Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20010010952 A1
Publication typeApplication
Application numberUS 09/803,346
Publication dateAug 2, 2001
Filing dateMar 9, 2001
Priority dateDec 23, 1999
Also published asUS6221687, US6362498
Publication number09803346, 803346, US 2001/0010952 A1, US 2001/010952 A1, US 20010010952 A1, US 20010010952A1, US 2001010952 A1, US 2001010952A1, US-A1-20010010952, US-A1-2001010952, US2001/0010952A1, US2001/010952A1, US20010010952 A1, US20010010952A1, US2001010952 A1, US2001010952A1
InventorsIrit Abramovich
Original AssigneeIrit Abramovich
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Color image sensor with embedded microlens array
US 20010010952 A1
Abstract
A method for producing a color CMOS image sensor including a matrix of pixels (e.g., CMOS APS cells) that are fabricated on a semiconductor substrate. A silicon-nitride layer is deposited on the upper surface of the pixels, and is etched using a reactive ion etching (RIE) process to form microlenses. A protective layer including a lower color transparent layer formed from a polymeric material, a color filter layer and an upper color transparent layer are then formed over the microlenses. Standard packaging techniques are then used to secure the upper color transparent layer to a glass substrate.
Images(8)
Previous page
Next page
Claims(20)
What is claimed is:
1. A method for forming a microlens over an image sensing element in an image sensor, the method comprising:
depositing a dielectric layer over the image sensing element, the dielectric layer having a first index of refraction;
reactive ion etching the dielectric layer to form a microlens; and
forming a protective layer on the microlens, the protective layer having a second index of refraction;
wherein the first index of refraction of the dielectric layer is different from the second index of refraction of the protective layer.
2. The method according to
claim 1
, wherein depositing the dielectric layer comprises depositing silicon nitride.
3. The method according to
claim 1
, wherein reactive ion etching comprises:
depositing photoresist layer on the dielectric layer;
forming the photoresist layer into a lens-shaped photoresist portion; and
performing an anisotropic reactive ion etching process such that the lens-shaped photoresist portion is copied into the dielectric layer, thereby forming the microlens.
4. The method according to
claim 1
, wherein forming the protective layer comprises depositing packaging adhesive directly onto the microlens.
5. The method according to
claim 1
, wherein forming the protective layer comprises:
depositing a lower color transparent layer over the microlens;
planarizing the lower color transparent layer;
forming a color filter layer on the lower color transparent layer; and
depositing an upper color transparent layer on the color filter layer.
6. The method according to
claim 5
, further comprising:
applying a cement layer to the upper color transparent layer; and
attaching a packaging substrate to the cement layer.
7. The method according to
claim 1
, further comprising attaching a packaging substrate to the protective layer.
8. The method according to
claim 1
, further comprising:
depositing a passivation layer over the image sensing element;
planarizing the passivation layer; and
depositing an oxi-nitride layer on an upper surface of the passivation layer,
wherein depositing the dielectric layer over the image sensing element comprises depositing a silicon-nitride layer on an upper surface of the oxi-nitride layer.
9. A method for forming a microlens over an image sensing element in a color image sensor, the method comprising:
depositing a silicon-nitride layer over the image sensing element;
etching the silicon-nitride layer to form a microlens;
forming a first color transparent layer on the microlens; and
forming a color filter on the first color transparent layer.
10. The method according to
claim 9
, further comprising forming a second color transparent layer on the color filter.
11. The method according to
claim 9
, wherein etching comprises:
depositing photoresist layer on the silicon-nitride layer;
forming the photoresist layer into a lens-shaped photoresist portion; and
performing an anisotropic reactive ion etching process such that the lens-shaped photoresist portion is copied into the silicon-nitride layer, thereby forming the microlens.
12. The method according to
claim 9
, further comprising:
applying a cement layer to the upper color transparent layer; and
attaching a packaging substrate to the cement layer.
13. The method according to
claim 9
, further comprising:
depositing a passivation layer over the image sensing element;
planarizing the passivation layer; and
depositing an oxi-nitride layer on an upper surface of the passivation layer,
wherein the silicon-nitride layer is deposited on an upper surface of the oxi-nitride layer.
14. An image sensor comprising:
an image sensing element formed in a semiconductor substrate;
a microlens located over the image sensing element, the microlens being formed from a dielectric material having a first index of refraction; and
a protective layer formed on the microlens, the protective layer having a second index of refraction,
wherein a first index of refraction of the dielectric material is different from the second index of refraction of the protective layer.
15. The image sensor according to
claim 14
, wherein the dielectric material is silicon-nitride.
16. The image sensor according to
claim 14
, wherein the protective layer comprises packaging cement.
17. The image sensor according to
claim 14
, wherein the protective layer comprises:
a lower color transparent layer formed on the microlens;
a color filter layer formed on the lower color transparent layer; and
an upper color transparent layer formed on the color filter layer.
18. The image sensor according to
claim 17
, wherein the lower color transparent layer comprises an acrylic polymer.
19. The image sensor according to
claim 17
, further comprising a packaging substrate attached to an upper surface of the upper color transparent layer.
20. The image sensor according to
claim 14
, further comprising:
a passivation layer formed over the image sensing element; and
an oxi-nitride layer formed on an upper surface of the passivation layer,
wherein the silicon-nitride layer Is deposited on an upper surface of the oxi-nitride layer.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention relates to solid state image sensors. More specifically, the present invention relates to a method for fabricating color image sensors and to a color image sensor fabricated by the method.
  • RELATED ART
  • [0002]
    Solid state color image sensors are used, for example, in video cameras, and are presently realized in a number of forms including charge-coupled devices (CCDs) and CMOS image sensors. These image sensors are based on a two dimensional array of pixels. Each pixel includes color filter located over a sensing element. An array of microlenses located over the color filter focuses light from an optical image through the color filter into the image sensing elements. Each image sensing element is capable of converting a portion of the optical image passed by the color filter into an electronic signal. The electronic signals from all of the image sensing elements are then used to regenerate the optical image on, for example, a video monitor.
  • [0003]
    [0003]FIG. 1(A) is a cross-sectional view showing a portion of a conventional color image sensor 10. Color image sensor 10 is formed on an n-type semiconductor substrate 11 having a p-well layer 15. An array of photodiodes 20 and charge transfer regions 25 are formed in p-well layer 15, and are covered by a silicon oxide or nitride film 30. A polysilicon electrode 35 is located over charge transfer region 25 such that it is surrounded by film 30. A photo-shielding metal layer 40 is formed over electrode 35, and a surface protective coating 45 and a planarization layer 50 are formed over metal layer 40. A color filter layer 60 is formed on planarization layer 50, and an intermediate transparent film 70 is formed over color filter layer 60. A microlens 80 for focusing light beams 85 is formed from silicon dioxide (SiO2) or a resin material on intermediate transparent film 70. An air gap 90 is provided over microlens 80, and a glass packaging substrate 95 is located over air gap 90.
  • [0004]
    In operation, light beams 85 are focused by microlens 80 through color filter layer 60 such that they converge along the focal axis F of microlens 80 to strike photodiode 20, wherein photoenergy from light beams 85 frees electrons in photodiode 20. When a select voltage is applied to polysilicon electrode 35, these freed electrons generate a current in charge transfer region 25. A sensor circuit (not shown) of color image sensor 10 then determines the amount of light received by photodiode 20 by measuring the amount of current generated in charge transfer region 25.
  • [0005]
    Conventional solid-state imaging device 10 is designed for light beams 85 whose incident angle is perpendicular to substrate 11, as shown in FIG. 1(A), before being focused by microlens 80 onto photodiode 20. However, during actual operation of color image sensor 10, light beams can strike microlens 80 at oblique incident angles. A consequence of these oblique light beams is shown in FIG. 1(B). In particular, light beams 87 enter microlens 80 at an oblique angle, which directs light beams 87 away from focal axis F such that they converge at the edge of photodiode 20. Because the photoenergy of light beams 87 is not fully transferred to photodiode 20, color image sensor 10 is unable to generate an accurate image.
  • [0006]
    Another problem associated with conventional solid-state imaging device 10 is that non-standard packaging methods are required due to the formation of microlenses 80 over color filter layer 60 and intermediate transfer layer 70. Standard packaging methods typically include securing a glass substrate to an IC device using a layer of cement (e.g., epoxy). This cement typically has an index of refraction that is the same as silicon-dioxide and other resins typically used to form microlens 80 and other layers of conventional solid-state imaging device 10. Therefore, to facilitate proper focusing of the light beams, air gap 90 must be provided between glass packaging substrate 95 and microlens 80. Because air gap 90 is used in place of cement, the packaging method used to produce conventional solid-state imaging device 10 is non-standard.
  • [0007]
    It would be possible to avoid the oblique light beam problem (discussed above) by moving microlens 80 closer to photodiode 20, thereby shortening the distance traveled by the light beams between microlens 80 and photodiode 20. This shortened distance would reduce the displacement of focused oblique light beams 87 (see FIG. 1(B)) relative to the center of photodiode 20, thereby transferring more photoenergy from these oblique light beams to photodiode 20.
  • [0008]
    One possible method of moving microlens 80 closer to photodiode 20 would be to reduce the thickness of the various layers located below microlens 80. A problem with this method is that the thicknesses of these underlying layers are not easily reduced. First, photo-shielding layer 40 is typically formed during the formation of aluminum wiring utilized to transmit signals to and from each pixel of conventional solid-state imaging device 10. Therefore, the thickness of photo-shielding layer 40 is limited by the wiring specifications. Repositioning microlens 80 closer to photodiode 20 is further restricted by planarization layer 50, which is required to provide a flat surface for forming color filter layer 60 and microlens 80. Therefore, it is not possible to significantly reduce the distance between a surface-mounted microlens 80 and photodiode 20 in conventional solid-state imaging device 10 by reducing the thickness of the layers underlying microlens 80.
  • [0009]
    Another possible method of moving microlens 80 closer to photodiode 20 would be to form microlens So under color filter layer 60 (i.e., between photodiode 20 and color filter layer 60). This arrangement would also address the non-standard packaging problem because, with color filter layer 70-located above microlens 80, it would be possible to use cement to secure glass packaging substrate 95 according to standard packaging methods. However, forming microlens 80 under color filter layer 60 is not practical because, as discussed above, the index of refraction of conventional microlens materials (i.e., resin) is the same as that of other materials typically used to produce conventional solid-state imaging device 10. Therefore, because air gap 90 must be provided over conventional microlens 80, it would be very difficult to produce conventional solid-state imaging device 10 with microlens 80 located under color filter layer 60 using conventional microlens materials.
  • [0010]
    What is needed is a method for fabricating a color image sensor that minimizes the distance between the microlens and photodiode, and minimizes the fabrication and production costs of the color image sensor.
  • SUMMARY
  • [0011]
    The present invention is directed to a method for producing a color CMOS image sensor in which the microlens structure is embedded (i.e., located between the photodiode array and the color filter layer), thereby avoiding the oblique light beam problem, discussed above, because each microlens is located closer to its associated photodiode than in conventional image sensor structures. In addition, because the color filter layer is located above the microlenses and sandwiched between two color transparent layers, conventional image sensor packaging techniques (i.e., applying cement to the upper color transparent layer, then applying a glass substrate) may be utilized to produce color CMOS image sensors.
  • [0012]
    In accordance with a first embodiment of the present invention, an image sensor is produced by depositing a dielectric (e.g., silicon-nitride) layer over an image sensing element (e.g., a photodiode), etching the dielectric layer to form a microlens, and then depositing a protective layer on the microlens, wherein the protective layer has an index of refraction that is different from that of the dielectric. When silicon-nitride is utilized as the dielectric, conventional protective layer materials may be formed on the microlens because the refractive index of silicon-nitride is different from silicon-dioxide and other materials utilized as conventional protective layer materials. Therefore, the silicon-nitride microlenses of the present invention may be embedded under conventional protective materials without eliminating the optical performance of the microlenses. In alternative embodiments, other dielectrics may be used to form the microlens, provided the protective materials formed on the microlens have an index of refraction that is different from that of the dielectric. Because the microlens surface is located below a protective layer, conventional packaging techniques may be used that attach the protective layer to a substrate using cement, thereby reducing manufacturing costs and complexity.
  • [0013]
    In accordance with another embodiment of the present invention, a color image sensor is produced by depositing a silicon-nitride layer over an image sensing element (e.g., a photodiode), etching the silicon-nitride layer to form a microlens, depositing a color transparent layer on the microlens, and then forming a color filter on the color transparent layer. The silicon-nitride microlens has an index of refraction that is different from the color transparent layer, thereby forming an effective microlens structure that is embedded below the color filter. By forming the microlens below the color filter, the microlens is positioned closer to the image sensing element, thereby minimizing the oblique light beam problems, described above. In addition, by forming a second color transparent layer over the color filter, conventional packaging techniques may be used that attach the second color transparent layer to a substrate using cement, thereby reducing manufacturing costs and complexity.
  • [0014]
    The novel aspects of the present invention will be more fully understood in view of the following description and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0015]
    FIGS. 1(A) and 1(B) are cross-sectional side views showing a conventional solid-state imaging device in which normal and oblique light beams are focused by a microlens;
  • [0016]
    [0016]FIG. 2 is a schematic diagram of a solid-state imaging device according to a first embodiment of the present invention;
  • [0017]
    [0017]FIG. 3 is a flow diagram showing the basic steps for fabricating the solid-state imaging device shown in FIG. 2;
  • [0018]
    [0018]FIG. 4(A) is a schematic diagram of a color image sensor device according to a second embodiment of the present invention;
  • [0019]
    [0019]FIG. 4(B) is a flow diagram showing the basic steps for fabricating the color image sensor device shown in FIG. 4(A); and
  • [0020]
    FIGS. 5(A) through 5(K) are cross-sectional views showing process steps associated with the production of a color imaging device in accordance with another embodiment of the present invention.
  • DETAILED DESCRIPTION
  • [0021]
    The present invention is described below with reference to color CMOS active-pixel sensors (APSs), and in particular to color CMOS APSs utilizing photodiode light sensitive regions. The fabrication and operation of CMOS active-pixel sensors (APSs) are described in co-owned and co-pending U.S. application Ser. No. 09/315,893, entitled “Method And Structure For Minimizing White Spots In CMOS Image Sensors”, invented by Yossi Netzer [Docket No. TSL-031], which is incorporated herein by reference. However, the methods and structures described below may also be used to produce passive CMOS image sensors and CMOS APSs utilizing photogate light sensitive regions. In addition, the methods and structures may be used to produce CMOS APSs having any number of transistors (e.g., one, four or five). Moreover, the present inventors believe the methods and structures of the present invention may also be used to produce image sensors including MOS pixel arrays. As used herein, the general phrase “image sensor” is intended to cover all of these sensor array types.
  • [0022]
    [0022]FIG. 2 is a cross-sectional view showing a portion of an image sensor 100 in accordance with an embodiment of the present invention. Image sensor 100 includes an image sensing element 110, a dielectric layer 140 formed over image sensing element 110 that is etched to include a microlens 145, and a protective layer 150 formed on microlens 145. Image sensing element 110 includes a photodiode region 114 that is diffused into a silicon substrate 112, and a passivation layer 118 formed on substrate 112. In one embodiment, dielectric layer 140 is formed on passivation layer 118, and has an index of refraction that is different from that of protective layer 150, thereby allowing microlens 145 to focus light beams passing through protective layer 150 onto photodiode region 114. In another embodiment, one or more intermediate layers (e.g., oxi-nitride, not shown) are formed between passivation layer 118 and dielectric layer 140.
  • [0023]
    [0023]FIG. 3 is a flow diagram showing the basic steps associated with the formation of image sensor 100 in accordance with the present invention. The process shown in FIG. 3 is performed after image sensing element 110 (FIG. 2) is fabricated using known techniques. At the end of this initial fabrication process, image sensing element 110 includes passivation layer 118 formed over photodiode region 114.
  • [0024]
    Referring to FIG. 3, the process begins with the deposition of dielectric layer 140 over passivation layer 118 (Step 310). The term “rover” is intended to cover both the deposition of dielectric material directly on passivation layer 118, and the deposition of dielectric material on an intermediate layer(s) formed on passivation layer 118. In a presently preferred embodiment, dielectric material is silicon-nitride, which has an index of refraction that is higher than silicon-dioxide and other materials typically utilized in CMOS fabrication processes to form protective layer 150.
  • [0025]
    Next, dielectric layer 140 is etched to form microlenses 145 (Step 320). In one embodiment, this step is performed using a reactive-ion etching process according to known techniques. As indicated in FIG. 2, the etching process is controlled such that a portion of dielectric layer 140 remains over passivation layer 118.
  • [0026]
    Finally, protective layer 150 is formed over microlens 145 and other residual portions of dielectric layer 140 (Step 330). In black-and-white image sensors, protective layer 150 may be polyimide, resin, or may be packaging adhesive (e.g., epoxy cement) that is applied directly to the upper surface of microlens 145. As discussed in additional detail below, in color image sensor applications protective layer 150 may include one or more color transparent layers and color filter layers. In either of these applications, at least the portion of protective layer 150 that contacts microlens 145 is formed using a material having an index of refraction that is different from (i.e., lower than) that of dielectric layer 140. By forming protective layer in this manner, microlens 145 is able to effectively focus light beams onto photodiode region 114. Further, because microlens 145 is formed either directly on or immediately over passivation layer 118, the distance between microlens 145 and photodiode 114 is minimized, thereby minimizing the problems caused by oblique light beams (discussed above).
  • [0027]
    While Steps 310, 320 and 330 include the basic process steps for forming an image sensor in accordance with the present invention, another benefit of image sensor 100 is that conventional packaging techniques may be utilized. In particular, a packaging substrate may be attached to protective layer 150 using a packaging adhesive, such as epoxy cement (Step 340). Alternatively, when protective layer 150 is formed from packaging adhesive, the packaging substrate is attached directly to protective layer 150. Unlike prior art image sensors that require air gaps between the microlens and the packaging substrate, the present invention facilitates the use of conventional packaging techniques (i.e., applying cement directly onto protective layer 150 or microlens 145, and attaching the packaging substrate directly to the cement), thereby reducing packaging costs.
  • [0028]
    [0028]FIG. 4(A) is a cross-sectional view showing a portion of a color image sensor 200 in accordance with a second aspect of the present invention. Color image sensor 200 includes an image sensing element 210, a silicon-nitride layer 240 formed over image sensing element 210 that is etched to include a microlens 245, a lower (first) color transparent (CT) layer 252 formed on microlens 245, a color filter layer 255 formed on lower CT layer 252, and an upper CT layer 257 formed on color filter layer 255. Similar to image sensor device 100 (discussed above), image sensing element 210 includes a photodiode region 214 that is formed in substrate 212, and a passivation region including silicon-dioxide (SiO2) layer 218 that is formed on substrate 212.
  • [0029]
    Lower CT layer 252, color filter layer 255 and upper CT layer 257 form a color filter structure (protective layer) 250 over microlens 245 that functions, in part, to protect microlens 245. In one embodiment, lower CT layer 252 is formed from a polymeric material (e.g., negative photoresist based on an acrylic polymer) having an index of refraction that is lower than that of silicon-nitride, thereby allowing 8 microlens 245 to focus light beams passing through lower CT layer 252 onto photodiode region 214. Lower CT layer 252 provides both a planar surface and adhesion for color filter layer 255. Color filter layer 255 is formed from known materials (e.g., negative photoresist based on an acrylic polymer including color pigments) using known techniques. Finally, upper CT layer 257 is formed from a polymeric material-(e.g., negative photoresist based on an acrylic polymer), and serves both to seal and protect color filter layer 255.
  • [0030]
    [0030]FIG. 4(B) is a flow diagram showing the basic steps associated with the formation of color image sensor 200 in accordance with the present invention. The process shown in FIG. 4(B) is performed after image sensing element 210 (FIG. 4(A)) is fabricated using known techniques.
  • [0031]
    Referring to FIG. 4(B), silicon-nitride layer 240 is deposited over silicon-dioxide layer 218 (Step 410), and silicon-nitride layer 240 is etched to form microlenses 245 (Step 420). Next, lower CT layer 252 is formed over microlens 245 and other residual portions of silicon-nitride layer 240, and is then planarized using known techniques (Step 430). Color filter layer 255 is then formed on lower CT layer 252 using known techniques (Step 440). Finally, upper CT layer 257 is formed on color filter layer 255. Although not shown in FIG. 4(B), a subsequent step of attaching a packaging substrate to upper CT layer 257 using conventional packaging techniques is made possible by embedding microlens 245 below color filter structure 250.
  • [0032]
    FIGS. 5(A) through 5(K) illustrate the method of producing color image sensor 200 in additional detail.
  • [0033]
    [0033]FIG. 5(A) is a cross-sectional view showing an initial structure that includes image sensing element 210. Image sensing element 210 includes photodiode region 214 and a charge transfer region 215 that are diffused into semiconductor (e.g., silicon) substrate 212, and base silicon-dioxide (SiO2) layer 218 formed on substrate 212. Metal wires 220 are located in base SiO2 layer 218 that connect to a polysilicon gate region 222 and to charge transfer region 215, thereby forming select transistor 116. These structures are fabricated using known techniques.
  • [0034]
    [0034]FIG. 5(B) illustrates an optional step of depositing a supplemental passivation (SiO2) layer 219 on base SiO2 layer 218, and planarizing supplemental SiO2 layer 219 to provide a flat surface for the dielectric material used to form the embedded microlens. The planarized surface provided by supplemental SiO2 layer 219 is not always required (in some cases, base SiO2 layer 218 has a sufficiently planar surface). When used, the thickness of supplemental SiO2 layer 219 is determined by the surface features of base SiO2 layer 118 (e.g., by exposed wires 220), but made as thin as possible so that the subsequently-formed microlens structures are as close to photodiode region 214 as possible.
  • [0035]
    [0035]FIG. 5(C) illustrates another optional step of depositing an oxi-nitride layer 230 on planarized supplemental SiO2 layer 219. Alternatively, oxi-nitride layer 230 may be formed directly on base SiO2 layer 219 (i.e., when planarized supplemental SiO2 layer 219 is not used). In one embodiment, oxi-nitride layer 230 has a thickness in the range of 2.5 to 3.5 microns, and functions as a stress relief layer.
  • [0036]
    [0036]FIG. 5(D) illustrates a subsequent step of depositing silicon-nitride layer 240 over image sensing element 210. When both steps shown in FIGS. 5(B) and 5(C) are used, 8 silicon-nitride layer 240 is formed on oxi-nitride layer 230. Note that silicon-nitride layer 240 may be formed on planarized supplemental SiO2 layer 219 or base SiO2 layer 218 if these steps are respectively omitted. In the present example, silicon-nitride layer 240 has a thickness in the range of 3 to 5 microns.
  • [0037]
    [0037]FIG. 5(E) is a cross-sectional view showing the formation of a photoresist portion 510 on silicon-nitride layer 240 and subsequent application of etchant 520. Photoresist portion 510 is formed by depositing a layer of photoresist on silicon-nitride layer 240, exposing the photoresist layer through a mask (either “halftone” or sharp geometry), developing the photoresist layer, and removing portions of the photoresist layer that were exposed. This process is performed using well-known techniques. When a sharp geometry mask is used, photoresist portion 510 is heated to create the required lens-shaped geometry using known techniques. This heating process is not needed when a “halftone” mask is used to form photoresist portion 510. The resulting photoresist portion 510 has a shape that essentially mirrors than of the desired microlens and is located directly over the portion of silicon-nitride layer 240 used to form the microlens. The actual shape of photoresist portion 510 depends upon the selectivity of the photoresist material versus that of silicon-nitride layer 240. Etching is subsequently performed using an anisotropic reactive ion etching (RIE) process that “copies” the lens-like shape of photoresist portion 510 into silicon-nitride layer 240. That is, the thinner peripheral portions of photoresist portion 510 are removed before the thicker central portions, thereby causing more etching of silicon-nitride layer 240 under the periphery of photoresist portion 510 than under the central portion. Consequently, the lens-like shape of photoresist portion 510 is “copied” into silicon-nitride layer 240.
  • [0038]
    [0038]FIG. 5(F) is a cross-sectional view showing silicon-nitride layer 240 after the etching process. The resulting shape of microlens 240 is essentially the same as that of photoresist portion 510. In one embodiment, microlens 245 has a peak thickness T1 in the range of 3 to 5 microns. The remaining portions of silicon-nitride layer 240 located adjacent to microlens 245 have a thickness T2 in the range of 0.65 to 1 micron. Residual photoresist material 515 and other polymeric residues are then removed using a solvent 530.
  • [0039]
    [0039]FIG. 5(G) is a cross-sectional view showing the subsequent deposition and planarization of lower CT layer 252 on microlens 245 and the remaining portions of silicon-nitride layer 240. After planarization, lower CT layer preferably has a thickness T3 in the range of 1.1 to 1.3 microns.
  • [0040]
    [0040]FIG. 5(H) is a cross-sectional view showing the subsequent formation of color filter layer 255 on lower CT layer 252. Color filter layer 255 is formed using known techniques and has a resulting thickness T4 in the range of 1.0 to 1.4 microns.
  • [0041]
    [0041]FIG. 5(I) is a cross-sectional view showing the subsequent formation of upper CT layer 257 on color filter layer 255. Upper CT layer 257 is formed from polymeric material or resin, and has a resulting thickness T5 in the range of 0.8 to 1.1 microns.
  • [0042]
    A benefit provided by the fabrication process illustrated in FIGS. 5(A) through 5(I) is that standard packaging techniques can be used, thereby reducing overall production costs. A simplified representation of these standard packaging techniques is depicted in FIGS. 5(J) and 5(K). As shown in FIG. 5(J), a transparent cement 540 (e.g., novolac epoxy resin) is applied to an upper surface of upper color transparent layer 257. Next, as shown in FIG. 5(K), a packaging substrate 550 (e.g., glass) is mounted onto cement 540, thereby attaching packaging substrate 550 to color transparent layer 257. Note that, unlike the prior art structure shown in FIG. 1(A), microlens 245 is embedded between color filter structure 250 and image sensing element 210. Therefore, the present invention facilitates the use of standard packaging (i.e., attaching packaging substrate 550 using cement), thereby providing such color CMOS image sensor devices at a lower cost than conventional devices.
  • [0043]
    Although the invention has been described in connection with several embodiments, it is understood that this invention is not limited to the embodiments disclosed, but is capable of various modifications which would be apparent to a person skilled in the art. For example, the particular parameters set forth in the above examples are exemplary, and may be altered to meet the requirements of particular fabrication processes. Thus, the invention is limited only by the following claims.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7068432 *Jul 27, 2004Jun 27, 2006Micron Technology, Inc.Controlling lens shape in a microlens array
US7129532 *Mar 4, 2005Oct 31, 2006Magnachip Semiconductor, Ltd.Image sensor and method for fabricating the same
US7163834 *Dec 29, 2004Jan 16, 2007Dongbu Electronics Co., Ltd.CMOS image sensor and method of fabricating the same
US7193289Nov 30, 2004Mar 20, 2007International Business Machines CorporationDamascene copper wiring image sensor
US7208783Nov 9, 2004Apr 24, 2007Micron Technology, Inc.Optical enhancement of integrated circuit photodetectors
US7218452Mar 21, 2006May 15, 2007Micron Technology, Inc.Controlling lens shape in a microlens array
US7459733Mar 12, 2007Dec 2, 2008Aptina Imaging CorporationOptical enhancement of integrated circuit photodetectors
US7553689Jul 13, 2005Jun 30, 2009Taiwan Semiconductor Manufacturing Co., Ltd.Semiconductor device with micro-lens and method of making the same
US7554143Sep 29, 2006Jun 30, 2009Dongbu Electronics Co., Ltd.CMOS image sensor and method of fabricating the same
US7589306 *Feb 12, 2008Sep 15, 2009Omnivision Technologies, Inc.Image sensor with buried self aligned focusing element
US7652821Dec 19, 2006Jan 26, 2010Aptina Imaging CorporationControlling lens shape in a microlens array
US7655495Jan 17, 2007Feb 2, 2010International Business Machiens CorporationDamascene copper wiring optical image sensor
US7704780Nov 18, 2008Apr 27, 2010Aptina Imaging CorporationOptical enhancement of integrated circuit photodetectors
US7708899 *Sep 20, 2004May 4, 2010Tokyo Electron LimitedMethod for forming micro lenses
US7813026Jan 21, 2005Oct 12, 2010Qualcomm Mems Technologies, Inc.System and method of reducing color shift in a display
US7875196Jul 30, 2009Jan 25, 2011Tokyo Electron LimitedMethod for forming micro lenses
US7944602Oct 28, 2009May 17, 2011Qualcomm Mems Technologies, Inc.Systems and methods using interferometric optical modulators and diffusers
US7948555 *Oct 20, 2008May 24, 2011Samsung Electronics Co., Ltd.Camera module and electronic apparatus having the same
US8045252Feb 20, 2008Oct 25, 2011Qualcomm Mems Technologies, Inc.Spatial light modulator with integrated optical compensation structure
US8111445Jan 15, 2008Feb 7, 2012Qualcomm Mems Technologies, Inc.Spatial light modulator with integrated optical compensation structure
US8139130Jul 28, 2005Mar 20, 2012Omnivision Technologies, Inc.Image sensor with improved light sensitivity
US8183510 *Sep 14, 2009May 22, 2012Omnivision Technologies, Inc.Image sensor with buried self aligned focusing element
US8194296Mar 10, 2011Jun 5, 2012Omnivision Technologies, Inc.Image sensor with improved light sensitivity
US8211732 *Sep 11, 2008Jul 3, 2012Omnivision Technologies, Inc.Image sensor with raised photosensitive elements
US8274715Jul 28, 2005Sep 25, 2012Omnivision Technologies, Inc.Processing color and panchromatic pixels
US8330839Mar 19, 2012Dec 11, 2012Omnivision Technologies, Inc.Image sensor with improved light sensitivity
US8344377Nov 5, 2008Jan 1, 2013Qualcomm Mems Technologies, Inc.Display element having filter material diffused in a substrate of the display element
US8416339Aug 29, 2011Apr 9, 2013Omni Vision Technologies, Inc.Providing multiple video signals from single sensor
US8525241May 16, 2012Sep 3, 2013Omni Vision Technologies, Inc.Image sensor with raised photosensitive elements
US8670171Oct 18, 2010Mar 11, 2014Qualcomm Mems Technologies, Inc.Display having an embedded microlens array
US8711452Sep 14, 2012Apr 29, 2014Omnivision Technologies, Inc.Processing color and panchromatic pixels
US8798425Nov 22, 2011Aug 5, 2014Qualcomm Mems Technologies, Inc.Decoupled holographic film and diffuser
US8848294Oct 22, 2010Sep 30, 2014Qualcomm Mems Technologies, Inc.Method and structure capable of changing color saturation
US8872085Sep 26, 2007Oct 28, 2014Qualcomm Mems Technologies, Inc.Display device having front illuminator with turning features
US8884392 *Nov 22, 2013Nov 11, 2014Sony CorporationMethod of manufacturing solid state imaging device, and solid state imaging device
US8987113 *Nov 22, 2013Mar 24, 2015Taiwan Semiconductor Manufacturing Company, Ltd.Image sensor including multiple lenses and method of manufacture thereof
US9019183Sep 24, 2007Apr 28, 2015Qualcomm Mems Technologies, Inc.Optical loss structure integrated in an illumination apparatus
US9019590Dec 27, 2011Apr 28, 2015Qualcomm Mems Technologies, Inc.Spatial light modulator with integrated optical compensation structure
US9025235Feb 1, 2008May 5, 2015Qualcomm Mems Technologies, Inc.Optical interference type of color display having optical diffusion layer between substrate and electrode
US9111828 *Mar 28, 2014Aug 18, 2015Sony CorporationSolid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US20050061772 *Sep 20, 2004Mar 24, 2005Tokyo Electron LimitedMethod for forming micro lenses
US20050208692 *Mar 4, 2005Sep 22, 2005Ju-Il LeeImage sensor and method for fabricating the same
US20050280111 *Dec 29, 2004Dec 22, 2005Dongbuanam Semiconductor Inc.CMOS image sensor and method of fabricating the same
US20060023314 *Jul 27, 2004Feb 2, 2006Boettiger Ulrich CControlling lens shape in a microlens array
US20060057765 *Sep 13, 2004Mar 16, 2006Taiwan Semiconductor Manufacturing Company, Ltd.Image sensor including multiple lenses and method of manufacture thereof
US20060097244 *Nov 9, 2004May 11, 2006Chintamani PalsuleOptical enhancement of integrated circuit photodetectors
US20060113622 *Nov 30, 2004Jun 1, 2006International Business Machines CorporationA damascene copper wiring image sensor
US20060148122 *Dec 29, 2005Jul 6, 2006Han Chang HCMOS image sensor and method for manufacturing the same
US20060161638 *Mar 21, 2006Jul 20, 2006Apple Computer, Inc.System and method for passive detection and context sensitive notification of upgrade availability for computer information
US20060176566 *Mar 21, 2006Aug 10, 2006Boettiger Ulrich CControlling lens shape in a microlens array
US20070015305 *Jul 13, 2005Jan 18, 2007Taiwan Semiconductor Manufacturing Co., Ltd.Semiconductor device with micro-lens and method of making the same
US20070018213 *Sep 29, 2006Jan 25, 2007Dongbuanam Semiconductor Inc.CMOS image sensor and method of fabricating the same
US20070020920 *Sep 22, 2006Jan 25, 2007Chintamani PalsuleMethod for fabricating low leakage interconnect layers in integrated circuits
US20070114622 *Jan 17, 2007May 24, 2007International Business Machines CorporationDamascene copper wiring optical image sensor
US20070121212 *Dec 19, 2006May 31, 2007Boettiger Ulrich CControlling lens shape in a microlens array
US20070126039 *Jul 1, 2005Jun 7, 2007Sougo OhtaSolid state imaging apparatus
US20070158696 *Mar 12, 2007Jul 12, 2007Chintamani PalsuleOptical enhancement of integrated circuit photodetectors
US20070187787 *Feb 16, 2006Aug 16, 2007Ackerson Kristin MPixel sensor structure including light pipe and method for fabrication thereof
US20090081822 *Nov 18, 2008Mar 26, 2009Aptina Imaging CorporationOptical enhancement of integrated circuit photodetectors
US20090086301 *Nov 5, 2008Apr 2, 2009Idc, LlcDisplay element having filter material diffused in a substrate of the display element
US20090122178 *Oct 20, 2008May 14, 2009Samsung Electronics Co., Ltd.Camera module and electronic apparatus having the same
US20090200452 *Feb 12, 2008Aug 13, 2009Omnivision Technologies, Inc.Image sensor with buried self aligned focusing element
US20090289031 *Jul 30, 2009Nov 26, 2009Tokyo Electron LimitedMethod for forming micro lenses
US20100033607 *Oct 15, 2009Feb 11, 2010Panasonic CorporationSolid state imaging device and method for manufacturing the same
US20100038523 *Sep 14, 2009Feb 18, 2010Omnivision Technologies, Inc.Image sensor with buried self aligned focusing element
US20100059802 *Sep 11, 2008Mar 11, 2010Shenlin ChenImage sensor with raised photosensitive elements
US20100165443 *Oct 28, 2009Jul 1, 2010Qualcomm Mems Technologies, Inc.Systems and methods using interferometric optical modulators and diffusers
US20140210032 *Mar 28, 2014Jul 31, 2014Sony CorporationSolid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US20150187833 *Mar 4, 2015Jul 2, 2015Taiwan Semiconductor Manufacturing Company, Ltd.Image sensor including multiple lenses and method of manufacture thereof
CN102881699A *Jul 5, 2012Jan 16, 2013索尼公司Solid-state imaging device, manufacturing method of solid-state imaging device and electronic apparatus
CN103098213A *Jul 8, 2011May 8, 2013索尼公司Solid-state imaging element, process for producing solid-state imaging element, and electronic device
EP1574162A2 *Feb 17, 2005Sep 14, 2005Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Imaging device with multiple imaging modes
EP1574162A3 *Feb 17, 2005Oct 5, 2005Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Imaging device with multiple imaging modes
Classifications
U.S. Classification438/151, 438/156
International ClassificationH01L27/146
Cooperative ClassificationH01L27/14601, H01L27/14685, H01L27/14627
European ClassificationH01L27/146V2, H01L27/146A, H01L27/146A10M
Legal Events
DateCodeEventDescription
Jul 14, 2005FPAYFee payment
Year of fee payment: 4
Sep 28, 2009FPAYFee payment
Year of fee payment: 8
Apr 10, 2011ASAssignment
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABRAMOVICH, IRIT;REEL/FRAME:026100/0602
Effective date: 19991216
Owner name: TOWER SEMICONDUCTOR LTD., ISRAEL
Oct 16, 2011ASAssignment
Owner name: INTELLECTUALS HIGH-TECH KFT., HUNGARY
Effective date: 20110925
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TOWER SEMICONDUCTOR LTD.;REEL/FRAME:027068/0228
May 13, 2013FPAYFee payment
Year of fee payment: 12