Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS1771335 A
Publication typeGrant
Publication dateJul 22, 1930
Filing dateSep 12, 1927
Priority dateSep 12, 1927
Publication numberUS 1771335 A, US 1771335A, US-A-1771335, US1771335 A, US1771335A
InventorsEllis B Karpes
Original AssigneeEllis B Karpes
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Internal-combustion engine
US 1771335 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

July 22,1930. E. B. KARPES v INTERNAL COMBUSTION ENGINE Filed Sept. 12, 1927 2 sheets-sheet 1 7] mVENT ATTORNEY July 22, 1930. I I KARPE$ I 1,771,333

I INTERNAL COMBUSTION ENGINE Filed Sept. 12, 1927 2 Sheets-Sheet 2 ATTORN EY Patented July 22, 1930 'ELLIS 13. males, F PHILADELPHIA,rnNnsYLvANIA m'rnnnAn-coivmusrron ENGINE Application filed September 12, 1927. Serial No. 219,145.

This inventionrelates to internal combustion engines and an" object of the invention is to provide an engine which will develop a high percentage of fuelefliciency, resulting inthe development of a maximum amount of power upon the utilizing of a minimum quantity of fuel. 7

Another object of this invention is to provide a multiple cylinder internal combustion 'engine in which the cylinders and pistons are used during additional cycles of operation of the engine to compress fuel to a high stage of compressionand force the same under such compression into a cylinder next thereto in firing order.

Other objects of the invention will appear in thefollowing detail description, and in the accompanying drawings therein:

Figure 1 is a longitudinal section. through my the improved internal combustion engine.

Figure 2 is a vertical section through the internal combustion engine.

Figures 3, 4, 5, 6, 7 and 8, are diagrammatic views illustrating the various actions of the .fuel during the operation of the motor.

Figure 9 is a detail view of avalve structure used in the motor.

Referring more particularly to the drawings: the improvedinternal combustion ense gine comprises a plurality of cylinders 1, 2,

3 and 1. Four cylinders are shown in the present application. However it is to be understood that the invention may be em? bodied inv any multiples of twin cylinders. I The cylinders have pistons 5, 6, 7 and 8, re-

spectively, reciprocably mounted therein which are connected in the usual manner to the crank-shaft 9. The crank portions 10 of the crankshaft are arranged in proper relaare controlled by approved, types of valves.

14. An auxiliary manifold 15 is provided l which extends the full length of the cylinder blockand hasbra-nch communication with each individual cylinder, as clearly shown in Figure 1 of the drawings. Approved valves 16 are provided for-controlling communication between the auxiliary manifold 15 and '68 the respective cylinders. The internal combustion engine is geared to provideasixstroke cycle internal combustion engine, and the camshaft (not shown) which controls operation of the various valves will travel at one-third of the crankshaft speed.

If itis so desired, a novel form of plunger may be connected. to the valve 16, and this plunger is particularly provided to prevent escape of 'any'fuel under compression from the auxiliary manifold 15. The plunger or valve structure includes the valve discs 16 which are mounted upon the lower ends of the relatively large stems 17. Pistons 18 are mounted on the reduced portions 19 of the 7 stems and rest againstthe shoulder. formed at the upper end of the relatively largeportions 17 of the stems. A'suitable compression ring 20 is carried by the pistons 18 and it fits tightlywithin the wells or recesses 21 within the cylinder-head 22.

The crankshaft 9.. is designedsothat the four throws .10 are in two planes at right angles to'each other, as is usual in crankshaft construction, and'it is to be understood, that the shape and construction ofthe cams for controlling therespective valves, are to be made, as practical operation, as the engine determines.

In operation, theimproved internal com 9 bustion engine works asfollows l Jhen the piston 51s starting down on the first suctionv stroke of the engine, the intake. valve 14 having communication with the cylinder 1 opens and the mixture of fuel and air from the carburetor (not shown) is drawn into the cylinder. When the piston has finish-ed its first suction stroke, it starts on its upward movement or the pump stroke at whichtim'e the valve 16 which establishes communication between the cylinder ,1 and the chamber 15, opens and the mixture in the combustion chamber within the cylinder 1 is pumped or forced into the auxiliary chamber 15, where itis held under compression. m0

PATENT OFFICEQ At the terminal of the pump or upward stroke of the piston 5, thevalve 16 is closed, and the piston 5 starts downward on a second suction stroke at which time the intake valve 14 opens and permits the combustion chamber within the cylinderto receive another charge of fuel from the carburetor. During this operation, the intake valve 14 closes on the bottom or at the lower terminal of the movement of the piston, and the valve 16 opens, allowing the mixture under pressure to pass from the chamber 15 into the cylinder. During this forcing of the fuel under pressure from the auxiliary chamber 15 into the cylinder, the piston 5 is moving upwards on its compression stroke and when the piston has completed approximately half of its compression stroke the valve 16 is closed, and the piston continues on its compression strokewith the supplemental charge l of fuel within the cylinder. The usualfiring stroke and exhaust or scavaging stroke then follow in succession, which completesthe six cycles .of the unit of the engine and the pis- =;,ton is then ready to move downwardly on its first suction stroke in the subsequent operation of the engine. 7

Referring to the diagrammatic ciews, Figures 3 to 8 inclusive, it will be noted in the operation of the engine, the pistons will follow the different strokes illustrated in the views, for instance in Figure 3 piston number-1 is on its first suction: stroke as indicated at a, Figure 4 b shows the same piston on its first compression strokewhile c in Figure 5'shows the same piston on its second suction stroke.v In Figure 6 d illustrates the piston on its second compression stroke. In Figure 7 e lllustrates the same plston starting on its firing stroke while f in Figure 8 shows the piston in its movement 1 011 the exhaust stroke. From this it will be apparent that the second piston illustrated in Figure 3 is'at the bottom of its first suction stroke prior tothe closing of valve 14, the return of the piston on its compression stroke and prior to the opening of the valve 16 while the same piston indicated A being shown in Figure 4 about to descend onv its ,secondsuction stroke and in Figure 5 the same piston indicated at A isabou't to ascend on its second compression stroke. .and when this piston is approximately half way, up the piston C in the same view will be at the lower terminal of itssecond suction stroke.

It is to be understood that the particulars herein given are in no way limitative, and that while still keeping within the scope of the invention, any desired modification of details and proportions may be made. in the construction of the appliance according to circumstances. The crankshaft 9 is so designed that when one piston is on the lower terminal of the second suction stroke, there is always another piston, approximately half way up on its compression stroke for delivering a charge of compressed fuel into the auxiliary chamber 15 which in turn delivers the mixture to the cylinder in which the piston is at the lower terminal of its second suction stroke.

What I claim is In an internal combustion engine operating on a six stroke cycle, the combination with a plurality of cylinders having a cylinder head therefor, of pistons operable in the cylinder, said cylinder head having a plurality of intake manifold passages, one communicating with each two cylinders, said cylinder head having exhaust manifolds, one for each cylinder, valves controlling communication between the intake and exhaust manifolds and the cylinders, said cylinder head having an auxiliary manifold communicating with all of the cylinders, valves controlling communication between the auxiliary manifold and said cylinders, and operating devices which open each of said valves during the first upstroke of the piston during each cycle in a corresponding cylinder. and again during the second downstroke in each cycle whereby the fuel is stored for a time in a the auxiliary manifold and receives an initial compression due to the absorption of heat.

ELLIS B. KARPES.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2941522 *Apr 30, 1958Jun 21, 1960Charles SagonaInternal combustion engines
US3709201 *Mar 1, 1971Jan 9, 1973Trw IncLow emission internal combustion engine and method of improving combustion
US3896775 *Aug 21, 1974Jul 29, 1975Melby Raymond CSupercharged six-stroke cycle combustion engine
US4917054 *Jul 26, 1988Apr 17, 1990Schmitz Gerhard BSix-stroke internal combustion engine
US5056471 *Oct 12, 1990Oct 15, 1991Husen Norman R VanInternal combustion engine with two-stage exhaust
US5542382 *Apr 1, 1991Aug 6, 1996Caterpillar Inc.Dual compression and dual expansion internal combustion engine and method therefor
US7950357Dec 19, 2008May 31, 2011Meta Motoren-Und Energie-Technik GmbhMethod for operating an internal combustion engine and an internal combustion engine
US8371256May 27, 2009Feb 12, 2013GM Global Technology Operations LLCInternal combustion engine utilizing dual compression and dual expansion processes
US8646421Oct 23, 2009Feb 11, 2014GM Global Technology Operations LLCEngine with internal exhaust gas recirculation and method thereof
US20100269806 *Dec 19, 2008Oct 28, 2010Meta Motoren- Und Energie-Technik GmbhMethod for Operating an Internal Combustion Engine and an Internal Combustion Engine
US20100300385 *May 27, 2009Dec 2, 2010Gm Global Technology Operations, Inc.Internal combustion engine utilizing dual compression and dual expansion processes
US20110094462 *Apr 28, 2011Gm Global Technology Operations, Inc.Engine with internal exhaust gas recirculation and method thereof
Classifications
U.S. Classification123/64, 123/58.4
International ClassificationF02B1/00
Cooperative ClassificationF02B2720/124, F02B1/00
European ClassificationF02B1/00