Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS1893270 A
Publication typeGrant
Publication dateJan 3, 1933
Filing dateJun 17, 1929
Priority dateJun 17, 1929
Publication numberUS 1893270 A, US 1893270A, US-A-1893270, US1893270 A, US1893270A
InventorsCaldwell William J
Original AssigneeNat Air Control Co Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Radiator
US 1893270 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

RADIATOR Filed June 17 1929 ATTORNEY Patented Jan. 3, 1933 UNITED STATES vPATENTY OFFICE WILLIAI J'. CALDWELL, OIF KANSAS CITY, MISSOURI, ASSIGNOB TO THE NATIONAL AIB CONTROL CO. IN G., OF KANSAS CITY, MISSOURI, A CORPORATION 0F DELAWARE RADIATOR application ma :une 17, 1929. serial nu. 371,500.

My invention relates to radiators and more particularly to that type of radiators in which a iuid is passed through a tube bundle for aiiecting the temperature of the tubes and a iiuid to be treated is passed into contact with the said tubes for altering the temperature of the last named iiuid, the principal objects of the invention being to enhance the transmission of heat between the two iiuids, to assure equal distribution of a fluid such as steam through the several tubes of a radiator and to promote the conductivity of ins mounted on radiator tubes.

I have found that I can enhance the conductivity of ns on radiator tubes by forming the same of a metal having high degrees of ductility and heat conductivity but which has a low melting point. I have found it desirable to weld tubes of radiators to header members and when such means of mounting the tubes is employed, the heat of welding is uickly'transmitted through the tubes to the dus and may tend to melt the same.

A further object of the invention therefore is to employ fins made of metal having relatively low melting point and obviate the hazard of melting such fins during processes of assembling radiators.

In accomplishing these and other objects of the invention, I have provided improved details of structure, the preferred forms of which are illustrated in the accompanylng drawing, wherein:

Fig. 1 is a perspective view of a radiator constructed in accordance with my invention, portions of headers being broken away to illustrate interior features therein.

Fig. 2 is a sectional view of portions of a' senting a type of apparatus in which fluid is,

moved for affecting the temperature of another uid and herein illustrated and described as the well known type of radiator in which steam is employed for heating air. The radiator comprises a steam inlet header 2, an outlet or return header 3, and a group or bundle of tubes 4 communicating at their opposite ends respectively with the inlet chamber 5 and the outlet chamber 6 of the respec tive headers.

The inlet header includes a header plate 7 having a plurality of apertures 8 distributed longitudinally and laterally to receive the inlet ends of the tubes, which preferably extend an appreciable distance into the inlet chamber to accommodate means for securing the tubes to the header plate. The securing means preferably consists of welding indicated by annular tapering masses of metal 9 built up on the inner surface of the header plate around the openings and in engagement with the projecting ends-of the tubes.

The inlet header further comprises side walls 10 having lower edges engaging the marginal portions of the header plate and welded thereto as indicated at 11, and a top plate or cover 12 provided with an inlet opening 13 preferably located at the longitudinal and lateral center of the top plate and provided with an internally screw-threaded collar 14 for attaching thereto a supply pipe for delivering fluid to the radiator.

The outlet header is similarly constructed with the exception that the means of-communication between the outlet header chamber and an exterior conduit includes an outlet opening 15 provided at one corner of the cover plate 16 of the outlet header to receive the return pi 17.

The inlet header is further provided with apair of battles 18 and 19 comprising -winglike walls having arcuate surfaces curved suitably for directing the inlet fluid toward parts of the inlet chamber for distributing the fluid equally through the chamber. In

ythe illustrated example the batlles are positioned transversely of the rectangular header with their upper edges parallel and spaced equally from the axis of the inlet opening and also spaced equally from edges of the opening.

The ends of the baiiies are preferably weld- I ed to the longitudinal side walls of the inlet header, and the u per edges engage the cover 12, whereby t ey brace and reinforce the header at the central portion thereof partly will be diverted by the bailies toward the ends of the header. The incoming column will thus be split up and spread out so that it may constitute a. relatively extensive volume and steam will tend to enter all the tubes in substantially the same amounts and at the same velocity.

The steam which moves directly toward the header plate at right angles thereto will have greater velocity and will tend to move into the tubes adjacent the opening in relatively large volume. To limit the flow of steam into such tubes I provide orifice plates 20 for mounting on the upper ends of tubes adjacent the inlet and may vary the openings of the plates suitably for their positlon in relation to the inlet, to restrict the flow of steam into the cover tubes proportionately to the flow of steam into other tubes.

The effective areas of the inlet ends of the tubes may thus be varied in accordance with and proportionate to the angular d1splacement of the tubes from the axis of the inlet opening, and also in view of the relations of the tubes to the baffles.` v

Mounted on each of the tubes between the header plates is a series of radiating fins such as 21, 22, and 23 including cylindrical body portions 24 having initially smaller interior diameters than the exterior diameter of the tubes and adapted to be pressed on the tubes, and radially extending disk-like web portions or vanes 25. The fins constitute distributors for distributing the hea-t of the tubes over a large area and the webs are adapted to offer a relatively great extent of surface to the fluid which is to be brought into Contact with the radiator, for 'quickly transferring heat between the fluid in the radiator andthe fluid outside the same.

The fins are preferably formed with radial grooves 26 in the webs, said grooves forming intermediate rib-like ridges 27 whereby a regular annular series of tapering corrugations are produced, all having substantially that the bottoms of the grooves incline ing inclined walls extending both above and' below a perpendicular to the axis of the body in the figures.

The fin members may be formed of disks, the central portions being pressed outwardly tp form tubularV mounting bodies, and the s {i1-t radiating area and provide the radial channels.

The depth of a groove decreases gradually from the periphery of the iin toward the cylindrical body and I preferably form a relatively flat narrow web-like annulus at the juncture of the web portion with the body portion, i. e. by stopping the corrugations short of the body so that the annulus referred to is unindented. The said web-likeannulus consists of the inner central portion of the disk from which the fin is formed and will space the corrugations from the cylindrical body portion 24.

In order to enhance the transfer of heat from a tube to the fluid to be affected, I preferably form the fins of metal-.having relatively high degree of heat conductivity, for example aluminum. When such metal is used, however, the heat of welding the end of a tube to a header plate is transmitted through the tube to the fins and may cause melting of fins adjacent the part to which the welding heat is applied. v

I have found that ns formed of iron or other metal havin a higher melting point than the metal of flns just described may be substituted at positions adjacent the ends of the tube. I therefore provide fins designated 21 and 22 adjacent the ends of the tube, at botl. the inlet header and outlet header plates, made of metal having a relatively high melting point but still adapted to transfer heat with relative readiness. The major portion of heat received by the tube during the welding process will move slowly in and be absorbed by the first one or two fins and radiated away thereby to prevent the heat from being transmitted at dangerously high temperatures to the relatively easily melted members 23 of the series.

The fins such as 21 and 22 are relatively Anon-conductive of heat, but take up substantially all of the heat of welding during the relatively brief period during which the weldingprocess is employed.

The outlet or return header is further preferably provided with a plurality of outlet openings 15 at corners of one end of the header. f I further install reinforcing members 28, on the cover plate 16 within the outlet header lchamber, comprising inverted V- shaped ribs having ends welded to the longitudinal side walls of the header. In order to permit flow of fluid over the cover plate toward the outlet openings 15, I form leg-like anges 29 on the lower edges of the ribs at their ends, and attach the edges of the flanges to the cover plate, whereby elongated notches portions corrugated to increase thenseaavo are formed in the lower edges of the ribs, and

- portions of the edges are thus spaced from the cover plate. The ianges extend an appreciable distance along the cover plates to provide relatively extended engaging portions for securing the ribs to the cover plate, and enhancing the stiiening effect of the ribs on the header side walls and cover plate.

In using the device, for example, for passing steam through the radiator to heat air driven into contact with the tins, the heat is readily transmitted through the tubes and lips and a relatively high amount of radiation occurs due to the large expanse of the spreading fins, enhanced by the corrugations of the same. The greatly increased surface at the periphery of a disk dueto the corrugations and particularly due to the fact that the corrugations are deeper at the periphery than adjacent the cylindrical body, enhances the radiating effect.

The lins are preferably positioned on a tube so that the ribs of adjacent fins are aligned, and form symmetrical funnel-like grooves which tend to control air passing through the radiator and direct the air toward the cylindrical bodies for absorbing heat from the bodies and therefore withdrawing a maximum amount of heat from the radiator and steam passing therethrough.

Air passing through the radiator at a point relatively distant from a tube and impinging a ribbed portion of a n will therefore tend to be diverted along the iin to increase the extent of contact of air with the fin and maj'r further be conducted in tne gutter-like channels into contact with the cylindrical body of the iin.

The battles at the inlet of the steam header and the orifice plates which retard the portions of the steam column bearing directly toward the inlet ends of the tube, tend to equalize the amounts and velocity of the streams of steam moving into and throu h the tubes for distributing the steam equal y through the bundle of radiator tubes. The device thus equalizes the heating of the entire radiator, so that the entire column of air that passes through the radiator will be heated, and all portions of the air stream willbe equally heated.l

It is apparent that the device may be employed for transmitting heat either from or to a fluid being passed through the tubes, and

is therefore adaptable for refrigeration uses in systems where a gas, cold water or brine is employed.

Attention is called to the extension of the fin collars over the tubes, whereby a relatively extensive contact of the lins with theV tubes is provided for, thus eiecting more eicient heat transfer between the tubes and the fins.

an outlet header, tubes havinl opposite ends welded in said headers, and s mounted on said tubes includinga lin formed of relatively high conductive material spaced from the inlet header and a iin formed of materia-l of @relatively low conductivity to heat, mounted on the tube adjacent said inlet header, the fin of low conductivity to heat having a melting point unaidected by the heat of welding lthe tube to the headers.

'2. In a device of the'character described including a header member having an apertured plate and a tube having one end welded in said aperture, a series of fins mounted on said tube including a iin formed of material having relatively high degree of heat conductivity and a in formed of material having a lower degree of heat conductivity spacing said first named iin from the header plate, the fin of lower heat conductivity having a melting point unaected by the heat incident to welding the tube to the header member.

3. .In a device of the character described, a radiator includin an inlet header and a tube having one en welded in said header, a series of fins mounted on the tube including a fin formed of aluminum positioned in spaced relation with said header and a finformed of iron mounted between said first named fin and the header, the iron fin having a melting point unaffected by the heat inc ident to welding the tube to the inlet header.

4. In a device of the character described including a plurality of tubes, an outlet header receiving the lower ends of the tubes and having a cover plate provided with stillening ribs having ends engaged with vertical walls of the header, said ribs having lower edges provided at their ends with legs engag- .ing the cover plate for spacing the body portion of the ribs from the cover plate.

5. In a device of the character described including a header and tubes having one end secured in said header, and a pluralit of fins arranged in adjacentgroups mounte .on said tubes, the fins of one group having a heat conductivity different than an adjacent group. Y 6. In a radiator including a tube and a lurality of fins having dilerent heat con uctivity mounted on said tube, said fins being arranged in groups composed of fins having -the same heat conductivit v 7. In a radiator including a tube, groups of adjacent radially corrugated fins mounted on said tube, the groups adjacent the ends of said tube having a different heat conductivity than the intermediate group.

In testimony whereof I aix my signature.

WILLIAM J CALDWELL.

What I claim and desire to secure by Let-

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2475604 *Nov 2, 1943Jul 12, 1949Foster Wheeler CorpHeat exchange apparatus
US2628079 *Jun 22, 1950Feb 10, 1953Ford Motor CoRadiator construction
US2667337 *Aug 6, 1947Jan 26, 1954Everett ChapmanFinned element for thermal or heat transfer purposes
US2824211 *Jul 6, 1955Feb 18, 1958Fairchild Engine & AirplaneResistance welding
US3191673 *Apr 25, 1962Jun 29, 1965Young Radiator CoSectionalized heat-exchanger core-unit
US3249156 *Apr 17, 1964May 3, 1966Gen ElectricFin-on-tube type heat exchanger
US4093024 *Jun 15, 1976Jun 6, 1978Olin CorporationHeat exchanger exhibiting improved fluid distribution
US4235081 *Oct 31, 1978Nov 25, 1980Kellogg-American, Inc.Compressed air dryer
US4255390 *Jul 12, 1979Mar 10, 1981E. I. Du Pont De Nemours And CompanyCorrugated interface zone refiner
US4546610 *Aug 16, 1982Oct 15, 1985Zwick Eugene BPrevaporizing combustion method
US4791982 *Apr 6, 1987Dec 20, 1988Man Nutzfahrzeuge GmbhRadiator assembly
US6199625Jun 11, 1999Mar 13, 2001Psc Computer Products, Inc.Stackable heat sink for electronic components
US6450250 *Aug 3, 1999Sep 17, 2002Psc Computer Products, Inc.Stackable heat sink for electronic components
US8235099 *May 28, 2008Aug 7, 2012Showa Denko K.K.Heat exchanger
US20080296003 *May 28, 2008Dec 4, 2008Showa Denko K.K.Heat exchanger
CN100575808CNov 23, 2005Dec 30, 2009韦巴斯托股份公司Heat exchanger for an air heating device and method for producing a heat exchanger
WO2006056189A1 *Nov 23, 2005Jun 1, 2006Webasto Ag FahrzeugtechnikHeat exchanger for an air heating device and method for producing a heat exchanger
Classifications
U.S. Classification165/146, 165/151, 165/180, 165/182, 165/174
International ClassificationF28D1/04, F28F1/24, F28D1/053
Cooperative ClassificationF28F1/24, F28D1/05333
European ClassificationF28F1/24, F28D1/053C6