Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS1858701 A
Publication typeGrant
Publication dateMay 17, 1932
Filing dateJul 25, 1929
Priority dateJul 25, 1929
Publication numberUS 1858701 A, US 1858701A, US-A-1858701, US1858701 A, US1858701A
InventorsHenry Boettcher
Original AssigneeArmstrong Cork Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Building construction
US 1858701 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

H. BOETTCHER 1,858,701 I BUILDING CONSTRUCTION May 17, 1932.

Filed July 25, 1929 4 Sheets-Sheet l May 17 1932. H. BOETTCHER BUILDING CONSTRUCTION Filed July 25, 1929 4 Sheets-Sheet 2 lull-L INVENTOR I?M&HM

y 1932- H. BOETTCHER BUILDING CONSTRUCTION Filed July 25, 1929 4 Sheets-Sheet 3* INVENTOR I WM 9M M y 1932- H. BOETTCHER 1,858,701

BUILDING CONSTRUCTION Filed July 25, 1929 4 Sheets-Sheet 4 i i-T Patented May l' 7, 1932 UNITED {STATES HENRY BOETTGHER, 'oig LANCASTEILPENNSYLVANIA, ASSIGNOR TO ARMSTRONG-CORK COMPANY, OF LANCASTER, PENNSYLVANIA, A CORPORATION OF PENNSYLVANIA BUILDING CONSTRUCTION Application filed .l'uly 25, 1929. Serial No. 380,804.

This invention relates to building construction and particularly to a building unit and a structure formed therefrom whereby a high 1y improved building may be made at relatively low cost.

The value of cork as an insulating material is well known. A'wall of cork alone would be ideal from the standpoint of thermal and sound insulation. However, provision must be made for supporting the weight of the building and for protecting the cork from injury. It has heretofore been customary to secure the cork to the inside or outside of studding in the case of wood framed structure, on the inside or outside of a steel frame after the entire steel is erected, or to the inside of a tile or brick wall where it was desired to insulate the building walls. I provide a building made of units comprising metal frames which form the supporting skeleton of the building, these frames containing panfact that the insulating els of a suitable insulating material such as' cork board. The panels are inserted before erection. The units may be made up in standard sizes at a factoryat relatively low cost, shipped in a relatively small space, and readily assembled by semi-skilled labor into the desired structure, and are easy to handle on account of their light weight.

The frames are preferably made of steel channels weldedtogether at the corners so that each frame is in itself a very rigid structure. The channels are preferably deeper than the insulating panels are thick, the panels being placed adjacent the flanges of the channels at one side of the unit and being held in place by clips or the like within the frame. The units are preferably assembled in such manner that the panel side is outermost. This gives recesses in each unit when the assembled structure is viewed from the inside and these recesses provide convenient places for pipes, wiring, etc.

The problem of uniting the several' units is also materially simplified by reason of the anels are of less depth than the units. guch construction leaves parts of the channel webs exposed and provision is made for uniting such web portions.

At the corner of a building the units forming one wall are placed against the edges of the adjacent units in the other wall, and by,

reason of the fact that the insulating panels are outermost the insulation does not extend continuously around the corner as is desired. I therefore provide a filler strip which may be placed in the corner unit so as to carry the insulation all the way round the corner. Special provision is also made for connecting theuunits of one wall to the units of the'other wa The character of cork board is such that plaster, stucco, or the like readily adheres to it. The units are therefor particularly desirable in the construction of stucco houses. While the cementitious coating will adhere to thecork, I preferably place metallic lath or the like over the several units and plaster onto it. The plaster is therefore held in place by the cork and by the lath. The outermost flanges of the channels making up the units are perforated so that nails may be driven through them into the cork. This materially simplifies the securing of the lath to the assembled structure. Similar perfora tions are provided on the inner flanges so that metal lath may be fastened on the inside by wires to receive the inside plaster.

The units are preferably made of a height corresponding to one story of the structure. They are connected by a bearing strip preferably in the form of an angle which carries the floor beams at the junction of units between stories. The bearing strip is preferably so placed that it bears against the inner flanges of the upper and lower units and provision is made for securing both sets of units to this strip.

If desired assembled panels may be dipped in asphalt or other protective medium. This will be eflective for sealing any air openings and for preventing rusting of the frames.

In the accompanying drawings, illustrating the present preferred embodiment of my invention as applied to a residence structure, a

Figure 1 is a perspective view illustrating the use of my units and some of the other framing of the building;-

Figure 2 is a vertical section, partly broken away, taken on the line IIII of Figure 1; Figure 3 is a similar view taken on the line IIIIII of Figure 1;

Figure 4 is a front elevation partly broken away of one of the units;

Figure '5 is a vertical section taken on the line V-V of Figure 4;

Figure 6 is a transverse section on the line VIVI of Figure 4;

Figure 7 is a detail section to enlarged scale showing the manner of joining the units between stories;

Figure 8 is a detail horizontal section showllllg the manner, of connecting adjacent pane s;

Figure 9 is a horizontal section of the corner of the .structure showing the connection at the corner between stories;

Figure 10 is a similar view showing the corner connection at the bottom of the first story of units;

Flgure 11 is a horizontal section taken on the line XI-XI of Figure 2; and

Figure 12 is a view correspond ng to Figure 8, but showing the units after the plaster and stucco have been applied.

Referring first to Figures 1 to 3 inclusive, there is shown a structure built on a foundation F and consisting-of full sized units 2 and 3 and smaller unitsA and 5. The un ts 2 and 3 are each the height of a full story and are used to form all of the solid wall portions of the building. The units 4 and 5 are of less height and are employed Where it is desired to provide a window or door opening.

Each unit consists of metal channels 6, having webs 7 and flanges 8 and. 9, the several channels being welded together at the cor ners as indicated at W in Figure 1. A bean ing strip 10 in the form of a structural angle is secured to the foundation F by bolts 11. The units are fastened to this angle bv bolts 12 extending through the flanges 8 and 9.

The construction of the individual panels is best shown in Figures 4 to 6 inclusive. Each of the frames is, as above stated, made of channel shaped members which are preferably stamped out of a sheet metal. Panels 12 of cork are placed within the units and lie against the flanges 8. They are held in place by angle strips 13 which are secured to the webs 7 as by welding. or the channels may be drawn or rolled with this strip in place. As best shown in Figure 6, the panels .12 are of less depth than the channels 6, so that there is provided an open space S for the reception of pipes, wires, conduits, and the like. Each unit-is provided'in its top and bottom portions with openings-14' for the reception of .bolts 11. The webs of the wide members are punched, as indicated at 15, so that adjacent units may be tied together. The manner of joining the units is best shown in Figures 7 and 8. Links 16 are inserted through the bolts 11?) extending punched slots 15, and wedges 17 are driven in 'tohold the panels together.

Again referring to Figure 1, the first story of the house is shown as made up principally of units 2. The units 3 are similar in all respects to the units 2, but are placed on top of them so as to form the second story. They are fastened together through a bearing strip 18in the form of a structural angle, there being bolts 11a extending through the openings 14 in the tops'of the units 2 and 5, and

through the correspondmg openings in the bottoms of the units '3 and 4. The bolts 11a and 111) are connected at their outer ends by a punched bearing strip 19. The angle 10 supports the floor beams B for the first floor and the angle 18 supports the floor beams B for the second floor. A structural angle 20 connects the panels 3 and 5 at the tops thereof and supports the beams B, for the top floor. The rafters R are carried on a wood plate P which. lies over the tops of the units 3 and 5.

The units which surround the window openings are provided with clips 21 to permit of attaching metal window sash. If double hung windows are used these clips are omitted.

Figures 9 and 10 show the construction employed at the corners; The flanges 9 of the corner units in one wall abut the webs 7 of the corner units in the adjacent wall. The cork panels 12 of the two units are thus remote from one another and the space is filled by a cork strip 22. Such strip is put in place either--before or after the units have been erected. In order to tie the units together at the corners, clips 23 are employed. These clips are punched with openings correspond- The clip 23 extends behind the flange 9, so

that when the wedges are driven home the units are secured together. I

Figure 9 shows a verticall extending anle clip 24 which is employed at the junction etween stories, it being fastened to the flanges of the corner units by bolts 25.

Figure 12 is a section through a completed wall. The outer facing consists of two coats 26 and 27 of cementitlous material such as stucco.- These coats extend over the cork panels 12 as well as over the metal flanges 8. A layer of expanded bedded in the first coat-26. The metal lath is secured to the structure by nails 29, which are driven through. small openings 30 punched in the flanges 8, the heads of the nails being bent over to hold the lath. The metal lath can also be wired on. The clips 13 provide adequate backing for' the cork so that there is no tendency to rupture the same metal lath '28 is emwill be understood,

during nailing. In fact the cork may be under some slight degree of compression at this point. The coating tends to adhere strongly to the cork so that a unitary structure without cracks is assured.

The interior is finished in a similar manner. Expanded metal lath 31 is held in place by small clips or wires 32 extending through openings 30 in the flanges 9, and the plaster coats 33 and 34 are applied thereto.

If brick or stone facing instead of stucco is used, the metal lath is omitted and the brick or stone veneer is set against the outer cork wall with cement mortar and held in place by wall ties fastened to thechannels and extending in the joints of the brick or stone facing.

By the use of my invention a building may be rapidly framed from pre-formed panels. Thesepanels being of large size, they are relatively few .in number so that a verylarge percentage of the total wall surface is cork. Sufficient metal is provided to sustain the structure, but the units are of such character that the metal is very economically employed. When two units are placed side by side an secured together, the adjacent channels act together and may be considered as a column of H or I section. There is no load on the cork, and the cork is thoroughly protected by reason of the wire mesh and stucco coating extending thereover. The structure is highly desirable in that the cork gives high thermal and sound insulation. The air space S is also of value in this respect. Since cork is slow burning, the structure is also desirable in that the fire risk is very low.

I have illustrated and described a present referred embodiment of my invention. It however, that it is not limited to the forms shown, but may be otherwise embodied within the scope of the following claims.

I claim:

1. In a building structure, metal frames arranged at an angle to one another, the frames being made of members which are channel-like in cross section, the web ofa channel on one frame engaging the flange of a channel on another frame, insulating panels in the frames, the panels being a portion only of the depth of the frames,

and a filler strip at the junction of the frames.

2. In a building structure, a plurality of frames arranged side by side and forming a wall skeleton, ,insulating panels in the frames, a bearing strip secured to the frames adjacent their upper ends but projecting thereabove, and another set of frames on top of the-first mentioned frames and secured to the bearing strip.

3. In a building structure, a plurality of in the frames, which panels close off the openings therethrough and a substantially continuously extending cementitious coating over the cork panels and the frames.

4. In a building structure, a plurality of porting open frames arranged side by side and forming a wall skeleton, -cork panels in the frames, which panels close off theopenings therethrough lathing extending over the cork and the frames, and a cementitious coating on the lathing.

5. In a building structure, a pluralityof self-sustaining units made of rigid self-supporting open frames arranged side by side and forming a wall skeleton, insulating panels in the frames, which panels close off the openings therethrough lathing extending over the panels and the frames, and a cementitious coating on the lathing.

6. In a building structure, a plurality of self-sustaining units made of rigid self-supporting openframes arranged side by side and forming a well skeleton, insulatin panels in the frames, which panels close 0 the openings therethrough and an outer facing for the building extending over the frames and the panels.

7. -In a building structure, a plurality of self-sustaining units made of rigid self-supporting open frames arranged side by side and forming a wall skeleton, panels in the frames, which panels close off the openings therethrough an inner plaster coating extending over the frames, and an outer building face extending substantially continuously over the frames and the panels.

8. In a building structure, a plurality of insulating self-sustaining units made of rigid self-supmetal frames adapted to be placed side by side and secured having inwardly turned flanges adjacent one of their faces, and panels of insulating materials within the frames, the panels being of less depth than the frames and abutting the one another that the face of one frame lies against an edge of a second frame, an edge portion of the first frame being thus exosed, and a filler strip of insulating material at the junction of the frames providing, with the insulating panel in the first frame, insulation for the full depth of the second frame at the junction.

In testimony whereof I have my hand.

HENRY BOETTCHER.

hereunto set self-sustaining units made of rigid-self-supporting open metal frames arranged side by side and forming a wall skeleton, cork panels together to form the supporting skeleton of the building, the frames the depth of the frames,

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2595665 *Jul 11, 1946May 6, 1952Nat Steel CorpWall construction
US2616282 *May 11, 1950Nov 4, 1952Vogel Frank WConcrete building construction
US3122223 *Jul 28, 1960Feb 25, 1964Brooks BuderusPrefabricated building construction
US3601942 *Feb 6, 1969Aug 31, 1971Wilson James DBuilding wall construction
US3736715 *Sep 15, 1971Jun 5, 1973Nomeco Building Specialties InPrefabricated walls
US4310992 *Feb 20, 1980Jan 19, 1982Construction Murox, Inc.Structural panel
US4733896 *Mar 11, 1986Mar 29, 1988Harsco CorporationLift container and method for using same
US5535556 *Apr 18, 1994Jul 16, 1996Hughes, Jr.; John P.Basement wall construction
US5657606 *Nov 9, 1993Aug 19, 1997Ressel; Dennis EdwardBuilding system
US5890334 *Jul 15, 1996Apr 6, 1999Hughes, Jr.; John P.Basement wall construction
US6427391 *Oct 22, 1999Aug 6, 2002Martin G. LyonsMethods and apparatus for attaching a cantilevered beam to a building
US6460297Dec 21, 1999Oct 8, 2002Inter-Steel Structures, Inc.Modular building frame
US7905067Sep 13, 2007Mar 15, 2011Composite Panel Systems, LlcSupport pads and support brackets, and structures supported thereby
US7926233Sep 13, 2007Apr 19, 2011Composite Panel Systems, LlcBuildings, building walls and other structures
US7926241Sep 13, 2007Apr 19, 2011Composite Panel Systems, LlcBuilding panels
US7930861 *Sep 13, 2007Apr 26, 2011Composite Panel Systems LlcBuilding, building walls and other structures
US8082711 *Sep 13, 2007Dec 27, 2011Composite Panel Systems, LlcWalls and wall sections
US8234827Sep 1, 2006Aug 7, 2012Schroeder Sr RobertExpress framing building construction system
US8266867Mar 11, 2011Sep 18, 2012Composite Panel Systems, LlcBuilding panels
US8272190Dec 18, 2008Sep 25, 2012Composite Panel Systems, LlcMethod of fabricating building wall panels
US8322097 *Sep 13, 2007Dec 4, 2012Composite Panel Systems, LlcMethods of constructing buildings and building appurtenances
US8322098Apr 26, 2011Dec 4, 2012Composite Panel Systems, LlcBuildings, building walls and other structures
US8393123Mar 11, 2011Mar 12, 2013Composite Panel Systems, LlcBuildings, building walls and other structures
US8516777 *Aug 16, 2012Aug 27, 2013Composite Panel Systems, LlcMethod of fabricating building wall panels
US8607531Oct 11, 2011Dec 17, 2013Composite Panel Systems, LlcBuilding panel assemblies and methods of use in wall structures
US8793966Oct 11, 2011Aug 5, 2014Composite Panel Systems, LlcBuilding panels and methods of making
US8904737Dec 17, 2013Dec 9, 2014Composite Panel Systems, LlcBuilding panel assemblies and methods of use in wall structures
US20120291378 *Aug 6, 2012Nov 22, 2012Schroeder Sr RobertExpress framing system
US20130031858 *Aug 16, 2012Feb 7, 2013Composite Panel Systems, LlcMethod of fabricating building wall panels
WO2001046531A2 *Dec 21, 2000Jun 28, 2001Bonds Delton JModular building frame
Classifications
U.S. Classification52/284, 52/289, 52/293.3, 52/601
International ClassificationE04B1/76, E04C2/38, E04B1/74
Cooperative ClassificationE04B2001/7679, E04B1/74, E04C2/384
European ClassificationE04C2/38C, E04B1/74