Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20010010070 A1
Publication typeApplication
Application numberUS 09/785,926
Publication dateJul 26, 2001
Filing dateFeb 15, 2001
Priority dateAug 13, 1998
Also published asUS6260124, US6772303
Publication number09785926, 785926, US 2001/0010070 A1, US 2001/010070 A1, US 20010010070 A1, US 20010010070A1, US 2001010070 A1, US 2001010070A1, US-A1-20010010070, US-A1-2001010070, US2001/0010070A1, US2001/010070A1, US20010010070 A1, US20010010070A1, US2001010070 A1, US2001010070A1
InventorsRobert Crockett, Ronald Kern, Gregory McBride
Original AssigneeCrockett Robert Nelson, Kern Ronald Maynard, Mcbride Gregory Edward
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
System and method for dynamically resynchronizing backup data
US 20010010070 A1
Abstract
Backup storage is resynchronized to primary storage, ensuring that any new updates received during resynchronization are applied in the proper order relative to resynchronization data. Under normal operations, a data mover mirrors data stored in primary storage to backup storage. If an error condition arises, preventing mirroring, the data mover stores newly received data in primary storage without mirroring the data to backup storage. The data mover also identifies this data in an update map. When the error condition ends, the data mover performs a static resynchronization process, serving to update the backup storage with the un-mirrored data, identified in the update map. When new data is received during static resynchronization, a dynamic resynchronization process is invoked to accurately process the updates. Dynamic resynchronization ensures that newly received data records are copied to backup storage in the proper order (if at all) with respect to versions of the same data being processed by static resynchronization.
Images(5)
Previous page
Next page
Claims(21)
What is claimed is:
1. A method of resynchronizing data contained in a data storage system having primary and backup storage sites both coupled to a data mover, the primary storage site coupled to a host that provides write data to the primary storage site, the data mover serving to mirror data stored at the primary storage site upon the backup storage site, where during predetermined error conditions the data mover stores data received by the storage system in the primary storage site without mirroring the data to the backup storage site, the method comprising:
after termination of an error condition, the data mover performing a static resynchronization process comprising:
identifying data received during the error condition at the primary storage site without mirroring to the backup storage site;
reading the identified data from the primary storage site at one or more read times;
writing the read data to the backup storage site; and
the primary storage site receiving update data from the host for storage while no error condition is occurring, the update data representing changes to data already existing on the primary storage site, and in response:
the data mover determining whether the static resynchronization process is in progress, and if not, copying the update data to the backup storage site;
if the static resynchronization process is in progress, the data mover determining whether the static resynchronization process is already processing data corresponding to the existing data, and if not, copying the update data to the backup storage site;
if the static resynchronization process is already processing data corresponding to the existing data, the data mover copying the update data to the backup storage site only if the host provided the update data to the primary storage site after the static resynchronization read time for the data already being processed.
2. The method of
claim 1
, where:
the data mover configures an update map to identify data received by the storage system in the primary storage site without mirroring the data to the backup storage site due to a predetermined error condition;
the identifying of the data received during the error condition at the primary storage site without mirroring to the backup storage site comprises consulting the update map; and
the determining of whether the static resynchronization process is already processing data corresponding to the existing data comprises the data mover determining whether the update data is identified in the update map.
3. The method of
claim 1
, where:
the reading of the identified data from the primary storage site at one or more read times further includes:
repeatedly reading groups of the identified data until all identified data has been read; and
for each group of read data, storing indicia representing the read data in a progress queue along with a time of the reading.
4. The method of
claim 3
, where the data mover copying the data to the backup storage site only if the host provided the update data to the primary storage site after the static resynchronization read time for the data already being processed comprises:
the data mover referencing the progress queue to determine the time of reading of the updated data;
the data mover copying the data to the backup storage site only if the host provided the updated data to the primary storage site after the time of reading of the updated data, otherwise discarding the updated data.
5. The method of
claim 3
, the method further comprising determining whether static resynchronization has finished and the received update data was provided by the host to the primary storage after the read time of static resynchronization, and only then clearing the progress queue and the update map.
6. The method of
claim 1
, where:
the static resynchronization process further comprises setting a static resynchronization indicator; and
the determining of whether the static resynchronization process is in progress comprises determining whether the static resynchronization indicator is set.
7. The method of
claim 1
, where the primary storage site and backup storage site include disk storage media and the primary storage site receives update data as records comprising subparts of a tracks.
8. A signal-bearing medium tangibly embodying a program of machine-readable instructions executable by a digital processing machine to perform a method of resynchronizing data contained in a data storage system having primary and backup storage sites both coupled to a data mover, the primary storage site coupled to a host that provides write data to the primary storage site, the data mover serving to mirror data stored at the primary storage site upon the backup storage site, where during predetermined error conditions the data mover stores data received by the storage system in the primary storage site without mirroring the data to the backup storage site, the method comprising:
after termination of an error condition, the data mover performing a static resynchronization process comprising:
identifying data received during the error condition at the primary storage site without mirroring to the backup storage site;
reading the identified data from the primary storage site at one or more read times;
writing the read data to the backup storage site; and
the primary storage site receiving update data from the host for storage while no error condition is occurring, the update data representing changes to data already existing on the primary storage site, and in response:
the data mover determining whether the static resynchronization process is in progress, and if not, copying the update data to the backup storage site;
if the static resynchronization process is in progress, the data mover determining whether the static resynchronization process is already processing data corresponding to the existing data, and if not, copying the update data to the backup storage site;
if the static resynchronization process is already processing data corresponding to the existing data, the data mover copying the update data to the backup storage site only if the host provided the update data to the primary storage site after the static resynchronization read time for the data already being processed.
9. The medium of
claim 8
, where:
the data mover configures an update map to identify data received by the storage system in the primary storage site without mirroring the data to the backup storage site due to a predetermined error condition;
the identifying of the data received during the error condition at the primary storage site without mirroring to the backup storage site comprises consulting the update map; and
the determining of whether the static resynchronization process is already processing data corresponding to the existing data comprises the data mover determining whether the update data is identified in the update map.
10. The medium of
claim 8
, where:
the reading of the identified data from the primary storage site at one or more read times further includes:
repeatedly reading groups of the identified data until all identified data has been read; and
for each group of read data, storing indicia representing the read data in a progress queue along with a time of the reading.
11. The medium of
claim 10
, where the data mover copying the data to the backup storage site only if the host provided the update data to the primary storage site after the static resynchronization read time for the data already being processed comprises:
the data mover referencing the progress queue to determine the time of reading of the updated data;
the data mover copying the data to the backup storage site only if the host provided the updated data to the primary storage site after the time of reading of the updated data, otherwise discarding the updated data.
12. The medium of
claim 10
, the method further comprising determining whether static resynchronization has finished and the received update data was provided by the host to the primary storage after the read time of static resynchronization, and only then clearing the progress queue and the update map.
13. The medium of
claim 8
, where:
the static resynchronization process further comprises setting a static resynchronization indicator; and
the determining of whether the static resynchronization process is in progress comprises determining whether the static resynchronization indicator is set.
14. The medium of
claim 8
, where the primary storage site and backup storage site include disk storage media and the primary storage site receives update data as records comprising subparts of a tracks.
15. A data storage system, comprising:
a primary digital data storage site, coupled to a host that provides write data to the primary storage site;
a backup digital data storage site;
a data mover coupled to the primary storage, backup storage, the data mover being programmed to mirror data stored at the primary storage site upon the backup storage site, where during predetermined error conditions the data mover stores data received by the storage system in the primary storage site without mirroring the data to the backup storage site, the data mover also being programmed to perform a method to resynchronize data of the backup data storage site with data of the primary data storage site comprising:
after termination of an error condition, the data mover performing a static resynchronization process comprising:
identifying data received during the error condition at the primary storage site without mirroring to the backup storage site;
reading the identified data from the primary storage site at one or more read times;
writing the read data to the backup storage site; and
the primary storage site receiving update data from the host for storage while no error condition is occurring, the update data representing changes to data already existing on the primary storage site, and in response:
the data mover determining whether the static resynchronization process is in progress, and if not, copying the update data to the backup storage site;
if the static resynchronization process is in progress, the data mover determining whether the static resynchronization process is already processing data corresponding to the existing data, and if not, copying the update data to the backup storage site;
if the static resynchronization process is already processing data corresponding to the existing data, the data mover copying the update data to the backup storage site only if the host provided the update data to the primary storage site after the static resynchronization read time for the data already being processed.
16. The system of
claim 15
, where:
the system further includes an update map accessible by the data mover;
the data mover is further programmed to configure the update map to identify data received by the storage system in the primary storage site without mirroring the data to the backup storage site due to a predetermined error condition;
the identifying of the data received during the error condition at the primary storage site without mirroring to the backup storage site comprises consulting the update map; and
the determining of whether the static resynchronization process is already processing data corresponding to the existing data comprises the data mover determining whether the update data is identified in the update map.
17. The system of
claim 15
, where:
the reading of the identified data from the primary storage site at one or more read times further includes:
repeatedly reading groups of the identified data until all identified data has been read; and
for each group of read data, storing indicia representing the read data in a progress queue along with a time of the reading.
18. The system of
claim 17
, where the data mover copying the data to the backup storage site only if the host provided the update data to the primary storage site after the static resynchronization read time for the data already being processed comprises:
the data mover referencing the progress queue to determine the time of reading of the updated data;
the data mover copying the data to the backup storage site only if the host provided the updated data to the primary storage site after the time of reading of the updated data, otherwise discarding the updated data.
19. The system of
claim 17
, the method further comprising determining whether static resynchronization has finished and the received update data was provided by the host to the primary storage after the read time of static resynchronization, and only then clearing the progress queue and the update map.
20. The system of
claim 15
, where:
the static resynchronization process further comprises setting a static resynchronization indicator; and
the determining of whether the static resynchronization process is in progress comprises determining whether the static resynchronization indicator is set.
21. The system of
claim 15
, where the primary storage site and backup storage site include disk storage media and the primary storage site receives update data as records comprising subparts of a tracks. a subpart of a track.
Description
BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] This invention relates to digital data storage systems. More particularly, the invention concerns the resynchronization of backup storage to primary storage, ensuring that any updates received during resynchronization are applied in the proper order relative to resynchronization data.

[0003] 2. Description of the Related Art

[0004] In this information era, there is more data than ever to transmit, receive, analyze, and process. Another key data management function is data storage. Most applications demand data storage that is fast, reliable, and convenient. Data storage is especially critical in certain data-intensive businesses. Some examples include automated teller networks and other banking applications, telephone directory information services, investment fund management, and the like.

[0005] In many of these businesses, the high cost of data loss warrants maintaining a duplicate copy of the data. Thus, if the primary data is lost, corrupted, or otherwise unavailable, business can seamlessly continue by using the backup data instead of the primary data. One technique for performing data backups is “remote copy,” a technique that is implemented in various backup storage systems of International Business Machines Corp. (IBM). With remote copy, changes to data on a primary site are shadowed to a secondary site. The secondary site therefore mirrors or “shadows” the primary site. Each site, for example, may include a storage controller and one or more storage devices. Normally, remote copy is implemented by a separate processing machine called a “data mover,” coupled to both primary and secondary sites.

[0006] If the shadowing stops for some reason, the data on the primary and secondary sites is no longer the same. Shadowing may stop for various reasons, such as interruption of primary/secondary communications, errors occurring at the secondary site, etc. After the problem is corrected, shadowing resumes under a “restart” procedure. At this point, primary data that was changed (“updated”) during the shadowing interruption must be copied from the primary site to the secondary site, thereby bring the secondary site up to date. This process is called “resynchronization.”

[0007] At first glance, resynchronization appears to be a simple procedure. The unshadowed changes to the primary site are simply copied over to the secondary site. In practice, resynchronization is more complicated because data storage is actually a dynamic process, and further updates to the primary site often occur during resynchronization. Furthermore, this problem is compounded because the updating and resynchronization processes both occur asynchronously. Accordingly, one danger is that old updates are copied to the secondary site, overwriting more recent data copied during resynchronization. Another danger is that resynchronization data is applied to the secondary site overwriting newer data already copied during the update process.

[0008] If resynchronization is performed improperly, the consequences can be severe. Data may be corrupted or lost, resulting in failed read and write operations. In extreme cases, a read operation might even recall the wrong data.

[0009] The foregoing conditions are worsened because of the data mover's independence from the host computers writing new data to the primary site. This arrangement is an advantage in one sense, because the hosts can continually write to the primary site in spite of any interruption in data mirroring. Critical storage-related host functions therefore continue without a hitch. However, this makes the data mover's job even more difficult, because data updates to the primary site arrive continually.

[0010] Consequently, due to certain unsolved problems such as those discussed above, known resynchronization procedures are not entirely adequate for all purposes.

SUMMARY OF THE INVENTION

[0011] Broadly, the present invention concerns the resynchronization of backup storage to primary storage, ensuring that any updates received during resynchronization are applied in the proper order relative to resynchronization data. The invention is applied in a data storage system having primary and backup storage each coupled to a data mover. Under normal operations, the data mover mirrors data stored on the primary storage upon the backup storage.

[0012] In some cases, error conditions arise preventing proper mirroring of data from the primary site to the backup storage. These conditions include failure of the backup storage, communications failure between the data mover and backup storage, etc. In these situations, the data mover stores any data records received by the storage system in the primary storage without mirroring the data records to the backup storage. The data mover also identifies the tracks that these data records are on in an update map.

[0013] When the error condition ends, the data mover performs a static resynchronization process, which begins by accessing the update map to identify a group of tracks containing new data records received during the error condition. The data mover reads these tracks, and then proceeds to write these read tracks to the backup storage. The data mover also makes an entry in a progress queue, this entry including (1) a group-ID identifying the tracks written to backup storage and (2) a read time-stamp (“RT”) identifying the time when the data mover read these tracks from primary storage. The process of identifying, reading, and writing tracks continues until all tracks in the update have been processed.

[0014] Whenever the storage system receives new data records (“updates”), this invokes a dynamic resynchronization process. Advantageously, this process may occur simultaneously with the static resynchronization process, serving to accurately process updates despite ongoing static resynchronization. First, the dynamic resynchronization process determines whether the static resynchronization process is ongoing. If not, the updates are written to primary storage and the data mover mirrors the written updates to backup storage, as in normal circumstances.

[0015] However, if static resynchronization is underway, the dynamic resynchronization process determines whether the update is already identified in the update map. If not, this record is not the subject of static resynchronization, and it can be immediately written to backup storage.

[0016] On the other hand, if the current update is already represented in the update map, care is needed to ensure that the dynamic and static resynchronization process occur in the proper relative order, to avoid writing older data over newer data. Accordingly, a determination is first made whether (1) the update corresponds to any of the tracks present in the progress queue. If not, there is a danger that the static and dynamic resynchronization process might apply their data in the wrong order. In this event, dynamic resynchronization waits until the data record is shown in the progress queue.

[0017] Once the update is represented in the queue, a comparison is made between the data record's read time-stamp and its write time-stamp. The write time-stamp shows when a host originally sent the data record to the primary controller for writing. If the write time-stamp is earlier than the read time-stamp, the update will already be included in the static resynchronization. On the other hand, if the write time-stamp is later than the read time-stamp, this is a new update not included in static resynchranization; thus, the dynamic resynchronization process applies it to the backup storage.

[0018] Accordingly, one embodiment of the invention involves a method to resynchronize backup storage to primary storage, ensuring that any updates received during resynchronization are applied in the proper order relative to resynchronization data. In another embodiment, the invention may be implemented to provide an apparatus, such as a data storage system, programmed to resynchronize backup storage to primary storage, ensuring that any updates received during resynchronization are applied in the proper order relative to resynchronization data. In still another embodiment, the invention may be implemented to provide a signal-bearing medium tangibly embodying a program of machine-readable instructions executable by a digital data processing apparatus to perform method steps for resynchronizing backup storage to primary storage, ensuring that any updates received during resynchronization are applied in the proper order relative to resynchronization data.

[0019] The invention affords its users with a number of distinct advantages. Chiefly, the invention preserves data integrity by maintaining the order of storage operations, despite the receipt of data updates during resynchronization. This helps avoid overwriting newer data with older data. Additionally, the invention helps preserve the smooth storage of data from the user's perspective, despite temporary unavailability of backup storage. The invention also provides a number of other advantages and benefits, which should be apparent from the following description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020]FIG. 1 is a block diagram of the hardware components and interconnections of a data storage system in accordance with the invention.

[0021]FIG. 2 is a block diagram of an exemplary digital data processing machine in accordance with the invention.

[0022]FIG. 3 shows an exemplary signal-bearing medium in accordance with the invention.

[0023]FIG. 4 is a flowchart of an overall operating sequence for data storage and backup according to the invention.

[0024]FIG. 5 is a flowchart of an operational sequence for static resynchronization in accordance with the invention.

[0025]FIG. 6 is a flowchart of an operational sequence for dynamic resynchronization in accordance with the invention.

DETAILED DESCRIPTION

[0026] The nature, objectives, and advantages of the invention will become more apparent to those skilled in the art after considering the following detailed description in connection with the accompanying drawings. As mentioned above, the invention concerns the resynchronization of backup storage to primary storage, ensuring that any updates received during resynchronization are applied in the proper order relative to resynchronization data.

HARDWARE COMPONENTS & INTERCONNECTIONS

[0027] Data Storage System

[0028] Introduction

[0029] One aspect of the invention concerns a data storage system, which may be embodied by various hardware components and interconnections as shown by the data storage system 100 of FIG. 1. The system 100 includes one or more host computers (“host(s)”) 102; for ease of discussion, the present illustration uses a single host 102, although there may be multiple hosts. The system also includes a primary storage 104, a backup storage 106, and a data mover 114. The primary storage 104 and backup storage 106 are coupled to respective storage controllers 108, 110. The primary storage 104 and its controller 108 may be referred to as a “primary storage site,” whereas the backup storage 106 and its controller 110 may be referred to as a “backup storage site.” Both controllers 108, 110 are coupled to the data mover 114. The host 102 and data mover 114 are coupled to respective clocks 113, 112.

[0030] Generally, the host receives data to be stored on the primary storage 104. This data may originate from a source external to the host 102, such as a user console, measurement device, storage device, a remote computer, or another source. In contrast, data may also arise from within the host 102, such as by the host 102 executing an application program, etc. The host 102 passes the data to the controller 108, which manages all read/write operations involving the storage 104.

[0031] Largely independent of the activity of the host 102 and primary storage 104, the data mover 114 serves to copy data from the primary storage 104 to the backup storage 106, thus mirroring the contents of the primary storage 104 at the backup storage 106. The storage controller 110 manages read/write operations at the backup storage 106, similar to the relationship between the controller 108 and the primary storage 104.

[0032] As explained in detail below, if the backup storage 106 becomes unavailable for a period of time, the primary storage 104 continues to receive new data records while the backup storage 106 does not. This may occur, for example, if there is a failure of a component of the backup storage 106 or communications between the data mover 114 and the backup storage. When the backup storage 106 comes back on line, the data mover 114 performs a “static resynchronization” operation to update mirroring of the data that was written to the primary storage 104 during the backup storage's down time. However, the host 102 may continue to direct new data to the primary storage even during static resynchronization. Dynamic resynchronization ensures that this new data is written to the backup storage in the proper sequence relative to static resynchronization data.

[0033] More Detail

[0034] Each of the host 102, controllers 108/110, and data mover 114 may be embodied by various types of digital data processing apparatus, such as a personal computer, supercomputer, computer workstation, server, mainframe computer, etc. As a specific example, the host 102 and data mover 114 may comprise IBM model S/390 machines, with the controllers 108/110 comprising IBM model 3990 or 3390 machines.

[0035] The storage 104/106 may be provided by any suitable configuration of one or more data storage devices, such as magnetic tape, magnetic disk drive media, optical tape, optical disk, or another digital data storage machine. As a specific example, each controller and its respective storage may be provided by an IBM model 3590 RAMA III disk storage subsystem. The primary and backup storage may use any convenient unit of storage, such as a disk track, cylinder, sector, byte, bit, disk surface, tape track, tape segment, etc. Moreover, devices and data units may be logical rather than physical constructs. Throughout the present discussion, one exemplary unit of data storage is a magnetic disk storage “track,” which includes multiple sub-units called “data records.”

[0036] The clocks 112-113 are provided by timers of suitable accuracy for the operations discussed below, and may in one example comprise IBM Sysplex Timers, P/N 9037-002. The data mover 114 includes various storage facilities provided by software, hardware or a combination of both. These storage facilities include a progress queue 120, an update map 118, and a static resynchronization flag 116. In one example, each storage facility is provided by a memory buffer, register, RAM addresses of the data mover 114, etc. As explained below, the progress queue 120 helps identify the data records currently being processed by static resynchronization. The update map 118 lists tracks that have been written to primary storage but not yet mirrored to backup storage 106 due to an error condition giving rise to static resynchronization. Accordingly, the update map 118 may comprise a bit map, table, or other suitable construct that cross-references primary storage tracks and their update status. The static resynchronization flag 116 signifies that static resynchronization is underway, and may be a memory bit for example.

[0037] Communication links 122-125 interconnect the host, data mover, controllers, and clock as shown in FIG. 1. The communication links 122-125 may be provided by any suitable component for conveying digital signals with suitable speed and accuracy, such as wires, busses, cables, backplanes, fiber optic cables, wireless broadcast, satellite, telephone lines, computer network (such as Internet, Intranet, local area network, wide area network . . . ), etc.

[0038] To further illustrate the construction of the system 100, the system 100 may be provided by the Extended Remote Copy (“XRC”) system, sold by International Business Machines Corp. (IBM). In the XRC system, storage operations are “asynchronous,” since data records are committed to primary storage 104 without regard for whether the corresponding data has been written to backup storage 106.

[0039] Backup storage 106 is guaranteed to be consistent with the state of the primary storage 104 at some specific time in the past. This is because the XRC system “write time-stamps” data updates stored in the primary storage, enabling the backup storage to implement the updates in the same order. Write time-stamping in the XRC system is done with the clock 113. Since the backup device is always consistent with a past state of the primary device, a limited amount of data is lost if the primary device fails.

[0040] The operation of the system 100 is discussed in greater detail below.

[0041] Exemplary Digital Data Processing Apparatus

[0042] Another aspect of the invention concerns a digital data processing apparatus, provided to resynchronize backup storage to primary storage, ensuring that any updates received during resynchronization are applied in the proper order relative to resynchronization data. This apparatus may be embodied by various hardware components and interconnections, and may be implemented in the data mover 114.

[0043]FIG. 2 shows an example of one digital data processing apparatus 200. The apparatus 200 includes a processor 202, such as a microprocessor or other processing machine, coupled to a storage 204. In the present example, the storage 204 includes a fast-access storage 206, as well as nonvolatile storage 208. The fast-access storage 206 may comprise random access memory, and may be used to store the programming instructions executed by the processor 202. The nonvolatile storage 208 may comprise, for example, one or more magnetic data storage disks such as a “hard drive,” a tape drive, or any other suitable storage device. The apparatus 200 also includes an input/output 210, such as a line, bus, cable, electromagnetic link, or other means for exchanging data with the processor 202.

[0044] Despite the specific foregoing description, ordinarily skilled artisans (having the benefit of this disclosure) will recognize that the apparatus discussed above may be implemented in a machine of different construction, without departing from the scope of the invention. As a specific example, one of the components 206, 208 may be eliminated; furthermore, the storage 204 may be provided on-board the processor 202, or even provided externally to the apparatus 200.

OPERATION

[0045] In addition to the various hardware embodiments described above, a different aspect of the invention concerns a method for resynchronizing backup storage to primary storage, ensuring that any updates received during resynchronization are applied in the proper order relative to resynchronization data.

[0046] Signal-Bearing Media

[0047] In the context of FIGS. 1-2, such a method may be implemented, for example, by operating the data mover 114, as embodied by a digital data processing apparatus 200, to execute a sequence of machine-readable instructions. These instructions may reside in various types of signal-bearing media. In this respect, one aspect of the present invention concerns a programmed product, comprising signal-bearing media tangibly embodying a program of machine-readable instructions executable by a digital data processor to perform a method to resynchronize backup storage to primary storage, ensuring that any updates received during resynchronization are applied in the proper order relative to resynchronization data.

[0048] This signal-bearing media may comprise, for example, RAM (not shown) accessible by the processor 202, as embodied by the fast access storage 206, for example. Alternatively, the instructions may be contained in another signal-bearing media, such as a magnetic data storage diskette 300 (FIG. 3), directly or indirectly accessible by the processor 202. Whether contained in RAM, the diskette 300, or elsewhere, the instructions may be stored on a variety of machine-readable data storage media, such as DASD storage (e.g., a conventional “hard drive” or a RAID array), magnetic tape, electronic read-only memory (e.g., ROM, EPROM, or EEPROM), an optical storage device (e.g. CD-ROM, WORM, DVD, digital optical tape), paper “punch” cards, or other suitable signal-bearing media including transmission media such as digital and analog and communication links and wireless. In an illustrative embodiment of the invention, the machine-readable instructions may comprise software object code, compiled from a language such as “C,” etc.

[0049] Overall Operation

[0050]FIG. 4 shows a sequence 400 to illustrate one example of the overall operation of the invention. For ease of explanation, but without any limitation intended thereby, the example of FIG. 4 is described in the context of the hardware environment described above. The steps are initiated in step 402, when the storage system 100 is brought on line, or otherwise programmed or configured to begin storing data. After step 402, three processes 404, 406, and 408 occur in parallel. These processes are a primary storage process 404, static resynchronization process 406, and an ongoing mirroring process 408.

[0051] In the primary storage process 404, the primary controller 108 receives data from the host 102 (step 410), and writes the data to the primary storage 104 (step 412). As part of step 412, a channel program (not shown) or other suitable hardware or software construct generates a write time-stamp (“WT”) signifying the time of sending the data to the controller 108, according to the clock 113. When there is more data to store, step 414 returns control to step 410.

[0052] In the static resynchronization process 406, the data mover 114 detects an “error condition” (step 416). An error condition is a state of the system 100 preventing mirroring of data from primary to backup storage. For example, the error condition may involve failure or other unavailability of the backup storage 106 or controller 110, or failure occurring in the communications chain between the backup storage 106, data mover 114, and primary controller 108. If an error condition exists, steps are taken to resolve the error (step 418). This may involve a system administrator reconfiguring one or more components of the system 100, a technician repairing or replacing a failed component, or self-repair of the affected component. When the error has been resolved, re-enabling mirroring to the backup storage 106, the data mover 114 performs static resynchronization (step 420). In this process, all data written to the primary storage 104 during the down time of the backup storage 106 is copied to the backup storage 106.

[0053] The ongoing mirroring process 408 manages the mirroring of data from primary to backup storage. As shown in step 422, this may involve normal updating of the backup storage 106 (step 426), or dynamic resynchronization (step 424). The backup storage 106 may be updated normally (step 426) when static resynchronization is not occurring. With normal updates, the data mover 114 retrieves data entries from the primary storage 104 and asynchronously copies the data to the backup storage 106. Normal updating makes the backup storage 106 mirror the primary storage 104, and may be performed using known techniques. The backup storage 106 normally only mirrors a past state of the primary storage 104 because, in most cases, new updates are being received and applied to the primary storage 104 all the time.

[0054] Dynamic resynchronization (step 424) is used to perform mirroring when static resynchronization is occurring. In this case, the data mover 114 cannot simply copy data from the primary storage 104 to the backup storage 106 because of certain dangers. Chiefly, there is a risk that the data mover 114 retrieves updated data stored on the primary storage 104 and writes it to the backup storage 106, but this data is later overwritten by older data during the static resynchronization process. Another danger is that the data mover 114 copies data to backup storage, overwriting a newer version of the data written by static resynchronization. Thus, to ensure data consistency, dynamic resynchronization (step 424) is performed instead of normal updating (step 426) whenever static resynchronization is occurring. Mirroring continues to occur as long as there is more data to update, as shown by step 428.

[0055] Static Resynchronization

[0056]FIG. 5 shows a sequence 500 to illustrate an example of static resynchronization in accordance with the present invention. For ease of explanation, but without any intended limitation, the example of FIG. 5 is described in the context of the hardware environment described above, with these operations being performed by the data mover 114. The sequence 500, which implements step 420 (FIG. 4), is initiated in step 502; step 502 is triggered by the resolution of an error condition, as shown in step 418, FIG. 4.

[0057] In step 510, the data mover 114 sets the static resynchronization flag 116 to show that static resynchronization is underway. In this example, step 510 involves storing a predetermined value in memory of the data mover 114. Next, in step 512, the data mover 114 retrieves the contents of the update map 118 to identify primary storage tracks that have not been updated to backup storage due to the error of steps 416/418. These are the tracks for which static resynchronization will be performed. In this example, the update map 118 lists each track by its address, and may comprise a bit map for example. During step 512, the data mover 114 blocks all other processes and hardware components from changing the update map 118.

[0058] In step 513, the data mover 114 obtains the contents of a first group of updated tracks from the controller 108, using the addresses from step 512. The group may include a fixed or variable group of one or more tracks. As an example, each group may contain three tracks. The controller 108 in turn reads the requested tracks from a consistency buffer, the primary storage 104, or another suitable location, many variations of which are known in the art. In this example, tracks are read in groups numbering “N.” Also in step 513, the data mover 114 establishes a read time-stamp (“RT”) for the group of records according to the clock 112. The read time-stamp is the time that the data mover 114 reads the tracks.

[0059] In step 514, the data mover 114 writes the group of N tracks from step 513 to the backup storage 106. Next, in step 515, the data mover stores a representation of the tracks of steps 513-514 in the progress queue 120. The tracks may be identified, for example, by a group-ID, address, or other suitable indicia. The tracks' read time-stamp is also enqueued in association with the identity of the tracks.

[0060] After step 515, step 516 determines whether there are any other tracks in the update map 118 that have not been processed by steps 513-515. If so, the next group of tracks is considered in step 518, and then processed as discussed above in steps 513-515. When all records of the update map have been processed, the static resynchronization process 500 ends in step 520.

[0061] Ongoing Mirroring

[0062]FIG. 6 shows a sequence 600 to illustrate an example of ongoing mirroring in accordance with the present invention. For ease of explanation, but without any intended limitation, the example of FIG. 6 is described in the context of the hardware environment described above, with these operations being performed by the data mover 114. The sequence 600, which implements step 422 (FIG. 4), starts in step 602.

[0063] After step 602, the data mover 114 receives or obtains a new data record from the primary controller 108. This data record is obtained because it has been received by the primary controller 108, and may have to be mirrored to the backup storage 106. It is referred to as the “current record.” Along with the current data record, the data mover 114 also obtains the current data record's write time-stamp. Although application of this record to primary storage 104 is complete or in progress, it has not yet been applied to the secondary stage 106, and in this sense is “new.” This “new” data record may also be called “updated.” In step 606, the data mover 114 determines whether static resynchronization is underway, by asking whether the static resynchronization flag 116 is set. If not, dynamic resynchronization is unnecessary, and the current data record is mirrored to secondary storage 104 in step 616, which may occur by the normal update process. This step is also shown by step 426, FIG. 4.

[0064] On the other hand, if static resynchronization is in progress, step 606 proceeds to steps 608-614 and 690-692, which perform the dynamic resynchronization process 424 (FIG. 4). First, step 608 asks whether the current record is presently the subject of static resynchronization. Namely, step 608 determines whether the update map 118 is set for the track that includes current record. If not, then the current record is the first update to this track since the error condition occurred, i.e., since the primary and backup storage fell out of “synch.” Accordingly, there is no consistency danger here. This update can therefore be made immediately, and is done so in step 616.

[0065] If the update map 118 is set for the current track, step 608 instead commences step 610. Step 610 determines whether static resynchronization has reached the current data record yet, i.e., whether the track containing the current data record is in the progress queue 120. If static resynchronization has not reached the current data record, the danger of writing the current record out of order cannot be determined. In this case, steps 610-612 wait until the track containing the current data record appears in the progress queue 120. Then, step 614 determines whether the data record's write time-stamp (from step 604) is later than the enqueued read time-stamp for its associated track (from step 515). If not, then the current data record is older than the track being applied by static resynchronization, and the data record is discarded, with step 614 returning to step 604 to consider another update record.

[0066] On the other hand, if the current data record is newer than the track record being applied by static resynchronization, the current data record can be written to backup storage 106, as discussed below in step 616. Before step 616, however, steps 690-691 determine whether the static resynchronization flag, progress queue, and update map can be cleared. Particularly, step 690 first asks whether static resynchronization has finished. If not, step 690 advances to step 616, where the data record is written to backup storage 106. If static resynchronization is finished, step 691 asks whether the current record is newer than the last track processed by static resynchronization. This is determined by asking whether the current update's write time-stamp is newer than the read time-stamp of the last track copied by static resynchronization (i.e., the last track in the progress queue 120). If not, step 691 proceeds to write the data record in step 616. Otherwise, if both steps 690-691 answer affirmatively, step 692 proceeds to turn off the static resynchronization flag 116, purge the progress queue 120, and purge the update map 118. After step 692, the routine 600 advances to step 616, where the current data record is written to backup storage 106.

OTHER EMBODIMENTS

[0067] While the foregoing disclosure shows a number of illustrative embodiments of the invention, it will be apparent to those skilled in the art that various changes and modifications can be made herein without departing from the scope of the invention as defined by the appended claims. Furthermore, although elements of the invention may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6665781 *Apr 19, 2001Dec 16, 2003Hitachi, Ltd.Method and apparatus for data duplexing in storage unit system
US6745340 *Jan 11, 2001Jun 1, 2004International Business Machines CorporationMethod and system for recovering data from an optical write once read many (WORM) medium with both directory entries damaged
US6981008Oct 14, 2003Dec 27, 2005Hitachi, Ltd.Method for duplicating data of storage subsystem and data duplicating system
US6988176May 12, 2003Jan 17, 2006Hitachi, Ltd.Method and apparatus for data duplexing in storage unit system
US6993635 *Mar 29, 2002Jan 31, 2006Intransa, Inc.Synchronizing a distributed mirror
US7069403 *Oct 14, 2003Jun 27, 2006Hitachi, Ltd.Method and apparatus for data duplexing in storage unit system
US7111136Jun 26, 2003Sep 19, 2006Hitachi, Ltd.Method and apparatus for backup and recovery system using storage based journaling
US7127636Sep 8, 2003Oct 24, 2006International Business Machines CorporationAutonomic recovery of PPRC errors detected by PPRC peer
US7130959Jul 16, 2004Oct 31, 2006Hitachi, Ltd.Subsystems and an integrated system of these subsystems
US7146475Nov 18, 2003Dec 5, 2006Mainstar Software CorporationData set level mirroring to accomplish a volume merge/migrate in a digital data storage system
US7155635 *Feb 6, 2004Dec 26, 20063Pardata, Inc.Handling link failures in remote mirroring applications using snapshots
US7162601Feb 28, 2006Jan 9, 2007Hitachi, Ltd.Method and apparatus for backup and recovery system using storage based journaling
US7167902Feb 28, 2000Jan 23, 2007Hitachi, Ltd.Disk subsystems and their integrated system
US7185227Apr 30, 2003Feb 27, 2007Hitachi, Ltd.Data restoring method and an apparatus using journal data and an identification information
US7243197Apr 20, 2006Jul 10, 2007Hitachi, Ltd.Method and apparatus for backup and recovery using storage based journaling
US7243256Jun 8, 2006Jul 10, 2007Hitachi, Ltd.External storage and data recovery method for external storage as well as program
US7305584Feb 24, 2006Dec 4, 2007Hitachi, Ltd.Data restoring method and an apparatus using journal data and an identification information
US7343518 *Jun 23, 2004Mar 11, 2008Intel CorporationMethod for data backup of computing platforms that are occasionally connected
US7370222Mar 9, 2007May 6, 2008Hitachi, Ltd.External storage and data recovery method for external storage as well as program
US7373390Oct 20, 2003May 13, 2008Hitachi, Ltd.Disk subsystems and their integrated system
US7398422Aug 31, 2004Jul 8, 2008Hitachi, Ltd.Method and apparatus for data recovery system using storage based journaling
US7454655Oct 13, 2006Nov 18, 2008International Business Machines CorporationAutonomic recovery of PPRC errors detected by PPRC peer
US7464288Feb 6, 2008Dec 9, 2008Hitachi, Ltd.External storage and data recovery method for external storage as well as program
US7469358Mar 9, 2007Dec 23, 2008Hitachi, Ltd.External storage and data recovery method for external storage as well as program
US7519083 *May 18, 2004Apr 14, 2009Fisher-Rosemount Systems, Inc.Shadow function block interface for use in a process control network
US7549083Dec 12, 2006Jun 16, 2009Hitachi, Ltd.Data restoring method and an apparatus using journal data and an identification information
US7552214Jan 12, 2004Jun 23, 2009Computer Associates Think, Inc.Systems and methods of information backup
US7555505Feb 28, 2006Jun 30, 2009Hitachi, Ltd.Method and apparatus for synchronizing applications for data recovery using storage based journaling
US7734594 *Dec 15, 2003Jun 8, 2010Computer Associates Think, Inc.Systems and methods of information backup
US7761741Jun 20, 2008Jul 20, 2010Hitachi, Ltd.Method and apparatus for data recovery system using storage based journaling
US7783848May 22, 2007Aug 24, 2010Hitachi, Ltd.Method and apparatus for backup and recovery using storage based journaling
US7827440Jan 15, 2008Nov 2, 2010Apple Inc.Re-synchronizing corrupted data
US7870423 *Mar 25, 2008Jan 11, 2011Hitachi, Ltd.Data processing system and copy processing method thereof
US7873860Oct 20, 2008Jan 18, 2011Hitachi, Ltd.External storage and data recovery method for external storage as well as program
US7971097Oct 27, 2008Jun 28, 2011Hitachi, Ltd.Data restoring method and an apparatus using journal data and an identification information
US7979491Mar 27, 2009Jul 12, 2011Hewlett-Packard Development Company, L.P.Producing chunks from input data using a plurality of processing elements
US8001273Mar 16, 2009Aug 16, 2011Hewlett-Packard Development Company, L.P.Parallel processing of input data to locate landmarks for chunks
US8005796May 28, 2009Aug 23, 2011Hitachi, Ltd.Method and apparatus for synchronizing applications for data recovery using storage based journaling
US8099573Oct 22, 2008Jan 17, 2012Hewlett-Packard Development Company, L.P.Data processing apparatus and method of processing data
US8117343Oct 28, 2008Feb 14, 2012Hewlett-Packard Development Company, L.P.Landmark chunking of landmarkless regions
US8131963 *Dec 1, 2010Mar 6, 2012Hitachi, Ltd.Remote copy system
US8140637Sep 26, 2008Mar 20, 2012Hewlett-Packard Development Company, L.P.Communicating chunks between devices
US8145603Feb 28, 2006Mar 27, 2012Hitachi, Ltd.Method and apparatus for data recovery using storage based journaling
US8150851Oct 27, 2008Apr 3, 2012Hewlett-Packard Development Company, L.P.Data processing apparatus and method of processing data
US8176010 *Mar 29, 2007May 8, 2012Hitachi, Ltd.Remote copy system
US8190742Apr 25, 2006May 29, 2012Hewlett-Packard Development Company, L.P.Distributed differential store with non-distributed objects and compression-enhancing data-object routing
US8219749 *Apr 27, 2007Jul 10, 2012Netapp, Inc.System and method for efficient updates of sequential block storage
US8234473Jul 12, 2010Jul 31, 2012Hitachi, Ltd.Method and apparatus for backup and recovery using storage based journaling
US8296265Jul 12, 2011Oct 23, 2012Hitachi, Ltd.Method and apparatus for synchronizing applications for data recovery using storage based journaling
US8332404Oct 24, 2008Dec 11, 2012Hewlett-Packard Development Company, L.P.Data processing apparatus and method of processing data
US8370450May 18, 2009Feb 5, 2013Ca, Inc.Systems and methods for information backup
US8375000Apr 3, 2012Feb 12, 2013Hitachi, Ltd.Remote copy system
US8375182Feb 10, 2009Feb 12, 2013Hewlett-Packard Development Company, L.P.System and method for segmenting a data stream
US8397041 *Jan 30, 2012Mar 12, 2013Hitachi, Ltd.Remote copy system
US8423825May 25, 2011Apr 16, 2013Hitachi, Ltd.Data restoring method and an apparatus using journal data and an identification information
US8447864May 8, 2012May 21, 2013Hewlett-Packard Development Company, L.P.Distributed differential store with non-distributed objects and compression-enhancing data-object routing
US8660994Jan 28, 2010Feb 25, 2014Hewlett-Packard Development Company, L.P.Selective data deduplication
US8775371 *Nov 11, 2009Jul 8, 2014International Business Machines CorporationSynchronizing an auxiliary data system with a primary data system
US8782368May 11, 2010Jul 15, 2014Hewlett-Packard Development Company, L.P.Storing chunks in containers
US8838541Oct 25, 2007Sep 16, 2014Hewlett-Packard Development Company, L.P.Data processing apparatus and method of processing data
US20110113010 *Nov 11, 2009May 12, 2011International Business Machines CorporationSynchronizing an auxiliary data system with a primary data system
US20120131298 *Jan 30, 2012May 24, 2012Hiroshi ArakawaRemote copy system
WO2005052796A2 *Oct 21, 2004Jun 9, 2005Mainstar Software CorpData set level mirroring to accomplish a volume merge/migrate in a digital data storage system
WO2009054827A1 *Oct 25, 2007Apr 30, 2009Hewlett Packard Development CoData processing apparatus and method of processing data
WO2009054828A1 *Oct 25, 2007Apr 30, 2009Peter Thomas CambleData processing apparatus and method of processing data
Classifications
U.S. Classification711/162, 714/E11.102, 714/5.1
International ClassificationG06F11/20
Cooperative ClassificationG06F11/2064, G06F11/2082
European ClassificationG06F11/20S2S
Legal Events
DateCodeEventDescription
Jun 29, 2012SULPSurcharge for late payment
Year of fee payment: 7
Jun 29, 2012FPAYFee payment
Year of fee payment: 8
Mar 19, 2012REMIMaintenance fee reminder mailed
Sep 19, 2007FPAYFee payment
Year of fee payment: 4