Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS174465 A
Publication typeGrant
Publication dateMar 7, 1876
Filing dateFeb 14, 1876
Priority dateFeb 14, 1876
Publication numberUS 174465 A, US 174465A, US-A-174465, US174465 A, US174465A
InventorsBell Alexander Graham
Original AssigneeBell Alexander Graham
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Improvement in telegraphy
US 174465 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

2. Sheets-Sheet 2.


TELEGRAPH-Y. N0.174,46-5. Patented March 7,1876.





Specification forming part of Letters Patent No. 17!,65, dated March 7, 1876; application filed February 14, 1876.-

To all whom it may concern:

Be it known that I, ALEXANDER GRAHAM BELL,0f Salem, Massachusetts, have invented certain new and useful Improvements in Teiiia'graphy, of which the following is a specifica- In-Letters Patent granted to me April 6, 1875, No. 161,739, I have described a method of, and apparatus for, transmitting two or more telegraphic signals simultaneously along a single wire by the employment of transmitting-instruments, each of which occasions a succession of electrical impulses diflering in rate from the others; and of receivinginstruments, each tuned to a pitch at which it will be pnt'in vibration to produce its fundamental note by one only of the trans mitting'instruments; and of vibratcry'circuit'breakers operating to convert the vibratory movement of the receiving-instrument into a permanent make or break (as .the case may be) of a local circuit, in which is placed,a Morse sounder, register, or other telegraphic apparatus. I have alsotherein describeda form of ant'ographtelegraph based upon-the action of the above-mentioned instruments.

Inillustrntion of my method or multiple telegraphy I have shown in the patent storesaid, as one form of transmitting-instrument,

an electro-magnet havinga steel-spring arms ture, which is kept in vibration by the action of a local battery. Thisarmature in vibrating makes and breaks the main circuit, producing an intermittent current upon the linewire. I have found, however, that upon this plan the limit to the number of signals that can be sent simultaneously over the same wire is very speedily reached; for, when a from gradual changes of intensity exactly analogous to the changes in the density of air occasioned by simple pendulous vibrations. The electrical movement, like the aerial motion, can be represented by a sinusoidal curve or by the resultant of several sinusoidal curves.

Intermittent or pulsatory and nndulntory currents may be of two kinds, accordingly as the successive im ulses have all the same po- 'larity or are alternately positive and negative.

The advantages I claim to derive from the use of an undulatory currentin placeola merely in termittent one are,fimt,that a very much larger number of signals can be transmitted si rnultaneonsly on the same circuit; second, that a closed circuit and single main battery may be used; third, that communication in both directions is established without the necessity of special induction-coils; fourth, that cable dis patches may be transmitted more'rapidlythau by means of an intermittent current or by the methods at present in use; for, as it is unnec essary to discharge the cable before'a new signal can be made, the lagging of cablesignals is prevented; fifth,audthatas the circuit is never broken a spark-arrester becomes unnecessary. It has long been known that when a perms nent magnet is caused to approach the pole of an electro-magnet a current of electricity is induced in the coils of the latter, and that when it is made to recede a current of opposite polarity to the first appears upon the wire. When,therefore,a permanent magnet is caused to vibrute in front of the pole of an electromagnet an niidulstory current of electricity is induced in the coils of the electro-magnet, the

undulations of which correspond, in rapidity of succession, to the vibrations ofthe magnet, in polarity to the direction of its motion, and. in intensity to the amplitude of its vibration.

That the difference between an undulatory and an intermittentcurrcnt may be more clear ly understood I shall describe the condition of the electrical current when the attempt is made to transmit two musical notes simultaneously-firstupon the one plan and then upon the other. Let the interval between the two sounds be a major thi rd; then their rates of vibration are in the ratio of4 to 5. Now, when the intermittent current is used .the circuit is made and broken four times by one transmittingdnstrnment in the same time that five makes and breaks are caused by the other. A and B, Figs. 1, 2, and 3, represent the intermittent currents produced, four impulses of B being made in the same time as five impulses of A. c c c, 810., show where and for how long time the circuit is made, and d d d, &c., indicate the duration of the breaks of the circuit. The line A and B shows the total efi'ect upon the current when the transmitting-instruments forAand B are caused simultaneously to make and break the same circuit. The resultant effeet depends very much upon the duration of the makcrelativcly'to the break. In Fig. 1 the ratio is as1to4; in Fig. 2, as 1 to 2; and in Fig. 3the makes and breaks are of equal duration. The combined effect, A and B, Fig. 3, is very nearly eqnivalent'to-a continuous current.

When many transmitting-instruments of different rates of vibration are simultaneously making and breaking the same circuit the cnrrent upon the main line becomes for all practical purposes continuous.

Next, consider the eflect when an undulatory current is employed. Electrical undulations,

induced by the vibration of a body capable of inductive action, can be represented graphically, without error, by the same sinusoidal curve which expresses the vibration of the inducing body itself, and the efl'ect of its vibration upon the air; for, as above stated,-the rate of oscillation in the electrical current corresponds to the rate of vibration of the inducing body-that is, to the pitch of the sound produced. The intensity of the current varies with the amplitude of the vibration-that is, with the loudness of the sound; and the a polarity of the current corresponds to the di' rection of the vibrating body-that is, to the condeusatious' and rarefactions of air produced by the vibration. Hence, the sinusoidal curve A or B, Fig. 4, represcnts,graphically,the electrical undulations induced in a. circuit by the vibration of a body capable of inductive aetion.

The horizontal line a d of, &c., represents the zero of on rrcn t. The elevations b b b, &c., indicate impulses of positive electricity. The depressions c c c, &c., show impulses of negative electricity. The vertical distance 6 d or cf of any portion of the curve from the zero-- line expresses the intensity of the positive or negative impulse at the part observed, and the horizontal distance a a indicates the duration of the electrical oscillation. The vibrations represented by the sinusoidal curves B and'A, Fig. 4, are in the ratio aforesaid, of I 4 to 5-that is, four oscillations of B are made in the same time as five oscillations of A.

The combined cilect of A and B, when induced simultaneously on the same circuit, is expressed by the curve A+B, Fig. 4, which is the algebraical sum of the sinusoidal curves A and B. This curve A+B also indicates the actual motion of the airwhen the two musical notes considered are sounded simultaneously. Thus, when electrical undulations of different rates are simultaneously induced in the same circuit, an effect is produced ex: actl y analogous to that occasioned in theaair by the vibration of theindncing bodies. Hence, the coexistence upon a telegraphic circuit of electrical yibrations of di fierent pitch is manifested, not by the obliteration of the vibratory character of the current, but by peculiarities in the shapes of the electrical undulations, or, in other words, by peculiaritiesin the shapes of the curves which represent those undulations.

There are many ways of producing undulatory'cnrrents of electricity, dependent for effeetupon the vibrations or motions of bodies capable of inductive action. A few of the methods that may be employed I shall here specify. When a wire, through which a continuous current of'electricity is passing, is caused to vibrate in the neighborhood of another wire,an undulatory current of electricity is induced in the latter. When a cylinder, upon which are arranged bar-magnets, is made to rotate in front of the pole of an electromagpet, an undnlatory cnrrentof electricity is induced in the coils of the electro-magnet.

Undulations are caused in a continuous voltaic current by the vibration or motion of bodies capable of inductive action; or by the vibration of the conduetingwire itself in the neighborhood of such bodies. Electrical undulations may also be caused by alternately increasing and diminishing the resistance of the circuit, or by alternately increasingand diminishing the power of the battery. The internal resistance of a battery is diminished by bringing the voltaie elements nearer together, and increased by placing them farther apart. elements of a battery, therefore, occasions an undulatory action in the voltaic current. The external resistance may also be varied. For instance, let mercury or some other liquid form part of a voltaic circuit, then the more deeply the conducting-wire is immersed in the mercury or other liquid, the less resistance does the liquid ofler to the passage of the current. Hence, the vibration of the conducting-wire in mercury or other liquid included in the circuit occasions undulations in the current. The vertical vibrations of the elements of a battery in the liquid in which The reciprocal vibration of the they are immersed produces an nudnlatory action in thecurreut by alternately increasing and diminishing the power of the battery.

In illustration of the method of creating electrical undulations, I shall show and describe one form of apparatus for producing the effect. I prefer to employ for this purpose an electro-magnet, A, Fig. 5, having a coil upon only one of its legs b. A steel-spring armature, c, is firmly clamped by one extremity to the uncovered leg (I of the magnet, audits free Glld is allowed to project above the pole of thecovered leg. The armature 0 can be set in vibration in a variety of ways, one of which is by wind, and, in vibrating, it produces a musical note of a certain definite pitch.

When the instrument A is placed in a vol-' taic circuit, 9 b e f g, the armature 0 becomes magnetic, and the polarity of its free end-is opposed to that of the magnet underneath. So long as the armature 0 remains at rest, no ef feet is produced upon the voltaic current, but the moment it is set in vibration to produce its musical note a powerful inductive action takes place, and electrical undulations traverse the circuit 9 b c f g. The vibratory current passing through the coil of the-electromagnet f causes vibration in its armature h when the armatures c hof the twoinstruments A I are normally in unison with one another; 'bnt'the armature h is unaffected by the passage of the nndulatory current when the pitches of the two instruments are different. A. number of instruments may be placed upon a telegraphic circuit, as inFig. 6. When the armature of any one of the instruments is set in vibration all the other instruments upon the circuit which are in unison with it respond, but those which have normally a difl'erent rate of vibration remain silent. Thus, if A, Fig. 6, is set in vibration, the armatures of A and A will vibrate also, but all the others ou'the circuit will remain still. So if B is caused to emit its musical note the instruments B B respond. They continue sounding so long as the mechanical vibration of B is continued, but become silent with the cessation of its motion. The duration of the sound may be used to indicate the dot or dash of the Morse alphabet, and thus a telegraphic dispatch may be indicated by alternately interrupting and renewin the sound' hen two or more instruments of diflerent pi tchare simultaneously caused to vibrate, all the instruments of corresponding pitchesupon the circuit are set in vibration, each respond ing to that one only of the transmittinginstrnments with which it is in unison. Thus the signals of A, Fig. (hare repeated by A and A, but by no other instrument upon the circuit; the signals of B by B and B; and the signals of C by G and C-whetherA, 'B, and

G are successively or simultaneously caused to vibrate. Hence by these instruments two or more telegraphic signals or messages may be sentslmultaneonsly over the same circuit without interfering with one another.

Ldesire here to remark that there are many other uses to which these instruments may be put, such as the simultaneous transmission of musical notes, differing in loudnessas well as in pitch, and the telegraphic transmission of I noises or sounds of any kind.

When the armature c, Fig. 5, is set in vibratiou the armature h responds not only in pitch, but in loudness. Thus, when 0 vibrates with little amplitude, at very solt musical note proceeds from h,- and when 0 vibrates forcibl y the amplitude of the vibration of his considerably increased, and'the'resultingsound becomes louder. So, if A and B. Fig. 6, are sounded simultaneously, (A loudly and B sqltly,) the instruments A and A repeat loudly the signals of A, and B B repeat softly those-of B.

One of the ways in which the armature c, Fig. 5, may be set in vibration has been stated above to be by wind; Another mode is shown in Fig. 7, whereby motion can be imparted to the armature bythe human voice or by means of a musical instrument.

The armature c, Fig. 7, is fastened loosely by one extremity to the uncovered leg d of the eIectro magnet b, and its other extremity is attached to the center of a stretched m'embrane, a. A cone, A, is used to converge Sound-vibrations upon the membrane. When a sound is uttered in the cone the membrane 4 is set in vibration, the armature c is forced to partake of the motion, and thus electrical undu-- .lations are created upon the circuit E b e f g.

These undulations are similar in form to the air vibrations caused by the sound-that is, they are represented graphically by similar curves.

The undulatory current passing through the electro-magnet f influences its armature h to copy the motion of the armature c. A similar sound to that uttered into A is then heard to proceed from L.

In this specification the three words oscillation, vibration, and undulation, are used synonymously, and in contradistinction to the terms intermittent and pulsatory. By the terms body capable'of inductive action, I mean a body which,'when in motion, produces dynamical electricity. I include in the category of bodies capable of inductive action-brass, copper, and other metals; as well as iron and steel.

Having described my inventiou, what I claim, and desire to secure by Letters Patent is as follows: I

1. A system of telegraphy in which the receiver is set in vibration by the employment of nndulatory currents of electricity, substantially as set forth.

2. The combination, substantially as set forth, of a permanent magnet or other body wpable of inductive action, with a closed circuit, so that the vibration of the one shall occasion electrical undulations in the other, or-in itself, and this I claim,'whether the permanent magnet beset in vibration in the neighborhood of the conducting-wire form simultaneously be set in vibration in each others neighborhood.

3. The method of producing undulations in a continuous voltaic current by the vibration or mot-ion of bodies capable of inductive action, or by the vibration or motion of the conductingwim itself, in the neighborhood of such bodies, as set forth.

4. 'Iiie'niethod of producing undulations in a continuous voltaic circuit by gradually increasing nnd diminishing the resistance of the circuit, or by gradually increasing and diminishing the power of the battery, as set forth.

5. The method of; and apparatus for, transmitting vocal or other sounds telegraphically, as herein described, by causing eiectricalnndulat-ions, similar in form to the vibrations of the air accompanying the said vocal or other sound, substantially as set forth.

In testimony whereof I have hereunto signed my name this 20th day of J annary, A. D. 1876.



Tnonus E. BARRY, P. D. Rrcnnans.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2807666 *Feb 28, 1956Sep 24, 1957Crump Lloyd RJunction pickup device
US8300864 *May 29, 2009Oct 30, 2012Oticon A/SHearing aid system with a low power wireless link between a hearing instrument and a telephone
US8495092 *Apr 26, 2007Jul 23, 2013Gregory A. PiccionelliRemote media personalization and distribution method
US8646111Feb 13, 2007Feb 4, 2014The Regents Of The University Of CaliforniaCoupled mass-spring systems and imaging methods for scanning probe microscopy
US9451084May 3, 2012Sep 20, 2016Parus Holdings, Inc.Robust voice browser system and voice activated device controller
US9571445Jun 29, 2007Feb 14, 2017Parus Holdings, Inc.Unified messaging system and method with integrated communication applications and interactive voice recognition
US20070233744 *Apr 26, 2007Oct 4, 2007Piccionelli Gregory ARemote personalization method
US20090296967 *May 29, 2009Dec 3, 2009Matthias MullenbornHearing aid system with a low power wireless link between a hearing instrument and a telephone
US20100257644 *Feb 13, 2007Oct 7, 2010Turner Kimberly LCoupled Mass-Spring Systems and Imaging Methods for Scanning Probe Microscopy
WO2007095360A2 *Feb 13, 2007Aug 23, 2007The Regents Of The University Of CaliforniaCoupled mass-spring systems and imaging methods for scanning probe microscopy
WO2007095360A3 *Feb 13, 2007May 29, 2008Univ CaliforniaCoupled mass-spring systems and imaging methods for scanning probe microscopy
International ClassificationH04R13/00, H04R11/00
Cooperative ClassificationH04R11/00, H04R13/00
European ClassificationH04R13/00, H04R11/00