Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS1618485 A
Publication typeGrant
Publication dateFeb 22, 1927
Filing dateJul 22, 1925
Priority dateJul 22, 1925
Publication numberUS 1618485 A, US 1618485A, US-A-1618485, US1618485 A, US1618485A
InventorsFred A C Skinner
Original AssigneeFred A C Skinner
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Radiator
US 1618485 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

Feb. 22,1927. 1,618,485

1 F. A. C. SKINNER RADIATOR Filed'July 22. 1925 z sheets-sheet 1 INVEN'IOR v'm-f. G. 5km/rm MYX Feb. 22, 1927.

' 1,618,485 F. A. c. SKINNER RADIATOR Filed July 22. 1925 2 sheets-sheet 2 INVENTOR Patented Feb. 22, 192,7.

'FRED A. c. sxmN-R, or sTgLoUIs, MIssoUnI.

RADIATOR.

Application led July 22, 192.5. Serial No. 45,199. f\ y Special vobjects ofA this invention. are to provide a radiator for heating and drying purposes, of particularly compact design and high thermal efficiency, which will be practical from a manufacturing standpoint and-made up of readily available materials.

These and other desirable objects are -attained by certain novel features of construction and combinations, including in part an arrangement of radiator tubes between headers and a series of thin Hat sheets of high thermal conductivity connecting said tubes in the space between the headers.

The foregoing andi other hovel features of the invention will all appear in the course of the following specification in connection with the drawing accompanying and forming part of the same. l' l lnthe drawing'one of the practical commercial embodiments of the invention is illustrated, it being 'understood that the structure may be varled from such disclosure i without departure from the broad spirit and scope of the invention as hereinafter defined and broadly claimed.

Figure 1 's a broken plan view of the radiator.

Figure 2 is a front elevation of` the same.

Figure 3 is a broken perspective and part,

sectional view of one of the continuous fin sheets illustrating the relation of the samev to the tubes and deiectors.

Figure 4 is an enlargedbroken cross sectional vieW of the radiator as on substan staggered or oii'set with respect to' thetubes 5 of the front row so as to form a series of zigzag or circuitous air passages.

At the front side of the radiator the in-V clined sides of adjoining tubes provide funnel shaped entrances 7 to the air-ways and at the rear side of the radiator, detlectors 8 are shown having angularly related sides entered in the spaces between the tubes of the back row to split the departing air streams and confine the same to the rearward sides of the tubes. The tubes in the'second row divide the air streams into ltwo channels 9 which unite at 10 in the spaces immedjate` ly to the rear of the front row tubes and the diffusers again4 divide these united streams 60 into channels 11 of greater cross sectional area than channels 9. Similarly, Where-the channels 11 meet at the rear at 12,thes`e junction points (12) are of greater cross sectional area than the rsingle channels at. 10, p

the increase in size being such as to allowV for a normal expansion of air for the rise in temperature occurring during such Howl.

By sweeping the air in closely confined relation about all sides of the tubes, a rapid and effective transfer of heat'takes place and by opening the passages Wider in the v direction-of flow, a more'rapid circulation is secured and hence a. greater volume of air heated. The circulation throu h the radiator may be either natural or orced,

a circulation fan or the like being used to facilitate the flow, if that is found desirable. Connecting the tubes are a series of thin sheets 13 of high thermic bnductivity shown 80 as substantial y .horizontal and spaced in parallel relation. "The spacing of these plates ma var-ywith the size and capacit of the ra iator and the purpose for-Whic it is intended and such vspacing may vary S5 as between the upper and lower portions of the radiator so as to obtain an even or an uneven distribution of the heat as conditions may require. An intimate contact is effected f between the radiator tubes and connectingao iin sheets, assuring direct conduction from the tubes to the sheets.

A practicalmethod ofassembly is to I punch the Asheets and then force Vthkeniover the assembled tubes under sufficient pressure o5 to assure metal to metal'contact at all points. In addition, bra-Zed or solderedXjoints may be made` or the entirevstructirre may be tinned, galvanized `or otherwise'treated to complete an intimate joinder between the vsheets and tubes and to assure permanency of such joints. I

The connecting sheets stratiythe alr or `other flow and confine the same in the tortuous channels and these channels sweep the air past all sides of the tubes without checking the full and free passage. f The continuous connecting tins may be made of thin sheet copper or lother ood thermally conductive material and simi arly 1;@

the tubes may be made of thin sheet copper, as indicated. The headers also may be made of thin sheet meta-l such as copper, resulting on the whole in va maximum of heatconfductivity with a maximum possibility of The bracing oftheitubes by the continuous iin sheets strengthens and braces the struc' ture so that light gage metal may be used for both tubes and fin sheets, resulting in a structure which is light in weight, durable and strong and in which all radiation is locked together in a close compact unit.

lNhat is claimed is:

1. A radiator comprising radiator tubes arranged in rows with the tubes in one row staggered in the spaces between the tubes of an adjoining row to provide zigzag air courses, sheets of high therlnic conductivity engaged about and connecting the tubes of the adj Dining rows and deiectors in line with the spaces between the tubes of` thel last row for confining the departing air currents in engagement with the rearward surfaces of the last tubes. Y p

2. A radiator comprising a series of radiator tubes, substantially diamond shaped in cross section and disposed 'with `their major axes in the direction of air flow to provide a series of funnel shaped entrance` passages for the air and deflectors disposed in line with the spaces between the tubes having angularly related sides substantially parallel to the rearward sides of the tubes to thereby divide the air stream and direct the divided streams into contactwith the rearward sides of the tubes. l

3. A radiator comprising a series of radiator tubes, substantially diamond shaped in cross section and disposed with their major axes in the direction of air low to provide a series of funnel shaped entrance passages for the air and detlectors disposed in line with the spaces I between the tubes having angularly related sideslsubstantially parallel tothe rearward sides of .thatubcs to thereby divide the air streams and direct the divided streams into contact. with the rearward sides of the tubes and thin sheets of high therrnic conductivity surrounding and connecting the tubes.

'4. A radiator comprising upper and lower headers, u right tubes connecting said headers. said tu es being arranged in rows the walls of the tubes, the air passages being ot gradually .increasing area inthe direction of normal airflow and deflectorsjn line with the spaces between the tubes of the last row Jfor spreading the departing air cur-' rents into intimate contact with th Walls of said tubes.

.5. In a device of the character disclosed, circulating tubes arranged in a Vrow to break up a iow of vair past the same into a series of streams,` and delectors 'at the rear of said tubes in line with the spaces between the tubes and having air confining walls sub stantially parallel with the rearward sides of the tubes to thereby confine the departing air streams in sweeping engagement with the rearward surfaces of said tubes.

6. In a device of the character disclosed7 circulating tubes arranged in rows, one row behind the other and the tubes in the rearmost row positioned in line with the spaces between the tubes in the preceding row and detlectors vin rear of said rearmost tubes having confining surfaces in line with the spacesr between said tubes and extending forwardly in substantial parallelism with the rearward sides of said tubes to thereby confine departing air currents in sweeping engagement with the rearmost surfaces of said last tubes.

7. In a device of the character disclosed, radiator tubes arranged in adjoining rows, said tubes being diamond shapedin cross section and disposed with their major axes in line with the flow of air travelthrough the device, the tubes of one row being staggered with respect to those in an adjoining row and disposed in line with the spaces between such tubes with the fiat sides of the tubes all in one row in parallelism with the opposing flat s ides of the tubes in the adjoining row, thereby providing continuously zigzag passages about the tubes for breaking up air flow into alternately divergent and convergent streams and flat fin sheets of hi l1 iherniic conductivity engaged about t e 'tubes connecting them rigidly in the described relation and stratifying the air flow to and about the tubes.

,8. A radiator comprising upper and lower headers, upright tubes connecting said headers, said tubes being arranged in rows and being oblong in cross section with the major axes disposed in the direction of normal air How through the radiator, the tubes of one row being staggered with respect to A gradually increasmg area in one direction ofv normal air flow to allow for gradual ex ansion of the air as it is heated lin its con ned i' passage through the radiator and thin fin sheets of high thermic conductivity arranged in spaced superposed relation connecting the tubes and disposed in intimate contacting engagement with the walls of the tubes. l0

4In witness whereof, I have hereunto set my hand this 14th day of July, 1925.

i 'FRED.A C. SKIN N ER.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4475586 *Mar 26, 1982Oct 9, 1984Mtu Motoren-Und Turbinen Union Munchen GmbhHeat exchanger
US4730669 *Feb 3, 1986Mar 15, 1988Long Manufacturing Ltd.Heat exchanger core construction utilizing a diamond-shaped tube-to-header joint configuration
US5456311 *Apr 21, 1994Oct 10, 1995Langerer & Reich Gmbh & Co.Heat exchanger
US6321833Oct 15, 1999Nov 27, 2001H-Tech, Inc.Sinusoidal fin heat exchanger
US6988545 *Jan 27, 2004Jan 24, 2006Harold Max GoodHeat exchanger systems
Classifications
U.S. Classification165/151, 165/DIG.443
International ClassificationF28F1/04, F28D1/053, F28F1/32
Cooperative ClassificationY10S165/443, F28D1/05383, F28F1/04, F28F1/32
European ClassificationF28F1/32, F28F1/04, F28D1/053E6C