the dehydrogenation unit (F) is equal to 0.3 MPa, and the temperature is 475 ° C. The ratio of the volume flow rate of charge to the volume of catalyst (VVH) is equal to 20 liters / liter.hour. The catalyst used in the dehydrogenation unit (F) is sold by AXENS under the reference DP 805, registered trademark.

    La composition de la coupe µ issue de la déshydrogénation (F) ou coupe µ est présentée dans le tableau 5 et comparée à la charge de l'unité de déshydrogénation (F) ou coupe δ. caractéristiques de l'effluent issu de l'unité F (coupe µ) Coupe δ Coupe µ Paraffines linéaires (%poids) 100 85,1 Paraffines ramifiées (%poids) 0,3 Oléfines (% poids) 12 Aromatiques (%) 2 Dioléfines (%poids) 0,6 The composition of the section μ resulting from the dehydrogenation (F) or μ section is presented in Table 5 and compared to the charge of the dehydrogenation unit (F) or cut δ. characteristics of the effluent from unit F (μ section) Cup δ Μ section Linear paraffins (% by weight) 100 85.1 Branched paraffins (% by weight) 0.3 Olefins (% by weight) 12 Aromatic (%) 2 Diolefins (% by weight) 0.6

    Cette coupe µ est mélangée avec de l'hydrogène et envoyée dans un réacteur d'hydrogénation (G) contenant un catalyseur commercialisée par la société AXENS sous la référence LD 265, marque déposée.This section μ is mixed with hydrogen and sent to a reactor hydrogenation product (G) containing a catalyst marketed by AXENS under the reference LD 265, registered trademark.

    La pression de l'unité est de 2,8 MPa, la température est égale à 90°C, et le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est égale à 3 litres /litre.heure.The pressure of the unit is 2.8 MPa, the temperature is equal to 90 ° C, and the flow ratio The volume of charge on the volume of catalyst (VVH) is equal to 3 liters / liter / hour.

    La composition de la coupe λ résultant de cette hydrogénation sélective (G) est comparée à celle de la coupe µ dans le tableau 6. caractéristiques de l'effluent issu de l'unité G (coupe λ) Coupe µ Coupe λ Paraffines linéaires (%poids) 85,1 85,2 Paraffines ramifiées (%poids) 0,3 0,3 Oléfines (% poids) 12 12,5 Aromatiques (%) 2 2 Dioléfines (%poids) 0,6 0 The composition of the λ-section resulting from this selective hydrogenation (G) is compared with that of the μ-section in Table 6. characteristics of the effluent from unit G (λ cut) Μ section Λ cut Linear paraffins (% by weight) 85.1 85.2 Branched paraffins (% by weight) 0.3 0.3 Olefins (% by weight) 12 12.5 Aromatic (%) 2 2 Diolefins (% by weight) 0.6 0

    Cette coupe λ est intégralement recyclée à l'entrée du réacteur membranaire (B).This section λ is completely recycled at the entrance of the membrane reactor (B).

    Les paraffines et les oléfines linéaires se retrouvent ainsi dans la nouvelle coupe β obtenue après recyclage et permettent de ce fait d'augmenter le rendement en gazole. Paraffins and linear olefins are thus found in the new β-section obtained after recycling and thereby increase the diesel yield.

    Les propriétés de la coupe γ ainsi obtenue sont présentées dans le tableau 6 et comparées à celles de la coupe α de départ. Comparaison des caractéristiques de la coupe initiale α et de la coupe finale γ. Coupe α Coupe γ finale Paraffines (%poids) 25,2 22,9 Naphtènes (% poids) 9,6 10,4 Aromatiques (% poids) 34,9 37,8 Oléfines (% poids) 30,3 27,6 Indice d'octane RON 92 97 The properties of the γ cut thus obtained are presented in Table 6 and compared with those of the initial cut α. Comparison of the characteristics of the initial cut α and the final cut γ. Α cut Final γ cup Paraffins (% wt) 25.2 22.9 Naphthenes (% wt) 9.6 10.4 Aromatic (% by weight) 34.9 37.8 Olefins (% by weight) 30.3 27.6 RON octane number 92 97

    Le présent procédé permet d'obtenir à partir d'une coupe essence issue d'un FCC, une coupe essence (coupe γ) présentant un indice d'octane amélioré par rapport à celui de la coupe initiale (97 contre 92) et une coupe gazole, effluent de l'unité (E), à fort indice de cétane (55), parfaitement compatible avec une commercialisation aux spécifications européennes et US.The present method makes it possible to obtain, from a petrol cut from an FCC, a cut gasoline (γ cut) with an improved octane number compared to that of the cut initial (97 against 92) and a diesel cut, effluent of the unit (E), with high cetane number (55), perfectly compatible with marketing to European specifications and US.

    Exemple 2: (comparatif) Example 2 (comparative)

    L'exemple 2 correspond à l'art antérieur et consiste à envoyer directement vers une unité d'oligomérisation (C) une coupe essence de FCC (coupe α) dont le point d'ébullition est compris entre 40°C et 150°C.Example 2 corresponds to the prior art and consists in sending directly to a unit of oligomerization (C) a gasoline fraction of FCC (α cut) whose boiling point is between 40 ° C and 150 ° C.

    Cette essence contient 10 ppm d'azote.This gasoline contains 10 ppm nitrogen.

    Cette charge est envoyée dans un réacteur de purification A contenant un solide constitué d'un mélange de 20% d'alumine et 80% poids de zéolithe du type mordénite. La zéolithe utilisée dans le présent exemple possède un rapport silicium/aluminium de 45.This charge is sent to a purification reactor A containing a solid a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type. The zeolite used in the present example has a silicon / aluminum ratio of 45.

    La pression de l'unité de purification est de 0,2 MPa.The pressure of the purification unit is 0.2 MPa.

    Le rapport du débit volumique liquide de la charge sur le volume de solide acide (VVH) est de 1 litre /litre.heure. La température du réacteur est de 20°C. The ratio of the liquid volume flow rate of the charge to the acid solid volume (VVH) is of 1 liter / liter.hour. The temperature of the reactor is 20 ° C.

    Le tableau 7 donne la composition de la charge initiale et celle de l'effluent issu de l'unité A. Le débit de charge utilisé est de 1 kg/h. caractéristiques de la charge et de l'effluent de l'unité A. Charge A Effluent de l'unité A Azote (ppm) 10 0,2 Paraffines (%poids) 25,2 25,1 Naphtènes (% poids) 9,6 9,8 Aromatiques (% poids) 34,9 35 Oléfines (% poids) 30,3 30,1 Table 7 gives the composition of the initial charge and that of the effluent from unit A. The charge rate used is 1 kg / h. characteristics of the charge and effluent of unit A. Charge A Effluent of unit A Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1

    L'effluent de l'unité A (coupe α) est envoyé dans une unité d' oligomérisation (C) travaillant dans les conditions décrites dans l'exemple 1.The effluent from unit A (α cut) is sent to an oligomerization unit (C) working under the conditions described in Example 1.

    A l'issue de l'étape (C) d'oligomérisation, l'effluent de l'unité d'oligomérisation (C) est séparé en 2 coupes au moyen de la colonne à distiller (D):

    • une coupe légère δ' d'intervalle de distillation 40°C-200°C obtenue avec un rendement poids de 70%,
    • une coupe lourde η' comprenant les hydrocarbures dont le point de distillation initial est supérieur à 200°C, obtenue avec un rendement poids de 30%.
    At the end of the oligomerization step (C), the effluent from the oligomerization unit (C) is separated into 2 sections by means of the distillation column (D):
    • a light cut δ 'distillation range 40 ° C-200 ° C obtained with a weight yield of 70%,
    • a heavy cut η 'comprising hydrocarbons whose initial distillation point is greater than 200 ° C, obtained with a weight yield of 30%.

    La coupe lourde η' est envoyée dans un réacteur d'hydrogénation (E) contenant un catalyseur à base d'alumine sur laquelle sont déposés du nickel et du molybdène.The heavy cut η 'is sent to a hydrogenation reactor (E) containing a Alumina catalyst on which nickel and molybdenum are deposited.

    La pression de l'unité (E) est de 5 MPa, le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est égal à 2 litres /litre.heure. Le rapport du débit d'hydrogène injecté sur le débit de charge est égale à 600 litres/litre. The pressure of the unit (E) is 5 MPa, the ratio of the flow rate of charge on the catalyst volume (VVH) is equal to 2 liters / liter.hour. The ratio of hydrogen flow injected on the charge flow is equal to 600 liters / liter.

    La température du réacteur de l'unité (E) est de 320°C. Les caractéristiques de l'effluent issu de l'unité (E) qui sont celles d'un gazole, sont présentés dans le tableau 8. caractéristiques de l'effluent de l'unité E Effluent de l'unité E Densité à 20°C (kg/l) 0,787 Soufre (ppm) 1 Indice cétane moteur 35 The reactor temperature of the unit (E) is 320 ° C. The characteristics of the effluent from the unit (E) which are those of a diesel fuel, are presented in Table 8. characteristics of the effluent from unit E Effluent of unit E Density at 20 ° C (kg / l) 0.787 Sulfur (ppm) 1 Motor cetane index 35

    On constate que l'indice de cétane du gazole obtenu lorsque l'oligomérisation est effectuée sans séparer préalablement les composés linéaires des composés ramifiés est nettement inférieur à celui obtenu de l'exemple 1 selon l'invention.It is found that the cetane number of the gas oil obtained when the oligomerization is carried out without first separating the linear compounds from the branched compounds is clearly less than that obtained from Example 1 according to the invention.

    Le gasoil obtenu selon le schéma de l'exemple 2 est impropre à la commercialisation, ce qui n'est pas le cas de celui obtenu dans l'exemple 1 selon l'invention.The gas oil obtained according to the scheme of Example 2 is unfit for marketing, which is not the case of that obtained in Example 1 according to the invention.

    De même, la coupe essence finale δ' possède un indice d'octane de 85, inférieur à celui obtenu dans l'exemple 1, ce qui peut rendre sa commercialisation problématique.Likewise, the final gasoline cut δ 'has an octane number of 85, lower than obtained in Example 1, which can make marketing problematic.

    Les propriétés de cette coupe essence δ' sont comparées à celles de la coupe essence initiale (coupe α) dans le tableau 9 ci dessous. caractéristiques des coupes α et δ' Coupe α Coupe δ' Production (g/l) 1000 700 Paraffines (%poids) 25,2 36,2 Naphtènes (% poids) 9,6 13,7 Aromatiques (% poids) 34,9 50,1 Oléfines (% poids) 30,3 Indice d'octane RON 92 85 The properties of this essence cut δ 'are compared with those of the initial gasoline cut (α cut) in Table 9 below. characteristics of cuts α and δ ' Α cut Cup δ ' Production (g / l) 1000 700 Paraffins (% wt) 25.2 36.2 Naphthenes (% wt) 9.6 13.7 Aromatic (% by weight) 34.9 50.1 Olefins (% by weight) 30.3 RON octane number 92 85

    Claims (13)

    Procédé de transformation d'une charge hydrocarbonée de type essence, comprenant de 4 à 15 atomes de carbone, en une coupe essence de nombre d'octane supérieur à celui de la charge et une coupe gazole d'indice de cétane supérieur à 45, ledit procédé comprenant les étapes suivantes : a) une étape de séparation par membrane (B) de la charge hydrocarbonée dans des conditions permettant la séparation sélective de la majorité des oléfines linéaires présentes dans ladite charge et constituant la coupe β, la coupe contenant la majorité des oléfines ramifiées, dite coupe γ, constituant une essence à fort indice d'octane, supérieur à celui de la charge. b) une étape d'oligomérisation (C) des oléfines linéaires (coupe β) contenues dans les effluents issus de l'étape de séparation sur membrane (B) dans des conditions d'oligomérisation modérées, c) une étape de séparation par distillation (D) des effluents issus de l'étape d'oligomérisation en au moins deux coupes : une coupe δ comprenant les hydrocarbures dont le point d'ébullition final est inférieur à une température comprise entre 150°C et 200°C, une coupe η comprenant les hydrocarbures dont le point d'ébullition initial est supérieur à une température comprise entre 150°C et 200°C, d) une étape d'hydrogénation (E) de la coupe η permettant d'obtenir un gazole d'indice de cétane au moins égal à 45. Process for the conversion of a hydrocarbon feedstock of the gasoline type, comprising from 4 to 15 carbon atoms, into a petrol fraction with an octane number greater than that of the feedstock and a gas oil fraction with a cetane number greater than 45, said process comprising the following steps: a) a membrane separation step (B) of the hydrocarbon feedstock under conditions allowing the selective separation of the majority of linear olefins present in said feedstock and constituting the β-cut, the cut containing the majority of branched olefins, called γ-cut; , constituting a gasoline with a high octane number, higher than that of the charge. b) an oligomerization step (C) of the linear olefins (β-cut) contained in the effluents resulting from the membrane separation step (B) under moderate oligomerization conditions, c) a step of separation by distillation (D) of the effluents resulting from the oligomerization step in at least two sections: a section δ comprising the hydrocarbons whose final boiling point is below a temperature of between 150 ° C. and 200 ° C., a fraction η comprising hydrocarbons whose initial boiling point is greater than a temperature of between 150 ° C. and 200 ° C., d) a hydrogenation step (E) of the cut η making it possible to obtain a gas oil with a cetane number of at least 45. Procédé selon la revendication 1 comprenant en outre après l'étape d) une étape e) de déshydrogénation (F) de la coupe δ permettant de convertir une partie au moins des paraffines en oléfines, et produisant une coupe µ qui est, au moins en partie, recyclée à l'étape de séparation par membrane (B). The method of claim 1 further comprising after step d) a step e) of dehydrogenation (F) of the section δ making it possible to convert at least part of the paraffins to olefins, and producing a μ-cut which is, at least in part, recycled to the membrane separation step (B). Procédé selon la revendication 2 dans lequel la coupe µ issue de l'étape de déshydrogénation (F) subit une hydrogénation sélective (G), en vue d'éliminer les dioléfines de manière à produire une coupe λ qui est recyclée au moins en partie à l'étape de séparation par membrane (B).The method of claim 2 wherein the section μ from the step of dehydrogenation (F) undergoes selective hydrogenation (G), in order to eliminate diolefins so as to produce a cut λ which is recycled at least in part to the stage membrane separation (B). Procédé selon la revendication 2 dans lequel la coupe µ issue de l'étape de déshydrogénation (F) de la coupe δ, est mélangée au moins en partie avec la coupe γ, issue de l'unité de séparation par membrane (B).The method of claim 2 wherein the section μ from the step of dehydrogenation (F) of the δ cut, is mixed at least in part with the γ cut, of the membrane separation unit (B). Procédé selon la revendication 3 dans lequel la coupe λ issue de l'étape d'hydrogénation sélective (G) est au moins en partie mélangée avec la coupe γ, issue de l'étape de séparation par membrane (B).Process according to claim 3, in which the λ cut resulting from the hydrogenation step selective (G) is at least partially mixed with the γ cut, resulting from the separation step by membrane (B). Procédé selon l'une quelconque des revendications 1 à 5 dans lequel l'étape d'oligomérisation (C) est effectuée à une pression comprise entre 0,2 et 10 MPa, un rapport de débit volumique de charge sur volume de catalyseur (VVH) compris entre 0,05 litre/litre.heure et 50 litres/litre.heure, une température comprise entre 15°C et 300°C, et en présence d'un catalyseur comprenant au moins un métal du groupe VIB de la classification périodique.A process according to any one of claims 1 to 5 wherein the step oligomerization (C) is carried out at a pressure of between 0.2 and 10 MPa, a ratio of volume flow rate of charge on catalyst volume (VVH) between 0.05 liter / liter.hour and 50 liters / liter.hour, a temperature between 15 ° C and 300 ° C, and in presence of a catalyst comprising at least one metal of group VIB of the classification periodic. Procédé selon l'une des revendications 1 à 6 dans lequel l'étape de séparation sur membrane est réalisée avec une membrane telle que celles utilisées dans les procédés de nanofiltration ou d' osmose inverse, ou de perméation en phase gaz, ou de pervaporation.Process according to one of Claims 1 to 6, in which the separation step on membrane is made with a membrane such as those used in nanofiltration or reverse osmosis, or permeation in the gas phase, or pervaporation. Procédé selon l'une quelconque des revendications 1 à 6 dans lequel l'unité de séparation par membrane utilise une membrane à base de film formé de tamis moléculaire de type silicates, aluminosilicates, aluminophosphates, silicoalumino-phosphates, métalloaluminophosphates, stanosilicates ou un mélange d'au moins un de ces deux types de constituants. Process according to any one of claims 1 to 6 wherein the separation unit by membrane uses a film-based membrane formed from molecular sieve type silicates, aluminosilicates, aluminophosphates, silicoaluminophosphates, metalloaluminophosphates, stanosilicates or a mixture of at least one of these two types of constituents. Procédé selon l'une quelconque des revendications 1 à 6 dans lequel l'unité de séparation par membrane utilise une membrane à base de zéolithes de type MFI ou ZSM-5, natives ou ayant été échangées avec des ions H+; Na +; K+; Cs+; Ca+; Ba+.Process according to any one of claims 1 to 6 wherein the separation unit by membrane uses a membrane based on zeolites of type MFI or ZSM-5, native or having been exchanged with H + ions; Na +; K +; Cs +; Ca +; Ba +. Procédé selon l'une quelconque des revendications 1 à 6 dans lequel l'unité de séparation par membrane utilise une membrane à base de zéolithes de type LTA.A process according to any one of claims 1 to 6 wherein the unit of membrane separation uses a membrane based on LTA type zeolites. Procédé selon l'une quelconque des revendications 1 à 10 dans lequel le catalyseur de déshydrogénation de l'unité (F) est constitué d'une phase métallique déposée sur un support, ce support comportant au moins un oxyde réfractaire choisi parmi les oxydes de métaux des groupes IIA, IIIA, IIIB, IVA ou IVB de la classification périodique des éléments.Process according to any one of claims 1 to 10 wherein the catalyst of dehydrogenation of the unit (F) consists of a metallic phase deposited on a support, this support comprising at least one refractory oxide selected from oxides of metals of groups IIA, IIIA, IIIB, IVA or IVB of the periodic table of elements. Procédé selon l'une quelconque des revendications 1 à 11 dans lequel le catalyseur de l'unité (F) contient un ou plusieurs éléments additionnels choisi parmi les alcalins ou les alcalino-terreux, avec un pourcentage pondéral compris entre 0,01% et 3%.Process according to any one of claims 1 to 11 wherein the catalyst of the unit (F) contains one or more additional elements selected from alkalis or alkaline earth, with a weight percentage of between 0.01% and 3%. Procédé selon l'une quelconque des revendications 1 à 12 comprenant une étape (A) d'élimination d'au moins une partie des impuretés azotés ou basiques contenues dans la charge initiale d'hydrocarbures, cette étape (A) étant située en amont de l'unité de séparation par membrane (B).Process according to any one of claims 1 to 12 comprising a step (A) removal of at least a portion of the nitrogenous or basic impurities contained in the hydrocarbon feedstock, this step (A) being located upstream of the feed unit membrane separation (B).
    EP05291115A 2004-06-04 2005-05-24 Process for upgrading a gasoline fraction and transforming in gasoils with additional treatment for increasing the efficiency of the gasoil fraction Expired - Fee Related EP1602705B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0406097A FR2871168B1 (en) 2004-06-04 2004-06-04 METHOD FOR IMPROVING ESSENTIAL CUPS AND GAS PROCESSING WITH COMPLEMENTARY TREATMENT FOR INCREASING THE YIELD OF THE GAS CUTTING
    FR0406097 2004-06-04

    Publications (2)

    Publication Number Publication Date
    EP1602705A1 true EP1602705A1 (en) 2005-12-07
    EP1602705B1 EP1602705B1 (en) 2008-11-12

    Family

    ID=34942341

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP05291115A Expired - Fee Related EP1602705B1 (en) 2004-06-04 2005-05-24 Process for upgrading a gasoline fraction and transforming in gasoils with additional treatment for increasing the efficiency of the gasoil fraction

    Country Status (6)

    Country Link
    US (1) US7705193B2 (en)
    EP (1) EP1602705B1 (en)
    JP (1) JP4860188B2 (en)
    CN (1) CN1706919B (en)
    DE (1) DE602005010937D1 (en)
    FR (1) FR2871168B1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2012076758A3 (en) * 2010-12-10 2012-10-04 Neste Oil Oyj A method for production of middle distillate components from gasoline components by oligomerization of olefins

    Families Citing this family (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2871167B1 (en) * 2004-06-04 2006-08-04 Inst Francais Du Petrole METHOD FOR IMPROVING ESSENTIAL CUPS AND GAS PROCESSING
    FR2952646B1 (en) * 2009-11-13 2012-09-28 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF HIGH QUALITY KEROSENE AND DIESEL FUELS AND COPRODUCTION OF HYDROGEN FROM LIGHT SATURATED CUTS
    FR2975103B1 (en) 2011-05-12 2014-08-29 IFP Energies Nouvelles PROCESS FOR PRODUCING KEROSENE OR GASOLINE CUT FROM AN OLEFINIC CHARGE HAVING A MAJORITY OF 4 TO 6 CARBON ATOMS
    FR2980195B1 (en) 2011-09-20 2013-08-23 IFP Energies Nouvelles PROCESS FOR SEPARATING PENTENE-2 FROM A C5 CUT CONTAINING PENTENE-2 AND PENTENE-1 BY SELECTIVE OLIGOMERIZATION OF PENTENE-1
    US9434891B2 (en) 2012-11-12 2016-09-06 Uop Llc Apparatus for recovering oligomerate
    US9644159B2 (en) 2012-11-12 2017-05-09 Uop Llc Composition of oligomerate
    US9567267B2 (en) 2012-11-12 2017-02-14 Uop Llc Process for oligomerizing light olefins including pentenes
    US9834492B2 (en) 2012-11-12 2017-12-05 Uop Llc Process for fluid catalytic cracking oligomerate
    US9522375B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for fluid catalytic cracking oligomerate
    US9441173B2 (en) 2012-11-12 2016-09-13 Uop Llc Process for making diesel by oligomerization
    US9914673B2 (en) 2012-11-12 2018-03-13 Uop Llc Process for oligomerizing light olefins
    US9278893B2 (en) 2012-11-12 2016-03-08 Uop Llc Process for making gasoline by oligomerization
    US9522373B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for oligomerizing light olefins
    US9663415B2 (en) 2012-11-12 2017-05-30 Uop Llc Process for making diesel by oligomerization of gasoline
    US10508064B2 (en) 2012-11-12 2019-12-17 Uop Llc Process for oligomerizing gasoline without further upgrading
    PT107381B (en) 2013-12-23 2018-07-04 Inst Superior Tecnico CATALYTIC OLIGOMERIZATION PROCESS USING A CATALYTIC REACTOR FOR C4-C7 OLEPHIN OLIGOMERIZATION
    US10378427B2 (en) 2017-03-31 2019-08-13 Saudi Arabian Oil Company Nitrogen enriched air supply for gasoline compression ignition combustion
    US10508017B2 (en) 2017-10-13 2019-12-17 Saudi Arabian Oil Company Point-of-sale octane/cetane-on-demand systems for automotive engines
    US10436126B2 (en) 2018-01-31 2019-10-08 Saudi Arabian Oil Company Adsorption-based fuel systems for onboard cetane on-demand and octane on-demand
    US10378462B1 (en) 2018-01-31 2019-08-13 Saudi Arabian Oil Company Heat exchanger configuration for adsorption-based onboard octane on-demand and cetane on-demand
    US10422288B1 (en) 2018-03-29 2019-09-24 Saudi Arabian Oil Company Adsorbent circulation for onboard octane on-demand and cetane on-demand
    US10408139B1 (en) 2018-03-29 2019-09-10 Saudi Arabian Oil Company Solvent-based adsorbent regeneration for onboard octane on-demand and cetane on-demand

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3030998A1 (en) * 1980-08-16 1982-04-01 Metallgesellschaft Ag, 6000 Frankfurt Increasing yield of diesel fuel from Fischer-Tropsch process - by hydrocracking and oligomerising prim. fractions
    US4456779A (en) * 1983-04-26 1984-06-26 Mobil Oil Corporation Catalytic conversion of olefins to higher hydrocarbons
    US20030171632A1 (en) * 2000-07-10 2003-09-11 Du Toit Francois Benjamin Process and apparatus for the production of diesel fuels by oligomerisation of olefinic feed streams
    US20040033370A1 (en) * 2002-06-03 2004-02-19 Institut Francais Du Petrole Thin zeolite membrane, its preparation and its use in separation

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4677237A (en) * 1984-11-29 1987-06-30 Uop Inc. Dehydrogenation catalyst compositions
    JPH01259089A (en) * 1988-03-04 1989-10-16 Res Assoc Util Of Light Oil Treatment of light fraction of thermally cracked heavy oil
    CN1042937A (en) * 1989-04-03 1990-06-13 吴兆平 The method and apparatus of oil products refined from residuum
    ATE155706T1 (en) * 1992-03-27 1997-08-15 Stichting Energie MEMBRANE FOR THE SEPARATION OF SMALL MOLECULES AND METHOD FOR THE PRODUCTION THEREOF
    US6043177A (en) * 1997-01-21 2000-03-28 University Technology Corporation Modification of zeolite or molecular sieve membranes using atomic layer controlled chemical vapor deposition
    JP2002348579A (en) * 2001-05-23 2002-12-04 Nard Inst Ltd Method for hydrocarbon mixture separation using zeolite-based separation membrane and method for obtaining separated hydrocarbon by separation
    FR2840236B1 (en) * 2002-06-03 2005-02-04 Inst Francais Du Petrole ZEOLITHIC MEMBRANE OF LOW THICKNESS, ITS PREPARATION AND USE IN SEPARATION
    CN1209441C (en) * 2002-11-01 2005-07-06 石油大学(北京) Separation method of catalytic gasoline quality improved oil and gas and its installation
    FR2871167B1 (en) * 2004-06-04 2006-08-04 Inst Francais Du Petrole METHOD FOR IMPROVING ESSENTIAL CUPS AND GAS PROCESSING

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3030998A1 (en) * 1980-08-16 1982-04-01 Metallgesellschaft Ag, 6000 Frankfurt Increasing yield of diesel fuel from Fischer-Tropsch process - by hydrocracking and oligomerising prim. fractions
    US4456779A (en) * 1983-04-26 1984-06-26 Mobil Oil Corporation Catalytic conversion of olefins to higher hydrocarbons
    US20030171632A1 (en) * 2000-07-10 2003-09-11 Du Toit Francois Benjamin Process and apparatus for the production of diesel fuels by oligomerisation of olefinic feed streams
    US20040033370A1 (en) * 2002-06-03 2004-02-19 Institut Francais Du Petrole Thin zeolite membrane, its preparation and its use in separation

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2012076758A3 (en) * 2010-12-10 2012-10-04 Neste Oil Oyj A method for production of middle distillate components from gasoline components by oligomerization of olefins

    Also Published As

    Publication number Publication date
    DE602005010937D1 (en) 2008-12-24
    FR2871168A1 (en) 2005-12-09
    EP1602705B1 (en) 2008-11-12
    JP2005344119A (en) 2005-12-15
    FR2871168B1 (en) 2006-08-04
    US7705193B2 (en) 2010-04-27
    CN1706919B (en) 2011-06-08
    JP4860188B2 (en) 2012-01-25
    CN1706919A (en) 2005-12-14
    US20060009670A1 (en) 2006-01-12

    Similar Documents

    Publication Publication Date Title
    EP1602705B1 (en) Process for upgrading a gasoline fraction and transforming in gasoils with additional treatment for increasing the efficiency of the gasoil fraction
    EP1602637B1 (en) Process for upgrading naphtha fractions and conversion to gasoils.
    EP1487768B1 (en) Multi-step method of converting a charge containing olefins with four, five or more carbon atoms in order to produce propylene
    EP1777284B1 (en) Process for the direct conversion of a cut containing C4 and/or C5 for the production of propylene and co-production of a high-octane number desulfurised gasoline
    WO2006067305A1 (en) Method for direct conversion of a feedstock comprising olefins with four and/or five carbon atoms, for producing propylene with co-production of gasoline
    EP2321385A1 (en) Method of converting a heavy charge into petrol and propylene, having a variable-yield structure
    EP2636661B1 (en) Method for converting a heavy load using a catalytic cracking unit and a step for selective hydrogenation of gasoline from catalytic cracking
    EP1406989B1 (en) Method for production of medium distillates by hydroisomerisation and hydrocracking of a heavy fraction from the residue obtained by the fischer-tropsch process
    EP1088879A1 (en) Process for the production of gasolines with improved octane number
    FR2968010A1 (en) METHOD FOR CONVERTING A HEAVY LOAD TO MEDIUM DISTILLATE
    FR2862311A1 (en) Production of high-octane gasoline by paraffin isomerization comprises separating isopentane and dibranched six carbon paraffins from n-pentane in membrane separation unit
    WO2009004179A2 (en) Method for producing middle distillates by hydroisomerisation and hydrocracking of a heavy fraction from a fischer-tropsch effluent
    EP1417283B1 (en) Method for the isomerisation of a c5-c8 fraction involving two parallel reactors
    EP1433835B1 (en) Process for the transformation of hydrocarbons into a fraction having an improved octane number and a fraction having a high cetane number
    CA2139286A1 (en) Process for reducing benzene content of gasoline
    EP3164467B1 (en) Process for dearomatization of petroleum cuts
    FR2520356A1 (en) Methyl tert.-butyl ether prodn. from mixed butene feed - by reacting isobutene with methanol and isomerising n-butene(s)
    EP1396532B1 (en) Process for upgrading of a hydrocarbon feedstock and reducing the vapour pressure of said charge
    WO2012153011A2 (en) Method for the production of diesel or kerosene cuts from an olefin feed mainly having between 4 and 6 carbon atoms
    FR2705684A1 (en) Fuel obtained by a process comprising the etherification of a cut of hydrocarbons containing olefins having 5 to 8 carbon atoms.
    FR3084084A1 (en) PROCESS FOR PRODUCING OLEFINS AND MEDIUM DISTILLATES FROM A HYDROCARBON EFFLUENT FROM FISCHER-TROPSCH SYNTHESIS
    FR2857370A1 (en) Production of distillates and lubricants comprises hydrocracking and fractionation with elimination of aromatics

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL BA HR LV MK YU

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: MORIN, STEPHANE

    Inventor name: METHIVIER, ALAIN

    Inventor name: COUPARD, VINCENT

    Inventor name: BAUDOT, ARNAUD

    Inventor name: BRIOT, PATRICK

    17P Request for examination filed

    Effective date: 20060607

    AKX Designation fees paid

    Designated state(s): BE DE GB NL

    17Q First examination report despatched

    Effective date: 20070314

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE GB NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 602005010937

    Country of ref document: DE

    Date of ref document: 20081224

    Kind code of ref document: P

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20090813

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 602005010937

    Country of ref document: DE

    Owner name: IFP ENERGIES NOUVELLES, FR

    Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR

    Effective date: 20110331

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20180521

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20180516

    Year of fee payment: 14

    Ref country code: NL

    Payment date: 20180517

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20180518

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 602005010937

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20190601

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20190524

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MM

    Effective date: 20190531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20191203

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190601

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190524

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190531