Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20010000894 A1
Publication typeApplication
Application numberUS 09/728,328
Publication dateMay 10, 2001
Filing dateDec 1, 2000
Priority dateSep 4, 1998
Also published asUS6193833, US6394162, US6432307, US20010000877
Publication number09728328, 728328, US 2001/0000894 A1, US 2001/000894 A1, US 20010000894 A1, US 20010000894A1, US 2001000894 A1, US 2001000894A1, US-A1-20010000894, US-A1-2001000894, US2001/0000894A1, US2001/000894A1, US20010000894 A1, US20010000894A1, US2001000894 A1, US2001000894A1
InventorsJohn Gizowski, Markus Beer, J. Schriempf
Original AssigneeGizowski John W., Markus Beer, Schriempf J. Thomas
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Housings include circumscribing flanges, the first is laser light transmissive, the second is opaque and meltable by laser light; a laser weld bead at the juncture couples the flanges to provide a high quality seal
US 20010000894 A1
Abstract
A preferred transmission filter (10) includes a first flange (18) transparent to a laser beam (58) and includes a second flange (20) opaque to the laser beam (58) and meltable upon exposure thereto. The flanges (18, 20) are in registered, abutting relationship with a laser weld bead (62) at the juncture (44) between the flanges (18, 20) to provide a fluid seal circumscribing the filter (10). The preferred filter manufacturing apparatus (12) includes a laser (54) coupled to a robot arm (50) controlled by a programmable logic controller (52). The controller (52) operates the robot arm (50) in order to direct the laser beam (58) through the first flange (18) onto the second flange (20) and along the juncture (44) to form the laser weld bead (62).
Images(1)
Previous page
Next page
Claims(32)
What is claimed is:
1. A fluid filter comprising:
a first housing section having a circumscribing first flange composed of synthetic resin material transmissive of laser light;
a second housing section having a circumscribing second flange composed of synthetic resin material opaque to laser light and meltable upon exposure thereto;
said flanges as being in registered, abutting relationship at a circumscribing juncture, said sections forming an interior chamber;
filter received in said chamber; and
a laser weld bead at said juncture coupling said flanges and thereby said sections to form said filter and providing a fluid seal circumscribing said filter.
2. The filter of
claim 1
, said synthetic resin material including glass-filled nylon.
3. The filter of
claim 1
, said first flange being composed of unpigmented, glass-filled nylon, said second flange being composed of pigmented, glass-filled nylon.
4. The filter of
claim 1
, said first housing section and first flange being integrally composed of said synthetic resin material, said second housing section and said second flange being integrally composed of said synthetic resin material.
5. The filter of
claim 4
, said first flange being composed of unpigmented, glass-filled nylon, said second flange being composed of pigmented, glass-filled nylon.
6. A fluid filter manufacturing apparatus comprising:
a robot arm;
a programmable processor coupled with said robot arm and operable to control the movement thereof;
a laser coupled with said robot arm operable to emit a laser beam; and
a fixture configured to hold a fluid filter, the filter including first and second flanges circumscribing respective housing sections with said flanges in registered, abutting relationship at a circumscribing juncture therebetween, with the first flange being composed of synthetic resin material transmissive to said laser beam and the second flange being composed of synthetic resin material opaque to said laser beam and meltable upon exposure thereto, the sections forming a chamber with filter media received therein,
said processor including programming to operate said robot arm in a manner to direct said laser beam through the first flange onto the second flange of a filter held by said fixture along a path circumscribing the filter at the juncture in order to form a laser weld bead thereat forming a circumscribing fluid seal and joining the sections to form the filter.
7. The apparatus of
claim 6
, said processor including a programmable logic controller.
8. The apparatus of
claim 6
, said laser including a neodynium YAG laser.
9. The apparatus of
claim 6
, said laser including a pulsed laser.
10. The apparatus of
claim 6
, said laser including a continuous wave laser.
11. A fluid filter manufacturing method comprising:
(a) placing first and second filter sections of a fluid filter in an abutting relationship, said first section including a circumscribing first flange composed of synthetic resin material transmissive to laser light,
said second section including a circumscribing second flange composed of synthetic resin material opaque to laser light and subject to melting upon exposure thereto,
said flanges being complementally configured and defining a chamber with filter media therein,
step (a) including the step of placing said flanges in an abutting relationship, there being a circumscribing juncture between said flanges;
(b) directing laser light from a source thereof through said first flange onto said second flange at said juncture thereby forming a melt of synthetic resin material at said juncture; and
(c) discontinuing said laser light allowing said melt to solidify in order to join said flanges and thereby join said sections to form said fluid filter and to form a fluid seal circumscribing said filter at said juncture.
12. The method of
claim 11
, said synthetic resin material including glass-filled nylon 6/6.
13. The method of
claim 11
, said first flange being composed of unpigmented glass-filled nylon 6/6.
14. The method of
claim 13
, said first section being integrally composed of unpigmented glass-filled nylon 6/6.
15. The method of
claim 11
, said second flange being composed of pigmented glass-filled nylon 6/6.
16. The method of
claim 15
, said second section being integrally composed of pigmented glass-filled nylon 6/6.
17. The method of
claim 11
, step (b) including the step of directing a laser beam as said laser light from a neodynium YAG laser as said source.
18. The method of
claim 11
, step (b) including the step of directing a laser beam as said laser light as a pulsed laser beam.
19. The method of
claim 11
, step (b) including the step of directing a laser beam as said laser light as a continuous wave laser beam.
20. The method of
claim 11
, step (b) including the step of directing the laser beam as said laser light along a continuous path defined by said juncture.
21. The method of
claim 11
, there being a laser coupled with a laser shifting mechanism controlled by programmable processor, step (b) including the step of controlling said shifting mechanism according to the programming of said processor to shift said laser in a manner to direct a laser beam as said laser light emitted therefrom along said juncture.
22. The method of
claim 21
, said processor including a programmable logic controller.
23. The method of
claim 21
, said shifting mechanism including a robot arm.
24. The method of
claim 21
, said laser including a neodynium YAG laser.
25. The method of
claim 24
, said laser including a pulsed laser.
26. The method of
claim 24
, said laser including a continuous wave laser.
27. The method of
claim 11
, said first section being integrally composed of unpigmented synthetic resin material, said second section being integrally composed of pigmented synthetic resin material, step (b) including the step of directing a laser beam as said laser light from a pulsed laser along a path defined by said juncture.
28. The method of
claim 27
, there being a laser coupled with a laser shifting mechanism controlled by programmable processor, step (b) including the step of controlling said shifting mechanism according to the programming of said processor to shift said laser in a manner to direct said laser beam emitted therefrom along said juncture.
29. The method of
claim 28
, said laser including a pulsed laser.
30. The method of
claim 29
, said synthetic resin material including glass-filled nylon 6/6.
31. The method of
claim 29
, said laser including a continuous wave laser.
32. The method of
claim 11
, said filter including a transmission filter.
Description
RELATED APPLICATION

1. This is a divisional Application of Ser. No. 09/387,807 filed Sep. 1, 1999, which is hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

2. 1. Field of the Invention

3. The present invention relates to the field of transmission filters and the manufacture thereof. In particular, the invention is concerned with a preferred transmission filter having a first flange transparent to a laser beam and a second flange opaque to the laser beam and meltable upon exposure thereto. The flanges are in registered, abutting relationship with a laser weld bead at the juncture between the flanges to provide a fluid seal circumscribing the filter.

4. 2. Description of the Prior Art

5. A prior art fluid filter, such as an oil or transmission filter for a vehicle, includes first and second housing sections each presenting a circumscribing flange composed of synthetic resin material with the housing sections defining a chamber containing filter media. One of the flanges presents an upstanding weld rib that engages the surface of the other flange at a juncture. To join the flanges during manufacture, the flanges are vibration welded by vibrating one of the flanges at a high frequency. This creates heat at the juncture to create a weld bead circumscribing the filter and providing a fluid seal. The edges of the filter media are crimped between the flanges inboard of the weld bead to provide an additional fluid seal.

6. One of the problems with the prior art is that the edges of the filter media cannot be crimped as tightly as desired because to do so might result in damage to the edges during the vibration welding process. Another problem is that vibration welding process may not allow production rates as high as desired.

SUMMARY OF THE INVENTION

7. The present invention solves the prior art problems discussed above and provides a distinct advance in the state of the art. In particular, the fluid filter, manufacturing apparatus and method hereof enable increased manufacturing rates and provide a higher quality fluid seal.

8. The preferred fluid filter includes first and second housing sections forming an interior chamber with filter media received therein. The housing sections include respective first and second circumscribing flanges composed of synthetic resin material with the first flange composed of material transmissive to laser light and the second flange opaque to laser light and meltable upon exposure thereto. The flanges are in a registered, abutting relationship at a circumscribing juncture. A laser weld bead at the juncture couples the flanges to provide a fluid seal circumscribing the filter.

9. The preferred filter manufacturing apparatus includes a robot arm, a programmable processor coupled with the arm to control the movement thereof, a laser coupled with the robot arm operable to emit a laser beam, and a fixture to hold the components of the preferred fluid filter. The processor includes programming to operate the robot arm in a manner to direct the laser beam through the first flange onto the second flange along a path circumscribing the filter at the juncture in order to form the laser weld bead thereat in accordance with the preferred method of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

10.FIG. 1 is a schematic representation illustrating the preferred fluid filter along with the preferred filter manufacturing apparatus in accordance with the present invention;

11.FIG. 2 is a partial sectional view of the filter of FIG. 1 before formation of a laser weld bead by the apparatus of FIG. 1; and

12.FIG. 3 is a view similar to FIG. 2 after formation of the laser weld bead.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

13.FIG. 1 illustrates preferred fluid filter 10 along with preferred manufacturing apparatus 12 in accordance with the present invention. As further illustrated in FIGS. 2 and 3, filter 10 includes first and second housing sections 14 and 16 having respective first and second, circumscribing flanges 18 and 20 extending therefrom, and filter media 22.

14. First housing section 14 is preferably composed of synthetic resin material transmissive to laser light such as unpigmented, glass-filled, nylon 6/6. Housing section 14 integrally includes housing walls 24 and 26 with first flange 18 extending outwardly from housing wall 26.

15. First flange 18 integrally includes flange wall 28 extending generally transversely from housing wall 26, edge wall 30 extending from the distal edge of flange wall 28 toward second housing section 16, and crimping rib 32 extending from the inboard face of flange wall 28 adjacent housing wall 26. Flange wall 28 also presents weld surface 34 located between edge wall 30 and rib 32.

16. Second housing section 16 is preferably composed of synthetic resin material opaque to laser light and meltable upon exposure thereto such as black pigmented, glass-filled, nylon 6/6. Housing section 16 integrally includes housing walls 36 and 38 with second flange 20 extending outwardly from housing wall 38.

17. Second flange 20 integrally includes flange wall 40 extending generally transversely from housing wall 38, and upstanding weld rib 42 extending from the inboard face of flange wall 40 toward flange wall 28 of first flange 18. The distal end of weld rib 42 presents weld face 44 abutting weld surface 34 of first flange 18 to form circumscribing juncture 46 between flanges 18 and 20.

18. Flange wall 40 is also configured to present crimping groove 48 complementally configured and positioned to receive crimping rib 32. The edges of filter media 22 are positioned inboard of juncture 46 and crimped between rib 32 and groove 48.

19. Manufacturing apparatus 12 includes robot arm 50, programmable logic controller (PLC) 52, laser 54 and fixture 56. PLC 52 is operable to control the operation and movement of robot arm 50 according to the programming stored therein. Robot arm 50 and PLC 52 are conventional in nature and the programming thereof is well within the skill of the art. Fixture 56 is also conventional of the type used for holding a fluid filter in position during conventional vibration welding.

20. Laser 54 is preferably a 400 watt neodynium YAG pulse laser for producing a pulsed laser beam. It will also be appreciated that other types of lasers can be used such as a 2000 watt neodynium YAG continuous wave laser.

21. Initially, filter 10 is placed in fixture 56 with flanges 18, 20 in registered, abutting relationship with filter media 22 received within chamber 60 defined by housing walls 24, 26 and 36, 38, and with the edges of the filter media crimped between rib 32 and groove 48 as illustrated in FIG. 2. First housing section 14 is positioned between laser 54 and second housing section 16.

22. In operation, PLC 52 controls robot arm 50 according to the programming in order to direct laser beam 58 emitted from laser 54 toward filter 10. More specifically, PLC 52 directs laser beam 58 through first flange 18, which is transmissive to laser light, onto weld face 44 of second flange 20 at juncture 46 and along the path of juncture 46. Upon exposure to laser beam 58 as it traverses along juncture 46, weld face 44 (opaque to laser light) is heated as is the material adjacent weld surface 34 to form a melt of synthetic resin material.

23. After completing the closed loop path defined by juncture 46, PLC 52 turns off laser beam 58. The melt of synthetic resin material rapidly cools to form a laser weld bead 62 at juncture 46 circumscribing filter 10 to join flanges 18, 20 and thereby join housing sections 14, 16 to form filter 10. Laser weld bead 62 also forms a continuous fluid seal circumscribing filter 10.

24. As will now be appreciated, the filter, manufacturing apparatus and method of the present invention enable high productivity in the manufacture of fluid filters of the type used for transmission fluid and engine oil. The present invention also allows the joining of housing section 14, 16 without vibration welding thereby enabling a closer crimp of the edges of the filter media for a tighter seal than has been possible in the prior art.

25. Those skilled in the art will appreciate that the present invention encompasses many variations in the preferred embodiment described herein. For example, different types of lasers can be used and different types of equipment for directing the laser beam. For example, the laser could be held in a fixed position and controlled mirrors could be used to direct laser beam along a prescribed path instead of using the preferred robot arm. Also, there are a wide variety of materials to form the preferred filter that are also subject to laser welding. Having thus described the preferred embodiment of the present invention, the following is claimed as new and desired to be secured by Letters Patent:

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6444946May 1, 2000Sep 3, 2002Bielomatik Leuze Gmbh + Co.Method and apparatus for welding
US8246819 *Apr 7, 2011Aug 21, 2012Toyota Boshoku Kabushiki KaishaAutomatic transmission fluid filter
US8376147 *Jul 9, 2003Feb 19, 2013Brita GmbhFilter cartridge
US20110259810 *Apr 7, 2011Oct 27, 2011Toyota Boshoku Kabushiki KaishaAutomatic transmission fluid filter
Classifications
U.S. Classification210/435, 210/445, 210/454, 210/453
International ClassificationB01D35/027, B29C65/16, B01D29/11
Cooperative ClassificationB29C66/5412, B29C66/836, B29K2309/08, B29C66/1312, B01D29/111, B01D35/0273, B29C65/1635, B29L2031/14, B29C66/30223, B01D2201/54, B29C65/7841, B29C66/863, B29K2077/00, B29C65/1677, B29C65/1654
European ClassificationB29C65/78F, B29C66/54, B29C66/836, B29C65/16D4, B29C66/1312, B29C66/863, B29C66/30223, B01D29/11B, B01D35/027H
Legal Events
DateCodeEventDescription
Jan 7, 2014FPAYFee payment
Year of fee payment: 12
Nov 21, 2013ASAssignment
Owner name: BANK OF MONTREAL, AS COLLATERAL AGENT, ILLINOIS
Free format text: SECURITY INTEREST (SECOND LIEN);ASSIGNORS:AG INDUSTRIES LLC;BUFFALO FILTER LLC;CHEMCO MANUFACTURINGCO., INC.;AND OTHERS;REEL/FRAME:031694/0487
Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW J
Effective date: 20131121
Free format text: SECURITY INTEREST (FIRST LIEN);ASSIGNORS:AG INDUSTRIES LLC;BUFFALO FILTER LLC;CHEMCO MANUFACTURING CO., INC.;AND OTHERS;REEL/FRAME:031693/0608
Nov 2, 2012ASAssignment
Owner name: FILTRATION GROUP LLC (F/K/A FILTRATION GROUP INCOR
Effective date: 20121031
Free format text: SECURITY AGREEMENT;ASSIGNORS:CHEMCO MANUFACTURING CO., INC.;FILTRAN LLC;FILTRATION GROUP LLC;REEL/FRAME:029232/0325
Owner name: BANK OF MONTREAL, AS ADMINISTRATIVE AGENT, ILLINOI
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COLE TAYLOR BANK;REEL/FRAME:029235/0004
Owner name: FILTRAN LLC, ILLINOIS
Dec 27, 2010ASAssignment
Free format text: SECURITY AGREEMENT;ASSIGNORS:FILTRAN, LLC;FILTRAN HOLDINGS;REEL/FRAME:025568/0588
Owner name: COLE TAYLOR BANK, ILLINOIS
Effective date: 20101220
Dec 23, 2010ASAssignment
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PRIVATEBANK AND TRUST COMPANY;REEL/FRAME:025563/0005
Effective date: 20101220
Owner name: FILTRAN, LLC, ILLINOIS
Apr 16, 2010ASAssignment
Owner name: THE PRIVATEBANK AND TRUST COMPANY,ILLINOIS
Free format text: SECURITY AGREEMENT;ASSIGNOR:FILTRAN LLC;US-ASSIGNMENT DATABASE UPDATED:20100416;REEL/FRAME:24233/948
Effective date: 20091030
Free format text: SECURITY AGREEMENT;ASSIGNOR:FILTRAN LLC;US-ASSIGNMENT DATABASE UPDATED:20100427;REEL/FRAME:24233/948
Free format text: SECURITY AGREEMENT;ASSIGNOR:FILTRAN LLC;REEL/FRAME:024233/0948
Apr 15, 2010ASAssignment
Owner name: FILTRAN LLC,ILLINOIS
Free format text: CHANGE OF NAME;ASSIGNOR:SPX FILTRAN LLC;US-ASSIGNMENT DATABASE UPDATED:20100415;REEL/FRAME:24233/432
Effective date: 20091023
Free format text: CHANGE OF NAME;ASSIGNOR:SPX FILTRAN LLC;US-ASSIGNMENT DATABASE UPDATED:20100427;REEL/FRAME:24233/432
Free format text: CHANGE OF NAME;ASSIGNOR:SPX FILTRAN LLC;REEL/FRAME:024233/0432
Feb 12, 2010FPAYFee payment
Year of fee payment: 8
Mar 24, 2009ASAssignment
Owner name: SPX FILTRAN LLC, NORTH CAROLINA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPX CORPORATION;REEL/FRAME:022427/0913
Effective date: 20090320
Owner name: SPX FILTRAN LLC,NORTH CAROLINA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPX CORPORATION;US-ASSIGNMENT DATABASE UPDATED:20100427;REEL/FRAME:22427/913
Feb 13, 2009ASAssignment
Owner name: GSLE DEVELOPMENT CORPORATION, NORTH CAROLINA
Free format text: MERGER;ASSIGNOR:GSLE SUBCO LLC;REEL/FRAME:022248/0801
Effective date: 20061231
Owner name: SPX CORPORATION, NORTH CAROLINA
Free format text: MERGER;ASSIGNOR:GSLE DEVELOPMENT CORPORATION;REEL/FRAME:022248/0837
Feb 13, 2006FPAYFee payment
Year of fee payment: 4
Apr 27, 2005ASAssignment
Owner name: GSLE SUBCO L.L.C., NORTH CAROLINA
Free format text: MERGER;ASSIGNOR:SPX DEVELOPMENT CORPORATION;REEL/FRAME:016182/0067
Effective date: 20041231
Owner name: GSLE SUBCO L.L.C. 13515 BALLANTYNE CORPORATE PLACE
Free format text: MERGER;ASSIGNOR:SPX DEVELOPMENT CORPORATION /AR;REEL/FRAME:016182/0067
Dec 30, 2002ASAssignment
Owner name: SPX DEVELOPMENT CORPORATION, NORTH CAROLINA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPX CORPORATION;REEL/FRAME:013616/0603
Effective date: 20021206
Owner name: SPX DEVELOPMENT CORPORATION 13515 BALLANTYNE CORPO