Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS1879142 A
Publication typeGrant
Publication dateSep 27, 1932
Filing dateFeb 17, 1930
Priority dateFeb 17, 1930
Publication numberUS 1879142 A, US 1879142A, US-A-1879142, US1879142 A, US1879142A
InventorsEgan Mathew M
Original AssigneeEgan Mathew M
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
US 1879142 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Sept. 27,' 1932. M, M EGAN 1,879,142

PROPELLER Filed Feb. 17. 1930 2 Sheets-Sheet l LVIII/III ATTORNEY l sept. 27, 1932. M M ESAN 1,879,142

PR01 LLER Filed Feb. 17, 19:50 2 sheets-sheet 2 'Patented Sept. 27, 1 932 UNITED STA 'MATHEW M. EGAN, 0F FORT WORTH, TEXAS PROPELLEB Application iiled February 17, 1930.l Serial No. 429,171.

. As is well known by aeronautical engisite -`directions so that lsuch air becomes a neers and experts a rapidly frequently churns the air and such air getting tion to be rotated propeller tangible substance'which is placed in a pOsihandled or to `be acted uponatial` Y away from the propeller materially and at greater advantage by the main propeller. times seriously decreases the etic'giQg/the/A/fmher object resides in the provision thrust of the propeller 'aid'ciites termed a slip.

It is the object of this invention to e'ec- Ispeed of the main tively overcome such contingency by the provision of means :tor banking or wedging` the air against the propeller to substance that will olier the proper and desired resistance to the thrust of the propeller. other novel features of construction,

In carrying out my invention I aim to proat the front of the main propeller, auxiliary propeller has its blades arranged at a different pitch from'the blades of the main w at is of means for mounting both of `th'e blades upon the engine shaft propeller with respect to the speed of the auxiliary propeller. i

To the attainment of the foregoing and provide atangible other objects which will v'present themselves,

certain i l combination and operative association of parts,.

the improvement further resides in vide an auxiliary propeller which is arranged one satisfactory embodiment of which is diswhich closed by the accompanying drawings.

In the drawings: Figure l is a side elevation of propellers propeller and which auxiliary propeller is arin accordance with this invention, parts beranged at a less ratio of speed than the main in g broken away and parts in section. Figure 2 is a sectional view approximately on the line 2-2 of Figure 1.

Figure 3 is a front elevation of lthe imthe opposite thrust of the'blades of the main provement.

the blades of both the auxiliary Figure l is and main piopellersI feeding air in the same clearly a diagrammatic view to more illustrate the manner in which they direction but at opposite angles so that such air is wedged between the auxiliary'and main air meeting the blades of the main propeller blades.

is rasped, delivered and directed by such bla es at an angle different to the course of the air started by the auxiliary propeller and thereby eliminating the slip.

Referring now to the drawings in detail, the numerall designates a portion of the engine frame, and 2 the engine drive shaft. On the outer and reduced end of the shaft 2 It is also my purpose to provide means for there is fixedly secured the auxiliary air dil the overcoming of cavitation by having the recting propeller 3. From the hub of the 40 meet the blades of the main propeller,

normal or less speed than that sired angles.

front or auxiliary propeller running in an propeller extend oppositely directed blades anti-clockwise direction (facing propeller as- 4,

and the said blades are arranged at de- Onthe outer face of the engine frame 1 there are fixed the short or stub shafts 4 on which which are journaled pinions 5. These pinmain propeller i-s revolved in a clockwise diions are in mesh with the gear wheel 6 which rection and thereby causing the blades of the is ixedly is rotated at a greater ions carry propeller, to take er pini'ons the auxiliary proions 5 and or wedge the livev air between closes secured on the shaft 2. E The pinon their outer faces other and larg- 7. It is to be noted that the pin- 7 are respectively three innumber or and are equidistantly spaced and the pinions gh 7 are in mesh with an internal ring gear 8 propeller blades or in other on the flange of a case or housing 9 that enthe pinions and gears that constitute the planetary speed increasing gearing.

and for increasing the Fixed on the outer face of the housing 9 there is the hub portion l of the inner and main or power propeller and the angular pitch of the oppositely` directed blades ll of the power or main propeller is opposite to the pitzh of the blades 4 of the auxiliary propel er 3f The hub of the main or power propeller does not have a direct bearing on the shaft 2, the said hub having let through the Center thereof and secured thereto a bearing sleeve 12 that has on its ends flanges 13 and the outer flange is provided with an annular groove that affords one of the elements of a race-way for anti-frictional bearings 14. The second clement of the race-way is provided with a flangedcendnfthrust bearing sleeve lnvhie is arranged around the shaft 2 andvhich is in contact with the inner face of the hub of the auxiliaI"y\1 ropeller` `3.

The auxiliary propeller 3 turns at a ma-VVV terially less speed than that of the main propeller, and likewise is rotated in an anticloclwise direction, facing the propeller asf sembly, while the main propeller travels in a clockwise direction. The comparatively slowly rotating auxiliary propeller, having its blade arranged at an opposite angle to the blades of the main propeller will take up and feed air to the main propeller, bunching or wedging suclrairso that the blades of the main propeller traveling at a comparatively great speed will take hold of the air thus supplied and such air becoming a tangible substance offers a resistance to the thrust of themain propeller so that the danger of slips, is entirely overcome. l As a matterof-fact, the auxiliary propeller forces the current of air against the main propeller and Ythe main propeller will 4likewise force the air against the auxiliary propeller and because of the difference-.inthe ratio of speed between the main and auiliaryxpropeller no vacancy or vacuum which .is naturally caused by a high speed single propeller blade can occur.

The above principle is also applicable to water propulsion either as a tractor or a propeller, the speed being altered as is also'the pitch of the blade to suit the particular case. Figure 3 illustrates the manner in which the blades are reversely turned and Figure 4 illustrates by diagram the manner in which the air is wedged between the auxiliary and the main propellers. The diagram in Figure 4 discloses clearly the method employed in compressing the air stream to give a. tangible substance with more density and thereby increasing the power produced by the sum total of each propeller running singly, such power being increased from threeto live times more vthan that of the ordinary propeller now in use. l

The two propeller blades are to be shaped and set at a proper angle to handle air stream at the best advantage. The auxiliary propeller always brings the proper air stream to supply the main blade regardless of the wind direction. The gear used in reversing the main blade or blades is an increased internal gear ratio, and, as above stated, causes the main blade to revolve fasterr slowerfas'the #M case may be, in proper relation to the auxiliary blade `that feeds air to the main blade.

From experience I have found that propellers constructed in accordance with my'invention will work equally well on lower speeds such as the Diesel engine and can be used on aseparate shaft with proper bearings, powered by two diferent engines or motors in an air shaft or tunnel through a plane or dirigible and that. the speed can be reduced fifty percent with very little loss in efficiency of my improved air wedgingpropeller. The propellers navigate air at a muchless densitsa K than thefuordinary well known propeller,

thereby increasing th'ceiling.

The propeller having a reversed motion acts as a stabilizer by the gyroscopic effect giving the plane no dirft or pull as by propellers which revolve in only one direction,

. The speed ofthe landing plane is much lower than can be attained by single propellers, be- .cause the engine handling two blades is more iexible and the propeller-s revolving in 'op- 95 posite directions give less vibration-to the craft and as stated is easier on the engine on account of gyroscopic effect.

It is to be noted that in all cases the front or auxiliary propeller is to -be revolved in a direct manner with the engine speed, and the main blade is revolved at a faster speed, this being the most efficient ratio on account of p the reduction of the revolutions permitted of the engines. It is, of course, possibleto obtain the same power ratio or step up of power by revolving the auxiliary blade evenfaster than the main blade as the air is acted on by the same wedging principle and also if desired more blades may be added to the construction.

Having described the invention, I claim:

A propulsion for flying machines comprising an auxiliary propeller secured to a power shaft, an anti-friction bearing on the shaft yand spaced from the. hub of the propeller, l a main propeller having the hub thereof mounted on the bearing for free rotation relative to the shaft, a spacing sleeve on the shaft and engaging at one end the hub of the auxiliarypropeller and having anti-friction en gagement with the bearing at' the 4other end,

`and a planetary transmission between the shaft and the hub of the main propeller for rotating the latter at a different speed of rotaf tion from the speed of rotation of the auxiliary propeller and in a reverse' direction thereto.

In testimony whereof I aiiix my signature.


Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2416689 *Sep 27, 1944Mar 4, 1947Grady Thomas MPropulsion mechanism
US2425904 *Nov 29, 1941Aug 19, 1947James B VernonTurbine
US2518599 *Mar 8, 1947Aug 15, 1950William A KingAutomatic tool feeding mechanism
US4591313 *Dec 30, 1983May 27, 1986The Boeing CompanyPropeller pitch control system and apparatus
US5601464 *Nov 30, 1994Feb 11, 1997Sanshin Kogyo Kabushiki KaishaTransmission system for counter-rotational propulsion device
US6381948 *Jun 23, 1999May 7, 2002Mtu Aero Engines GmbhDriving mechanism with counter-rotating rotors
US6824094 *Jun 6, 2002Nov 30, 2004Charron RichardPower assembly for ornicopter
US7219855 *Jul 11, 2003May 22, 2007Sharp Kabushiki KaishaRising and moving apparatus and manufacturing method thereof
US20030226933 *Jun 6, 2002Dec 11, 2003Charron RichardPower assembly for ornicopter
US20040195439 *Jul 11, 2003Oct 7, 2004Masaki HamamotoRising and moving apparatus and manufacturing method thereof
DE3941852A1 *Dec 19, 1989Jun 20, 1991Mtu Muenchen GmbhPropfantriebwerk mit zwei entgegengesetzt drehenden fanrotoren
U.S. Classification416/129, 123/179.27
International ClassificationB64C11/48, B64C11/00
Cooperative ClassificationB64C11/48
European ClassificationB64C11/48