EP1673251A1 - Verfahren zur regelung des ladezustands eines energiespeichers bei einem fahrzeug mit hybridantrieb - Google Patents

Verfahren zur regelung des ladezustands eines energiespeichers bei einem fahrzeug mit hybridantrieb

Info

Publication number
EP1673251A1
EP1673251A1 EP04762605A EP04762605A EP1673251A1 EP 1673251 A1 EP1673251 A1 EP 1673251A1 EP 04762605 A EP04762605 A EP 04762605A EP 04762605 A EP04762605 A EP 04762605A EP 1673251 A1 EP1673251 A1 EP 1673251A1
Authority
EP
European Patent Office
Prior art keywords
charge
vehicle
state
energy store
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP04762605A
Other languages
English (en)
French (fr)
Inventor
Jochen Fassnacht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1673251A1 publication Critical patent/EP1673251A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a method for regulating the state of charge of an energy store for storing electrical energy in a vehicle with a hybrid drive, in particular a motor vehicle, and to such a vehicle having the features specified in the preamble of claims 1 and 8, respectively.
  • motor vehicles with hybrid drive have at least one electric machine that can be coupled to the drive train of the motor vehicle.
  • this electric machine supplies electrical energy which is stored in an energy store formed by the vehicle battery until it is delivered to a consumer of the motor vehicle.
  • the electric machine alone or together with the internal combustion engine, provides for the propulsion of the motor vehicle, and in the latter case it serves to absorb the fluctuations in the output power of the drive train that occur in real driving operation, so that the internal combustion engine is always in a consumption-optimized manner whenever possible Operating area is kept around the Increase the efficiency of the drive and reduce the environmental impact of pollutants from the internal combustion engine.
  • the state of charge of the vehicle battery is continuously monitored and generally kept at a predetermined constant value. If the state of charge drops below this value, a charge controller of the battery requests electrical energy from the electric machine, which then goes into generator mode in order to recharge the battery.
  • this charging of the battery is unnecessary if the motor vehicle is braked shortly thereafter and considerable amounts of kinetic energy of the motor vehicle are converted into electrical energy by the electric machine and fed into the battery. When the vehicle is braked, the entire kinetic energy of the motor vehicle cannot usually be recovered, but usually a considerable proportion.
  • the method according to the invention with the features mentioned in claim 1 and the vehicle according to the invention with the features mentioned in claim 8 offer the advantage that the kinetic energy of the vehicle can be taken into account when charging the energy store in order to charge the energy store by converting a battery To avoid part of the drive power of the internal combustion engine if it is to be expected or there is a likelihood that soon afterwards a not unreliable considerable amount of electrical energy will be fed into the energy storage.
  • the method for charge control according to the invention can be used in particular in motor vehicles with hybrid drive, the energy storage of which can be operated with a variable state of charge, such as the newly developed NiMH battery.
  • the amount of energy stored in the energy store in these motor vehicles can be kept variable or optimized according to the driving situation, energy being saved by a suitable setpoint value setting and thus the fuel consumption being reduced and the environmental impact being reduced.
  • the charging of the energy store is delayed with increasing vehicle speed, preferably by lowering a desired value of the state of charge with increasing vehicle speed, so that the actual value of the state of charge due to energy withdrawals from the energy store is only too low - falls below the setpoint at a later point in time.
  • a further preferred embodiment of the invention provides that the setpoint value of the state of charge is reduced as a function of the instantaneous driving speed by a value which is likely to be charged when the energy store is charged Decelerating the vehicle from this current speed to a standstill corresponds.
  • the setpoint is expediently specified by a characteristic curve which is dependent on the speed of travel of the vehicle, a relatively simple control being possible if the setpoint of the state of charge is reduced in proportion to the speed of travel of the motor vehicle.
  • the setpoint value of the state of charge can also be reduced in such a way, that it decreases disproportionately with increasing speed.
  • a further advantageous embodiment of the invention provides that the target value is not lowered if energy is generated for charging the energy store for other reasons, for example by recuperation of energy during a descent. In this case, it is advisable to store any excess energy that may be generated in the energy store, regardless of the speed of travel, in order to use it for charging it.
  • the speed-dependent setpoint of the state of charge can not only be used to regulate the charging of the energy store, but can also be integrated into an operating strategy for the internal combustion engine and the electric machine.
  • FIG. 1 shows a possible schematic diagram of components of a hybrid drive of a motor vehicle according to the invention
  • FIG. 2 shows a possible characteristic curve of the target value of the state of charge of a battery of the motor vehicle as a function of its driving speed
  • Figure 3 shows another possible characteristic of the target value of the state of charge of the motor vehicle battery.
  • the hybrid drive of a motor vehicle comprises an internal combustion engine 10 and an electric machine 12 in a known manner.
  • the internal combustion engine 10 is coupled via a clutch 14 and a transmission 16 to an output shaft 20 driving the drive wheels 18 of the motor vehicle.
  • the electric machine 12 is also coupled to the transmission 16, so that part of the mechanical energy required for propelling the motor vehicle can be supplied by the electric machine 12 in order to always keep the internal combustion engine 10 in an operating state that is optimal in terms of consumption.
  • the electric machine 12 also serves to generate electrical energy for supplying other consumers of the motor vehicle and can also be used as a starter for the internal combustion engine and / or as a sole drive for the motor vehicle at a relatively low speed. serve.
  • the motor vehicle further comprises a speedometer 22, which determines the current driving speed of the motor vehicle from the current speed of the drive wheels 18 or the output shaft 20 and forwards this to an on-board computer 24.
  • the electric machine 12 which is controlled by a control unit 26, is powered in its motor operation by a battery 28 of the motor vehicle serving as an energy store and recharges it in its generator operation when the current state of charge of the battery 28 falls below a predetermined setpoint.
  • the battery 28 is of a type that can be operated with a variable state of charge, such as a NiMH battery.
  • An inverter 30, which is arranged between the latter and the electric machine 12 and has a current regulator and the charge regulator in the control unit 26, which determines the current state of charge of the battery 28 and regulates it to the predetermined target value, is used to regulate the state of charge of the battery 28.
  • the electric machine 12 is driven in this operating state via the transmission 16 by the internal combustion engine 10 and converts part of the mechanical power generated by it into electrical energy, which is then fed into the battery 28.
  • the instantaneous driving speed of the motor vehicle by replacing a constant setpoint of the State of charge, a speed-dependent setpoint is used, which is reduced at least within certain limits with increasing driving speed.
  • the instantaneous kinetic energy of the motor vehicle can be taken into account, which is partly converted into electrical energy and can be used to charge the battery 28 when the motor vehicle is next braked. Since such a braking generally takes place within a period that is not too long, the speed-dependent lowering of the setpoint value of the state of charge can delay a complete charging of the battery 28 up to this point in time. Since the battery 28 is then fully charged with the aid of the kinetic energy recovered during braking instead of with the aid of part of the drive power of the internal combustion engine 10, energy and thus fuel can be saved and the pollution of the environment can be reduced.
  • the speed-dependent setpoint value of the state of charge is specified by the charge controller 26, which contains, for example, a microcomputer, of which the setpoint value is used using the instantaneous travel speed jst transmitted by the on-board computer 24, usually available in digital form on a vehicle bus, and one stored in the microcomputer the speed-dependent setpoint characteristic curve is calculated.
  • the charge controller 26 contains, for example, a microcomputer, of which the setpoint value is used using the instantaneous travel speed jst transmitted by the on-board computer 24, usually available in digital form on a vehicle bus, and one stored in the microcomputer the speed-dependent setpoint characteristic curve is calculated.
  • FIGS. 2 and 3 Two such setpoint characteristic curves which are dependent on the driving speed are shown by way of example in FIGS. 2 and 3. While in the characteristic curve shown in FIG. 2, the nominal value of the state of charge (SOC SO ⁇ ) versus the driving speed v in a predetermined speed range between standstill (vo) and an upper limit (vi) decreases linearly and is then kept constant in order not to fall below a lower limit of the state of charge SOCmin required by the battery 28 and for the cold start, it remains in the characteristic curve shown in FIG. 3 up to a predetermined minimum speed v m i n constant and then decreases up to the maximum travel speed v ma ⁇ with increasing incline, but remains above the limit SOC m j n .
  • SOC SO ⁇ state of charge
  • the difference between the respective speed-dependent setpoint SOC S0 n (v) and a constant conventional setpoint SOC SO ⁇ k shown in broken lines in the diagram corresponds to that portion of the kinetic energy which, when braking, from the current travel speed Vj S t can be recovered to a standstill and fed into the battery 28 in the form of electrical energy. If for some reason the battery 28 is not charged when the motor vehicle is braked, the charge is generally carried out immediately afterwards with the aid of the drive power of the internal combustion engine 10.
  • the state of charge control according to the invention is in particular at
  • Motor vehicles can be used, but can also be used in locomotives with hybrid drive.
  • the Methods according to the invention ' for all hybrid vehicle concepts for example also those which, in addition to the electric machine 12, comprise a further electric machine.
  • the method according to the invention can be used not only alone but also in combination with other methods for regulating the state of charge.

Abstract

Die Erfindung betrifft ein Verfahren zur Regelung des Ladezustands eines Energiespeichers (28) bei einem Fahrzeug mit Hybridantrieb, insbesondere einem Kraftfahrzeug, das einen Verbrennungsmotor (10) und mindestens eine Elektromaschine (12) umfasst, die mit einem Antriebsstrang des Fahrzeugs koppelbar oder gekoppelt sind. Es wird vorgeschlagen, dass ein Ladezustand (SOC) des Energiespeichers (28) von einem Laderegler (30) in Abhängigkeit von der Fahrtgeschwindigkeit (v) des Fahrzeugs geregelt wird.

Description

Verfahren zur Regelung des Ladezustands eines Energiespeichers bei einem Fahrzeug mit Hybridantrieb
Die Erfindung betrifft ein Verfahren zur Regelung des Ladezustands eines Energiespeichers zur Speicherung von elektrischer Energie in einem Fahrzeug mit einem Hybridantrieb, insbesondere einem Kraftfahrzeug, sowie ein solches Fahrzeug mit den im Oberbegriff der Ansprüche 1 bzw. 8 angegebenen Merkmalen.
Stand der Technik
Kraftfahrzeuge mit Hybridantrieb besitzen neben einem Verbren- nungsmotor mindestens eine mit dem Antriebsstrang des Kraftfahrzeugs koppelbare Elektromaschine. Im Generatorbetrieb liefert diese Elektromaschine elektrische Energie, die bis zur Abgabe an einen Verbraucher des Kraftfahrzeugs in einem von der Fahrzeugbatterie gebildeten Energiespeicher gespeichert wird. Im Motorbetrieb sorgt die Elektromaschine allein oder zusammen mit dem Verbrennungsmotor für den Vortrieb des Kraftfahrzeugs, wobei sie im zuletzt genannten Fall dazu dient, die im realen Fahrbetrieb auftretenden Schwankungen der Abtriebsleistung des Antriebsstrangs aufzufangen, so dass der Verbrennungsmotor nach Möglichkeit immer in ei- nem verbrauchsoptimalen Betriebsbereich gehalten wird, um den Wirkungsgrad des Antriebs zu erhöhen und die Umweltbelastung durch Schadstoffe des Verbrennungsmotors zu verringern. Um sicherzustellen, dass stets genügend elektrische Energie zur Versorgung der Elektromaschine und der anderen Verbraucher des Kraft- fahrzeugs zur Verfügung steht, wird der Ladezustand der Fahrzeugbatterie kontinuierlich überwacht und in der Regel auf einem vorgegebenen konstanten Wert gehalten. Bei einem Absinken des Ladezustands unter diesen Wert fordert ein Laderegler der Batterie elektrische Energie von der Elektromaschine an, die daraufhin in den Ge- neratorbetrieb übergeht, um die Batterie nachzuladen. Diese Aufladung der Batterie ist jedoch unnötig, wenn kurz danach das Kraftfahrzeug abgebremst und dabei beträchtliche Mengen an kinetischer Energie des Kraftfahrzeugs von der Elektromaschine in elektrische Energie umgesetzt und in die Batterie eingespeist werden. Beim Ab- bremsen des Fahrzeugs kann zwar zumeist nicht die gesamte kinetische Energie des Kraftfahrzeugs zurückgewonnen werden, jedoch in der Regel ein beträchtlicher Anteil.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren mit den im Anspruch 1 genannten Merkmalen und das erfindungsgemäße Fahrzeug mit den im Anspruch 8 genannten Merkmalen bieten demgegenüber den Vorteil, dass bei der Aufladung des Energiespeichers die kinetische Energie des Fahrzeugs berücksichtigt werden kann, um eine anstehende Aufladung des Energiespeichers durch Umwandlung eines Teils der Antriebsleistung des Verbrennungsmotors zu vermeiden, wenn zu erwarten ist oder die Wahrscheinlichkeit besteht, dass bald darauf infolge einer Abbremsung des Fahrzeugs ohnehin eine nicht unbe- trächtliche Menge elektrische Energie in den Energiespeicher eingespeist werden wird.
Das erfindungsgemäße Verfahren zur Laderegelung ist insbesondere bei Kraftfahrzeugen mit Hybridantrieb einsetzbar, deren Energiespeicher sich mit variablem Ladezustand betreiben lässt, wie beispielsweise die neu entwickelte NiMH-Batterie. Mit dem erfindungsgemäßen Verfahren kann bei diesen Kraftfahrzeugen die Menge der im Energiespeicher gespeicherten Energie variabel gehalten bzw. ent- sprechend der Fahrsituation optimiert werden, wobei durch eine geeignete Sollwertvorgabe Energie gespart und somit der Kraftstoffverbrauch gesenkt und die Umweltbelastung verringert werden kann.
In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass die Aufladung des Energiespeichers mit zunehmender Fahrtgeschwindigkeit des Fahrzeugs verzögert wird, vorzugsweise indem ein Sollwert des Ladezustands mit zunehmender Fahrtgeschwindigkeit des Fahrzeugs abgesenkt wird, so dass der Istwert des Ladezustands infolge von Energieentnahmen aus dem Energiespeicher erst zu ei- nem späteren Zeitpunkt unter den Sollwert absinkt.
Da beim Abbremsen des Fahrzeugs normalerweise nicht die gesamte kinetische Energie zurückgewonnen werden kann, sieht eine weitere bevorzugte Ausgestaltung der Erfindung vor, dass der Soll- wert des Ladezustands in Abhängigkeit von der momentanen Fahrtgeschwindigkeit um einen Wert abgesenkt wird, der einer voraussichtlichen Aufladung des Energiespeichers beim Abbremsen des Fahrzeugs von dieser momentanen Fahrtgeschwindigkeit bis zum Stillstand entspricht. Der Sollwert wird zweckmäßig durch eine von der Fahrtgeschwindigkeit des Fahrzeugs abhängige Kennlinie vorgegeben, wobei eine verhältnismäßig einfache Regelung möglich ist, wenn der Sollwert des Ladezustands proportional zur Fahrtgeschwindigkeit des Kraft- fahrzeugs abgesenkt wird. Da jedoch die kinetische Energie des Fahrzeugs mit dem Quadrat der Fahrtgeschwindigkeit zunimmt und somit beim Abbremsen um eine bestimmte Geschwindigkeitsdifferenz die zu erwartende Menge an elektrischer Energie mit der Fahrtgeschwindigkeit überproportional ansteigt, kann der Sollwert des La- dezustands aber auch in einer solchen Weise abgesenkt werden, dass er mit steigender Fahrtgeschwindigkeit überproportional abnimmt.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass der Sollwert nicht abgesenkt wird, wenn aus anderen Gründen Energie zum Aufladen des Energiespeichers erzeugt wird, beispielsweise durch Rekuperation von Energie bei einer Talfahrt. In diesem Fall ist es zweckmäßig, eventuell erzeugte Überschussenergie unabhängig von der Fahrtgeschwindigkeit im Energiespeicher zu speichern, um sie für dessen Aufladung zu nutzen.
Der geschwindigkeitsabhängige Sollwert des Ladezustands kann nicht nur zur Regelung der Aufladung des Energiespeichers verwendet werden, sondern kann darüber hinaus auch in eine Betriebsstra- tegie für den Verbrennungsmotor und die Elektromaschine eingebunden werden.
Zeichnungen Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Figur 1 ein mögliches schematisches Schaubild von Kompo- nenten eines Hybridantriebs eines erfindungsgemäßen Kraftfahrzeugs;
Figur 2 eine mögliche Kennlinie des Sollwerts des Ladezustands einer Batterie des Kraftfahrzeugs in Abhängig- keit von dessen Fahrtgeschwindigkeit;
Figur 3 eine weitere mögliche Kennlinie des Sollwerts des Ladezustands der Kraftfahrzeugbatterie.
Beschreibung des Ausführungsbeispiels
Der in Figur 1 schematisch dargestellte Hybridantrieb eines Kraftfahrzeugs umfasst in bekannter Weise einen Verbrennungsmotor 10 und eine Elektromaschine 12. Der Verbrennungsmotor 10 ist über eine Kupplung 14 und ein Getriebe 16 mit einer die Antriebsräder 18 des Kraftfahrzeugs treibenden Abtriebswelle 20 gekoppelt. Die Elektromaschine 12 ist ebenfalls mit dem Getriebe 16 gekoppelt, so dass ein Teil der für den Vortrieb des Kraftfahrzeugs erforderlichen mechanischen Energie von der Elektromaschine 12 geliefert werden kann, um den Verbrennungsmotor 10 stets in einem verbrauchsoptimalen Betriebszustand zu halten. Die Elektromaschine 12 dient weiter zur Erzeugung von elektrischer Energie zur Versorgung von anderen Verbrauchern des Kraftfahrzeugs und kann darüber hinaus auch noch als Starter für den Verbrennungsmotor und/oder als allei- niger Antrieb für das Kraftfahrzeug bei relativ niedriger Geschwindig- keit dienen. In bekannter Weise umfasst das Kraftfahrzeug weiter einen Geschwindigkeitsmesser 22, der aus der momentanen Drehzahl der Antriebsräder 18 bzw. der Abtriebswelle 20 die momentane Fahrtgeschwindigkeit des Kraftfahrzeugs bestimmt und diese an ei- nen Bordcomputer 24 weiterleitet.
Die von einem Steuergerät 26 geregelte Elektromaschine 12 wird in ihrem Motorbetrieb von einer als Energiespeicher dienenden Batterie 28 des Kraftfahrzeugs gespeist und lädt diese in ihrem Generatorbe- trieb wieder auf, wenn der momentane Ladezustand der Batterie 28 einen vorgegebenen Sollwert unterschreitet. Die Batterie 28 ist von einer Art, die sich mit variablem Ladezustand betreiben lässt, wie zum Beispiel eine NiMH-Batterie. Zur Regelung des Ladezustands der Batterie 28 dient ein zwischen der letzteren und der Elektroma- schine 12 angeordneter Wechselrichter 30 mit Stromregelung und die Laderegelung im Steuergerät 26, die den momentanen Ladezustand der Batterie 28 bestimmt und auf den vorgegebenen Sollwert regelt.
Wenn das Kraftfahrzeug nicht gerade abgebremst wird, wird die E- lektromaschine 12 in diesem Betriebszustand über das Getriebe 16 vom Verbrennungsmotor 10 angetrieben und setzt einen Teil der von diesem erzeugten mechanischen Leistung in elektrische Energie um, die dann in die Batterie 28 eingespeist wird. Um den dadurch verur- sachten Kraftstoffverbrauch so gering wie möglich zu halten, wird bei der Regelung der Aufladung der Batterie 28 nicht nur in konventioneller Weise deren momentaner Ladezustand berücksichtigt, sondern darüber hinaus auch die momentane Fahrtgeschwindigkeit des Kraftfahrzeugs, indem an Stelle eines konstanten Sollwerts des La- dezustands ein geschwindigkeitsabhängiger Sollwert verwendet wird, der zumindest innerhalb gewisser Grenzen mit zunehmender Fahrtgeschwindigkeit erniedrigt wird.
Durch diese Art der Regelung kann die momentane kinetische Ener- gie des Kraftfahrzeugs berücksichtigt werden, die zum Teil in elektrische Energie umgesetzt wird und zur Aufladung der Batterie 28 ausgenutzt werden kann, wenn das Kraftfahrzeug das nächste Mal abgebremst wird. Da eine solche Abbremsung im Allgemeinen innerhalb einer nicht zu langen Zeitspanne erfolgt, kann durch die ge- schwindigkeitsabhängige Absenkung des Sollwerts des Ladezustands eine vollständige Aufladung der Batterie 28 bis zu diesem Zeitpunkt verzögert werden. Da die vollständige Aufladung der Batterie 28 dann mit Hilfe der beim Bremsen zurückgewonnenen kinetischen Energie anstatt mit Hilfe eines Teils der Antriebsleistung des Verbrennungsmotors 10 erfolgt, kann Energie und damit Kraftstoff eingespart und die Belastung der Umwelt verringert werden.
Der geschwindigkeitsabhängige Sollwert des Ladezustands wird vom Laderegler 26 vorgegeben, der zum Beispiel einen Mikrocomputer enthält, von dem der Sollwert unter Verwendung der vom Bordcomputer 24 übermittelten, gewöhnlich in digitaler Form auf einem Fahrzeugbus zur Verfügung stehenden momentanen Fahrtgeschwindigkeit jst und einer im Mikrocomputer gespeicherten, von der Fahrtgeschwindigkeit abhängigen Sollwert-Kennlinie berechnet wird.
Zwei derartige, von der Fahrtgeschwindigkeit abhängige Sollwert- Kennlinien sind in Figur 2 und 3 beispielhaft dargestellt. Während bei der in Figur 2 dargestellten Kennlinie der Sollwert des Ladezustands (SOCSOιι) über der Fahrtgeschwindigkeit v in einem vorgegebenen Geschwindigkeitsbereich zwischen Stillstand (vo) und einer Ober- grenze (vi) linear absinkt und dann konstant gehalten wird, um eine durch die Batterie 28 und für den Kaltstart erforderliche Untergrenze des Ladezustands SOCmin nicht zu unterschreiten, bleibt er bei der Figur 3 dargestellten Kennlinie bis zu einer vorgegebenen Mindest- geschwind igkeit vmin konstant und sinkt dann bis zur maximalen Fahrtgeschwindigkeit vmaχ mit zunehmender Steigung ab, bleibt dabei jedoch oberhalb der Grenze SOCmjn.
Bei beiden Kennlinien entspricht die Differenz zwischen dem jeweili- gen geschwindigkeitsabhängigen Sollwert SOCS0n(v) und einem in unterbrochenen Linien in das Diagramm eingezeichneten konstanten konventionellen Sollwert SOCSOιιk demjenigen Anteil der kinetischen Energie, der beim Abbremsen von der momentanen Fahrtgeschwindigkeit VjSt bis zum Stillstand zurückgewonnen und in Form von elekt- rischer Energie in die Batterie 28 eingespeist werden kann. Falls die Aufladung der Batterie 28 beim Abbremsen des Kraftfahrzeugs aus irgendwelchen Gründen unterbleibt, erfolgt die Aufladung in der Regel unmittelbar im Anschluss daran mit Hilfe der Antriebsleistung des Verbrennungsmotors 10.
Mit dem beschriebenen Verfahren kann eine grobe Vorhersage des zukünftigen Energieflusses vorgenommen und somit in vielen Fällen eine unnötige Aufladung der Batterie 28 vermieden werden. Jedoch sollte aus dem zuletzt genannten Grund bei jedem Energieüberan- gebot nicht auf eine Aufladung der Batterie 28 verzichtet werden, auch wenn SOC > S0CS0n.
Die erfindungsgemäße Ladezustandregelung ist insbesondere bei
Kraftfahrzeugen einsetzbar, kann jedoch auch bei Lokomotiven mit Hybridantrieb eingesetzt werden. Grundsätzlich eignet sich das er- findungsgemäße Verfahren' für alle Hybridfahrzeugkonzepte, zum Beispiel auch solche, die neben der Elektromaschine 12 eine weitere Elektromaschine umfassen. Darüber hinaus kann das erfindungsgemäße Verfahren nicht nur allein sondern auch in Kombination mit anderen Verfahren zur Ladezustandsregelung eingesetzt werden.

Claims

Patentansprüche
1. Verfahren zur Regelung des Ladezustands eines Energiespeichers zur Speicherung von elektrischer Energie in einem Fahrzeug mit einem Hybridantrieb, insbesondere einem Kraftfahrzeug, umfassend einen Verbrennungsmotor und mindestens eine Elektromaschi- ne, die mit einem Antriebsstrang des Fahrzeugs koppelbar oder gekoppelt sind, dadurch gekennzeichnet, dass ein Ladezustand (SOC) des Energiespeichers (28) in Abhängigkeit von der Fahrtgeschwindigkeit (v) des Fahrzeugs geregelt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein Sollwert des Ladezustands (SOCS0n) mit zunehmender Fahrtgeschwindigkeit (v) abgesenkt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich- net, dass der Sollwert des Ladezustands (SOCSOιι) um einen Wert abgesenkt wird, der einer voraussichtlichen Aufladung des Energiespeichers (28) beim Abbremsen des Fahrzeugs von seiner momentanen Fahrtgeschwindigkeit (VjSt) bis zum Stillstand entspricht.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sollwert des Ladezustands (SOCsoii) durch eine von der Fahrtgeschwindigkeit (v) abhängige Kennlinie vorgegeben wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sollwert des Ladezustands (SOC- soii) um einen zur Fahrtgeschwindigkeit (v) des Fahrzeugs proportionalen Wert abgesenkt wird.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Sollwert des Ladezustands (SOCSOιι) um einen zur Fahrtgeschwindigkeit (v) des Fahrzeugs überproportionalen Wert abgesenkt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sollwert des Ladezustands (SOC- son) eine Eingangsgröße einer Strategie zum Betrieb des Verbrennungsmotors (10) und der Elektromaschine (12) bildet.
8. Fahrzeug mit einem Hybridantrieb, insbesondere Kraftfahrzeug, umfassend einen Verbrennungsmotor und mindestens eine Elektromaschine, die mit einem Antriebsstrang des Fahrzeugs koppelbar oder gekoppelt sind, sowie einen Energiespeicher zur Spei- cherung von elektrischer Energie und einen Laderegler zur Reglung eines Ladezustands des Energiespeichers, dadurch gekennzeichnet, dass der Laderegler (30) den Ladezustand (SOC) des Energiespeichers (28) in Abhängigkeit von der Fahrtgeschwindigkeit (v) des Fahrzeugs regelt.
9. Fahrzeug nach Anspruch 8, dadurch gekennzeichnet, dass der Energiespeicher (28) eine Batterie oder ein Kondensator ist und mit veränderlichem Ladezustand (SOC) betrieben werden kann.
10. Fahrzeug nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Energiespeicher (28) eine NiMH-Batterie ist.
11. Fahrzeug nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der Laderegler (26) mit einem Messwert der Fahrtgeschwindigkeit (v) des Fahrzeugs beaufschlagbar ist.
EP04762605A 2003-10-06 2004-08-05 Verfahren zur regelung des ladezustands eines energiespeichers bei einem fahrzeug mit hybridantrieb Ceased EP1673251A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10346213A DE10346213A1 (de) 2003-10-06 2003-10-06 Verfahren zur Regelung des Ladezustands eines Energiespeichers bei einem Fahrzeug mit Hybridantrieb
PCT/DE2004/001760 WO2005044610A1 (de) 2003-10-06 2004-08-05 Verfahren zur regelung des ladezustands eines energiespeichers bei einem fahrzeug mit hybridantrieb

Publications (1)

Publication Number Publication Date
EP1673251A1 true EP1673251A1 (de) 2006-06-28

Family

ID=34353327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04762605A Ceased EP1673251A1 (de) 2003-10-06 2004-08-05 Verfahren zur regelung des ladezustands eines energiespeichers bei einem fahrzeug mit hybridantrieb

Country Status (5)

Country Link
US (1) US7934573B2 (de)
EP (1) EP1673251A1 (de)
JP (1) JP2007510567A (de)
DE (1) DE10346213A1 (de)
WO (1) WO2005044610A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005042654A1 (de) * 2005-09-08 2007-03-15 Robert Bosch Gmbh Energieversorgung eines Hybridfahrzeugs
DE102007020196A1 (de) * 2007-04-28 2008-10-30 Voith Patent Gmbh Verfahren zur Regelung des Ladezustandes eines Energiespeicher für ein Fahrzeug mit Hybridantrieb
US10233949B2 (en) 2011-03-21 2019-03-19 Dana Belgium N.V. Accumulator assisted hydrostatic driveline and optimization method thereof
KR20140031268A (ko) * 2011-04-25 2014-03-12 하이 가스 마일리지, 엘엘씨 복수의 에너지 부속시스템을 구비하는 하이브리드 차량
DE102012208462B4 (de) 2012-05-21 2017-03-02 Robert Bosch Gmbh Vorrichtung zum Betreiben eines Antriebsstrangs
DE102012208461A1 (de) 2012-05-21 2013-11-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP2014158414A (ja) 2013-01-21 2014-08-28 Semiconductor Energy Lab Co Ltd 蓄電体を有する車両
KR101481283B1 (ko) 2013-06-28 2015-01-09 현대자동차주식회사 하이브리드차량의 운전제어방법
CN105684298A (zh) * 2013-10-02 2016-06-15 三菱电机株式会社 交流电动机驱动系统
US9676289B2 (en) 2013-10-11 2017-06-13 Ford Global Technologies, Llc System and method for adjusting battery pack state of charge thresholds
US9340120B2 (en) 2013-10-11 2016-05-17 Ford Global Technologies, Llc System and method for adjusting battery pack state of charge limits
US9358969B2 (en) * 2013-11-11 2016-06-07 Ford Global Technologies, Llc Load-based vehicle operating control
US9827980B2 (en) * 2013-11-11 2017-11-28 Ford Global Technologies, Llc Load-based vehicle operating control
DE102014203004A1 (de) * 2014-02-19 2015-08-20 Bayerische Motoren Werke Aktiengesellschaft Antriebsstrang für ein Fahrzeug mit einem Schwungmassenspeicher und Ladestrategie des Schwungmassenspeichers
WO2015198047A2 (en) * 2014-06-24 2015-12-30 Flybrid Automotive Limited Control of kinetic energy recovery systems
DE102015226614A1 (de) * 2015-12-23 2017-06-29 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftfahrzeugs, Steuerungseinheit für ein Antriebssystem und ein Antriebssystem
WO2017130080A1 (ja) 2016-01-29 2017-08-03 株式会社半導体エネルギー研究所 電力制御システム
JP6583294B2 (ja) * 2017-01-17 2019-10-02 トヨタ自動車株式会社 電動車両
DE102017204466A1 (de) * 2017-03-17 2018-09-20 Robert Bosch Gmbh Verfahren zum Betreiben eines Fahrzeugs, Steuergerät und Fahrzeug
DE102018217454A1 (de) * 2018-10-11 2020-04-16 Continental Automotive Gmbh Verfahren und Backendvorrichtung zur prädiktiven Ladesteuerung für einen elektrischen Energiespeicher eines Kraftfahrzeugs
DE102018131784A1 (de) 2018-12-11 2020-06-18 Bayerische Motoren Werke Aktiengesellschaft Topologie abhängige Ladestrategie für Hybrid- und Elektrofahrzeuge

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313080A (en) * 1978-05-22 1982-01-26 Battery Development Corporation Method of charge control for vehicle hybrid drive batteries
US5602459A (en) * 1988-07-13 1997-02-11 Electronic Development Inc. Fuel saving multi-battery charging system and method
US5397991A (en) * 1988-07-13 1995-03-14 Electronic Development Inc. Multi-battery charging system for reduced fuel consumption and emissions in automotive vehicles
US5301764A (en) * 1992-04-13 1994-04-12 Gardner Conrad O Hybrid motor vehicle having an electric motor and utilizing an internal combustion engine for fast charge during cruise mode off condition
DE4430670B4 (de) * 1993-09-02 2006-02-23 Denso Corp., Kariya Steuervorrichtung für einen elektrischen Generator/Motor für einen Verbrennungsmotor
JP3094745B2 (ja) * 1993-09-24 2000-10-03 トヨタ自動車株式会社 ハイブリッド車の発電制御装置
JP3515619B2 (ja) * 1994-11-30 2004-04-05 株式会社日立製作所 電気車の駆動装置及び駆動制御方法
JPH08289407A (ja) * 1995-02-13 1996-11-01 Nippon Soken Inc ハイブリッド車の発電制御装置
CA2195434C (en) * 1995-05-19 1999-04-06 Toyota Jidosha Kabushiki Kaisha Power transmission apparatus, four-wheel drive vehicle with power transmission apparatus incorporated therein, method of transmitting power, and method of four-wheel driving
JP3099699B2 (ja) * 1995-05-19 2000-10-16 トヨタ自動車株式会社 動力伝達装置及びその制御方法
JPH08331772A (ja) 1995-05-30 1996-12-13 Toyota Motor Corp 車載誘導機の制御装置
JP3414059B2 (ja) * 1995-07-19 2003-06-09 アイシン・エィ・ダブリュ株式会社 車輌用駆動装置
CA2182630C (en) * 1996-08-02 2003-02-11 Piotr Drozdz A control system for a hybrid vehicle
JP3690090B2 (ja) * 1997-11-05 2005-08-31 日産自動車株式会社 速度演算装置及びフード跳ね上げシステム
US5929595A (en) * 1997-11-21 1999-07-27 Lockheed Martin Corporation Hybrid electric vehicle with traction motor drive allocated between battery and auxiliary source depending upon battery charge state
US6116368A (en) * 1997-11-21 2000-09-12 Lockheed Martin Corp. Electric vehicle with battery regeneration dependent on battery charge state
JPH11164402A (ja) * 1997-11-28 1999-06-18 Aisin Aw Co Ltd ハイブリッド車両の制御装置及び制御方法
US6091228A (en) * 1998-04-29 2000-07-18 Lockheed Martin Corp. Control system for, in the presence of a varying system load, establishing generator current to maintain a particular battery charge state
DE19847648A1 (de) * 1998-10-15 2000-04-20 Vb Autobatterie Gmbh Verfahren zur Bestimmung des Ladezustandes und der Hochstrombelastbarkeit von Batterien
JP2000324857A (ja) * 1999-03-11 2000-11-24 Toyota Motor Corp 多種電源装置、この電源装置を備えた機器およびモータ駆動装置並びにハイブリッド車両
US6672415B1 (en) * 1999-05-26 2004-01-06 Toyota Jidosha Kabushiki Kaisha Moving object with fuel cells incorporated therein and method of controlling the same
JP3317441B2 (ja) * 1999-07-19 2002-08-26 本田技研工業株式会社 車両用フード装置
JP3312692B2 (ja) * 1999-07-09 2002-08-12 本田技研工業株式会社 車両用フード装置
US6293362B1 (en) * 1999-07-09 2001-09-25 Honda Giken Kogyo Kabushiki Kaisha Vehicle hood apparatus
DE10045698B4 (de) * 1999-09-16 2005-07-07 Honda Giken Kogyo K.K. Fahrzeughauben-Betriebssystem
CA2320003C (en) * 1999-09-22 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for hybrid vehicles
JP3607139B2 (ja) 1999-10-29 2005-01-05 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3736268B2 (ja) * 2000-03-21 2006-01-18 日産自動車株式会社 ハイブリッド車両の制御装置
JP2001268719A (ja) * 2000-03-23 2001-09-28 Toyota Motor Corp ハイブリッド車両のバッテリ充電制御装置
US6510914B2 (en) * 2000-07-26 2003-01-28 Honda Giken Kogyo Kabushiki Kaisha Obstruction inference apparatus for vehicle
JP3795313B2 (ja) * 2000-09-19 2006-07-12 本田技研工業株式会社 車両用フード装置
DE10100880B4 (de) * 2001-01-11 2006-05-11 Robert Bosch Gmbh Verfahren zur Aufprallerkennung bei einem Kraftfahrzeug
GB2373218B (en) * 2001-03-13 2004-12-15 Autoliv Dev Improvements in or relating to a safety arrangement
US6487477B1 (en) * 2001-05-09 2002-11-26 Ford Global Technologies, Inc. Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management
JP2002354612A (ja) * 2001-05-24 2002-12-06 Isuzu Motors Ltd ハイブリッド自動車の運行システム
JP4158363B2 (ja) * 2001-08-01 2008-10-01 アイシン・エィ・ダブリュ株式会社 ハイブリッド型車両駆動制御装置
US6639385B2 (en) * 2001-08-07 2003-10-28 General Motors Corporation State of charge method and apparatus
JP4147756B2 (ja) * 2001-08-10 2008-09-10 アイシン・エィ・ダブリュ株式会社 電動車両駆動制御装置、電動車両駆動制御方法及びプログラム
JP4685289B2 (ja) * 2001-09-03 2011-05-18 本田技研工業株式会社 衝突判定システム
JP3933427B2 (ja) * 2001-09-20 2007-06-20 本田技研工業株式会社 車両用フード制御装置
JP3827980B2 (ja) * 2001-09-21 2006-09-27 本田技研工業株式会社 ハイブリッド車両の制御装置
EP1519857B1 (de) * 2002-07-10 2006-08-30 Takata-Petri AG Anordnung zum auslenken eines teiles der aussenhaut eines kraftfahrzeuges
US6744354B2 (en) * 2002-09-23 2004-06-01 Ford Global Technologies, Llc System for sensing whether an object struck in a collision is a pedestrian
JP3959718B2 (ja) * 2002-12-03 2007-08-15 株式会社デンソー 車両用歩行者衝突検出装置
US7324902B2 (en) * 2003-02-18 2008-01-29 General Motors Corporation Method and apparatus for generalized recursive least-squares process for battery state of charge and state of health
JP2004276885A (ja) * 2003-03-19 2004-10-07 Denso Corp 車両の歩行者保護システム
JP3943056B2 (ja) * 2003-07-18 2007-07-11 本田技研工業株式会社 ハイブリット車両の制御装置
US7303040B2 (en) * 2004-05-18 2007-12-04 Autolive Asp, Inc. Active vehicle hood system and method
AU2005273975A1 (en) * 2004-08-09 2006-02-23 Railpower Technologies Corp. Regenerative braking methods for a hybrid locomotive
JP4376743B2 (ja) * 2004-09-21 2009-12-02 タカタ株式会社 衝突物判別装置、保護装置
JP2006142876A (ja) * 2004-11-16 2006-06-08 Denso Corp 衝突対象物判別装置および衝突対象物判別方法
JP2006264416A (ja) * 2005-03-22 2006-10-05 Takata Corp 対象物検知システム、保護システム、車両
DE102005016300A1 (de) * 2005-04-08 2006-10-12 Proton Motor Fuel Cell Gmbh Antriebssystem und Verfahren zum Betrieb eines Antriebssystems für ein elektrisch betriebenes Fahrzeug
US7421323B2 (en) * 2005-05-03 2008-09-02 International Truck Intellectual Property Company, Llc Automated vehicle battery protection with programmable load shedding and engine speed control
US7260461B2 (en) * 2005-10-31 2007-08-21 Ford Global Technologies, Llc Method for operating a pre-crash sensing system with protruding contact sensor
EP1842745B1 (de) * 2006-04-04 2011-08-17 Ford Global Technologies, LLC Haubeanschlag für Fahrzeuge
US7597166B2 (en) * 2006-04-20 2009-10-06 Autoliv Asp, Inc. Hinge device for pedestrian protection system
US7413049B2 (en) * 2006-10-18 2008-08-19 Antolin Asp, Inc. Pedestrian protection hood lifting systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005044610A1 *

Also Published As

Publication number Publication date
US7934573B2 (en) 2011-05-03
US20070295543A1 (en) 2007-12-27
JP2007510567A (ja) 2007-04-26
DE10346213A1 (de) 2005-04-21
WO2005044610A1 (de) 2005-05-19

Similar Documents

Publication Publication Date Title
EP1673251A1 (de) Verfahren zur regelung des ladezustands eines energiespeichers bei einem fahrzeug mit hybridantrieb
DE69815471T2 (de) Elektrohybridfahrzeug mit verringerter Leistungszufuhr zur Batterie während einer Nutzbremsung
DE60201615T2 (de) Fahrzeug mit Super-Kondensator zur Bremsenergie-Rückgewinnung
EP2620343B1 (de) Verfahren zum Betrieb einer Hybridantriebseinheit für ein Kraftfahrzeug sowie Hybridantriebseinheit
DE4324010C2 (de) Verfahren zur Steuerung der Drehmomentabgabe eines ein Fahrzeug antreibenden Hybridantriebes
EP0830968A1 (de) Verfahren zum Betrieb eines nichtspurgebundenen Hybridfahrzeuges
EP1325542B1 (de) Verfahren zur regelung der generatorspannung in einem kraftfahrzeug
DE69719626T2 (de) Steuerungssystem für Hybridfahrzeug
WO2006053624A1 (de) Verfahren zur steuerung eines betriebs eines hybridkraftfahrzeugs sowie hybridfahrzeug
DE10236010A1 (de) Steuereinrichtung sowie Verfahren für ein Fahrzeug, welches mit einem Verbrennungsmotor ausgerüstet ist
DE102005044268A1 (de) Verfahren und Vorrichtung zur Steuerung oder Regelung des Ladezustands eines Energiespeichers oder des Energieflusses in einem Fahrzeug mit einem Hybridantrieb
WO2012146268A1 (de) Hybridantriebssteuervorrichtung
DE102006001201A1 (de) Verfahren zur Steuerung eines Batterieladungsvorgangs
DE60301978T2 (de) System und Verfahren zur Steuerung der Stromversorgung eines Hybrid-Fahrzeugs
DE102010005532B4 (de) Verfahren zur Ermittlung eines Soll-Getriebegangs für ein Hybridfahrzeug
EP2714482A1 (de) Hybridfahrzeug sowie verfahren zum betreiben einer einrichtung zum aufladen einer batterie in einem hybridfahrzeug
DE102014216335A1 (de) Fahrzeugsteuerungsgerät
DE102006036443A1 (de) Vorrichtung zum Steuern eines Hybridantriebs
EP2157313A2 (de) Vorrichtung und Verfahren zur Starterunterstützung in einem Kraftfahrzeug
DE102006008641A1 (de) Verfahren zum Betreiben eines Hybridfahrzeugs und Steuergerät zur Durchführung des Verfahrens
WO2004106104A1 (de) Kraftfahrzeug und elektronische steuereinrichtung dafür
DE10227530A1 (de) Kraftfahrzeug
DE102020210126A1 (de) Vorrichtung und verfahren zum steuern eines antreibens eines fahrzeugs mit elektrischem vierradantrieb
DE102015110688B9 (de) Hybridfahrzeug
WO1995013201A1 (de) Hybrid-antrieb für strassenfahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20070727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20150125