US20010031931A1 - Method and apparatus for obtaining blood for diagnostic tests - Google Patents

Method and apparatus for obtaining blood for diagnostic tests Download PDF

Info

Publication number
US20010031931A1
US20010031931A1 US09/532,729 US53272900A US2001031931A1 US 20010031931 A1 US20010031931 A1 US 20010031931A1 US 53272900 A US53272900 A US 53272900A US 2001031931 A1 US2001031931 A1 US 2001031931A1
Authority
US
United States
Prior art keywords
blood
skin
sample
vacuum
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/532,729
Other versions
US6283926B1 (en
Inventor
David Cunningham
Timothy Henning
Eric Shan
Douglas Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/532,729 priority Critical patent/US6283926B1/en
Application granted granted Critical
Publication of US6283926B1 publication Critical patent/US6283926B1/en
Publication of US20010031931A1 publication Critical patent/US20010031931A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150068Means for enhancing collection by tissue compression, e.g. with specially designed surface of device contacting the skin area to be pierced
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150099Means for enhancing collection by negative pressure, other than vacuum extraction into a syringe by pulling on the piston rod or into pre-evacuated tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150221Valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150229Pumps for assisting the blood sampling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15134Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids
    • A61B5/15136Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids by use of radiation, e.g. laser

Definitions

  • This invention relates to a method and apparatus for obtaining samples of blood for diagnostic purposes.
  • diabetes has been increasing markedly in the world. At this time, diagnosed diabetics represented about 3% of the population of the United States. It is believed that the total actual number of diabetics in the United States is over 16,000,000. Diabetes can lead to numerous complications, such as, for example, retinopathy, nephropathy, and neuropathy.
  • the most important factor for reducing diabetes-associated complications is the maintenance of an appropriate level of glucose in the blood stream.
  • the maintenance of the appropriate level of glucose in the blood stream may prevent and even reverse many of the effects of diabetes.
  • Glucose monitoring devices of the prior art have operated on the principle of taking blood from an individual by a variety of methods, such as by needle or lancet. An individual then coats a paper strip carrying chemistry with the blood, and finally insert the blood-coated strip into a blood glucose meter for measurement of glucose concentration by determination of change in reflectance.
  • the medical apparatus of the prior art for monitoring the level of glucose in the blood stream required that an individual have separately available a needle or lancet for extracting blood from the individual, strips carrying blood chemistry for creating a chemical reaction with respect to the glucose in the blood stream and changing color, and a blood glucose meter for reading the change in color indicating the level of glucose in the blood stream.
  • the level of blood glucose when measured by a glucose meter, is read from a strip carrying the blood chemistry through the well-known process of reading reflectometers for glucose oxidation.
  • lancets comprise a blade and a pressable end opposed thereto, with the blade having an acute end capable of being thrust into skin of a human. By striking the pressable portion, the acute end of the blade will pierce the skin, for example, of the finger.
  • the finger lancet is primarily used to obtain small volumes of blood, i.e., less than 1 mL. Diabetics use the finger lancet to obtain volumes of blood less than 25 ⁇ L for analysis for glucose. A small amount of blood for the blood test will ooze out of the skin. There are many small blood vessels in each finger so that a finger can be squeezed to cause a larger drop of blood to ooze.
  • the finger is one of the most sensitive parts of the body; accordingly, the finger lancet leads to even more pain than what would be experienced by extracting blood via lancet at a different body site.
  • the finger lancet presents another problem because of the limited area available on the fingers for lancing. Because it is recommended that diabetics monitor their blood glucose levels four to six times per day, the limited area on the fingers calls for repeated lancing of areas that are already sore. Because fingers are sensitive to pain, it is a recent tendency that the arm is subjected to blood sampling. See, for example, U.S. Pat. No. 4,653,513. The device of U.S. Pat. No.
  • 4,653,513 comprises a cylindrical housing and a lancet support, which has a gasket or flexible portion slidably accommodated in the housing. Springs will retract the lancet support to thereby reduce air pressure in the housing so that it sucks a blood sample, automatically and immediately after a lancet pierces the skin. See also U.S. Pat. No.
  • 5,320,607 which discloses a device comprising a sealed vacuum chamber in a state of preexisting reduced pressure, a support member for the sealed vacuum chamber, the support member defining a suction portion adjacent the sealed vacuum chamber, the suction portion, in cooperation with the sealed vacuum chamber, exposing an area of the skin of a patient to a reduced pressure state when the device is actuated, and means arranged within the suction portion for slightly rupturing a portion of the area of skin of the patient exposed to the reduced pressure state.
  • the blood volume requirements for a standard glucose test strip is typically 3 ⁇ L or more, an area of the body that can generate that much blood from a lancet wound must be used. It is believed, however, that improvements in glucose test strip technology will reduce the volume of blood needed to 1 to 3 ⁇ L. Because the finger is well supplied with blood and the amount of blood can be increased by squeezing the finger after lancing, the finger is the currently preferred body site for lancing, even though lancing of the finger is painful.
  • a less painful technique for obtaining body fluids could be found if a reliable method were found for lancing a body part that is less sensitive to pain than the finger and obtaining a useful amount of blood from that body part.
  • a body part such as the forearm is much less sensitive to pain than the finger, but the amount of blood resulting from the lancing procedure is generally of an inadequate volume for use with current detection technology.
  • Ways of increasing blood flow to the finger are common knowledge. The recommendation is made to diabetics to run their finger under hot water prior to lancing to improve the blood flow in the finger and the amount of blood collected from the finger. Running hot water over a body part to improve blood flow is impractical for areas such as the forearm or thigh. The availability of hot water is also a concern.
  • This invention provides a method and apparatus for extracting a sample of blood from a patient for subsequent diagnostic tests, e.g., glucose monitoring.
  • the method comprises the steps of:
  • step (a) is preceded by the step of increasing the availability of blood in the portion of the skin from which the sample is to be extracted.
  • the availability of blood in the portion of the skin from which the sample is to be extracted can be increased by means of a vacuum, which is applied to the surface of the skin in the vicinity of the opening prior to forming the opening in the skin.
  • the vacuum causes the portion of the skin in the vicinity of the blood extraction site to become engorged with blood.
  • the vacuum also causes the portion of the skin in the vicinity of the blood extraction site to become stretched.
  • An opening in this stretched portion of skin can be formed with a cutting or puncturing device, e.g., a lancet, or other device capable of forming an opening in the skin, e.g., a laser or a fluid jet. If a cutting or puncturing device is used to form the opening, it must be retracted from the opening prior to the step of extracting the sample of blood from the opening. This retraction will allow the unrestricted flow of blood through the opening. After the opening is formed, a vacuum is used to aid in extracting the sample of blood from the opening in the skin. The sample can be analyzed from the drops of blood that collect on the surface of the skin at the site of the opening by applying the blood directly to a glucose detector.
  • a cutting or puncturing device e.g., a lancet, or other device capable of forming an opening in the skin, e.g., a laser or a fluid jet.
  • the sample be collected in such a manner, e.g., via a capillary tube, that it can be analyzed by conventional diagnostic devices, such as, for example, a biosensor.
  • the sample can be collected in a collection zone that is integrated with a conventional diagnostic device, e.g., a biosensor.
  • the availability of blood in the area of the skin from which the sample is to be extracted can be increased by means of applying thermal energy to that area of skin.
  • the thermal energy causes the blood in that area of the skin to flow more rapidly, thereby allowing more blood to be collected per given unit of time.
  • steps (a) and (b) can be carried out in the same manner as they were carried out in the aforementioned preferred embodiment.
  • an apparatus for collecting a sample of body fluid for analysis in a diagnostic test e.g., blood
  • the apparatus comprises:
  • the housing is preferred for the convenience of the patient and the protection of the components.
  • the vacuum pump requires a source of power. If the apparatus includes a housing, the source of power can be disposed within the housing. Alternatively, the source of power can be external to the housing.
  • the preferred device for forming an unobstructed opening in the area of the skin from which the sample of blood is to be extracted is a lancing assembly, which comprises a lancet for forming an opening in the skin.
  • the unobstructed opening in the skin can be formed by a laser or a fluid jet.
  • the vacuum pump can serve the dual purposes of (1) stretching the skin and (2) enhancing the extraction of the sample of blood from the unobstructed opening in the skin.
  • the vacuum pump can serve the triple purposes of (1) stretching the skin, (2) increasing the availability of blood to the area of the skin from which the sample is to be extracted, and (3) enhancing the extraction of the sample of blood from the unobstructed opening in the skin.
  • the housing further contains electronics having programmed instructions to switch the vacuum pump on and off to maintain the desired level of vacuum.
  • the apparatus preferably contains valves, such as, for example, solenoid valves, for triggering the lancet of the lancing assembly and releasing the vacuum at the conclusion of the blood extraction procedure.
  • the apparatus can optionally contain a heating element to increase the availability of blood to the area of the skin from which the sample is to be extracted.
  • the apparatus can also contain a glucose detector integrated with the apparatus, e.g., a biosensor, to analyze the sample of blood collected by the apparatus.
  • the method and apparatus of this invention provide several advantages over the methods and apparatus of the prior art.
  • FIG. 1 is a plan view of the components of a preferred embodiment of the apparatus of this invention. In this Figure, the cover of the housing is removed.
  • FIG. 2 is a schematic diagram illustrating how a vacuum causes a portion of the skin to become stretched prior to the formation of an opening in the skin from which the sample of blood is extracted.
  • FIG. 2 also illustrates the spatial relationship between the nosepiece of lancing assembly and a glucose detector, e.g., a biosensor.
  • FIG. 3 is a block diagram illustrating the electronics of the preferred embodiment.
  • FIG. 4 is a schematic diagram illustrating an alternative seal for the vacuum of the device of the present invention.
  • the embodiments of this invention require the following steps to carry out the function of obtaining a sample of blood for carrying out a diagnostic test, e.g., glucose monitoring:
  • the step of forming an unobstructed opening in the area of the skin from which the sample of blood is to be extracted is carried out by a piercing device or some other type of device capable of forming an unobstructed opening in the skin.
  • Piercing devices suitable for this invention include, but are not limited to, mechanical lancing assemblies.
  • Other type of device capable of forming an unobstructed opening in the skin include, but are not limited to, lasers and fluid jets.
  • Other types of devices capable of forming an unobstructed opening in the skin can be used, and this disclosure should not be construed so as to be limited to the devices listed.
  • Mechanical lancing assemblies are well-known in the art. These assemblies comprise include standard steel lancets, serrated devices, and multiple tip devices. The lancets can be made from metal or plastic. Multiple tip devices provide redundancy, which can reduce the number of failures and increase the volume of blood extracted.
  • Lasers suitable for forming an unobstructed opening in the skin to draw blood are also well-known in the art. See for example, U.S. Pat. Nos. 4,775,361, 5,165,418, 5,374,556, International Publication Number WO 94/09713, and Lane et al. (1984) IBM Research Report—“Ultraviolet-Laser Ablation of Skin”, all of which are incorporated herein by reference.
  • Lasers that are suitable for forming an unobstructed opening in the skin the skin include Er:YAG, Nd:YAG, and semiconductor lasers.
  • Fluid jets suitable for forming an unobstructed opening in the skin employ a high pressure jet of fluid, preferably a saline solution, to penetrate the skin.
  • the opening formed by the device must be unobstructed.
  • unobstructed means free from clogging, hampering, blocking, or closing up by an obstacle. More specifically, the expressions “unobstructed opening in the area of the skin from which the sample is to be extracted”, “unobstructed opening in the skin”, and the like are intended to mean that the portion of the opening below the surface of the skin is free from any foreign object that would clog, hamper, block, or close up the opening, such as, for example, a needle of any type.
  • a lancet For example, if a lancet is used to form the opening, it must be retracted from the opening prior to the commencement of the extraction of blood. Because lasers and fluid jets do not require contact with the skin to form openings in the skin, these types of devices typically provide unobstructed openings. However, these expressions are not intended to include foreign objects at the surface of the skin or above the surface of the skin, such as, for example, a glucose monitor. This feature, i.e., the unobstructed opening, can be contrasted with the opening used in the method and apparatus described in U.S. Pat. No. 5,320,607, in which the piercing and cutting means remains in the skin during the duration of the period of blood extraction.
  • Extraction enhancing elements suitable for use in this invention include, but are not limited to, vacuum, skin stretching elements, and heating elements. It has been discovered that when these elements are used in combination, the volume of blood extracted is greatly increased, particularly when a vacuum is applied in combination with skin stretching. In this combination, the vacuum not only causes the blood to be rapidly removed from the unobstructed opening by suction, it also causes a portion of the skin in the vicinity of the opening to be stretched. Stretching of the skin can be effected by other means, such as mechanical means or adhesives. Mechanical means include devices for pinching or pulling the skin; adhesives bring about stretching of the skin by means of pulling. It is preferred to use a vacuum to effect stretching of the skin. Like a vacuum, a heating element operates more effectively in combination with other techniques, e.g., stretching of the skin.
  • step (a), the step of forming the unobstructed opening is preceded by the step of increasing the availability of blood at the area of the skin from which the sample is to be extracted.
  • the availability of blood at a given area of the skin can be increased by at least two methods.
  • a vacuum can be used to cause blood flowing through blood vessels to pool in the area of the skin where the vacuum is applied.
  • heat can be used to cause blood flowing through blood vessels to flow more rapidly in the area of the skin where heat is applied, thereby allowing a greater quantity of blood to be extracted from the blood extraction site per unit of time.
  • Elements for increasing the availability of blood at a blood extraction site that are suitable for use in this invention include, but are not limited to, vacuum, localized heating element, skin stretching element, and chemicals.
  • applying a vacuum to the area of the skin from which blood is to be extracted can increase blood availability under and within the skin at the application site.
  • the vacuum can also be used to stretch the skin upwardly into a chamber, thereby increasing pooling of blood under and within the skin.
  • This combination of vacuum and skin stretching can be an extension of the combination used to extract blood from the opening in the skin, as previously described. It is well-known that heat can increase perfusion on the large scale of a limb or a finger. Chemical means, such as histamine, can be used to cause a physiological response to increase perfusion under and within the skin.
  • the extracted blood is also collected.
  • the step of collecting the sample of blood can be carried out in a variety of ways.
  • the blood can be collected in capillary tubes or absorbent paper.
  • the blood can be allowed to remain in the lancet assembly, from which it can used directly in a diagnostic test.
  • the sample of blood is collected on the application zone of a glucose detector, from where it can be used directly to provide an indication of the concentration of glucose in the blood.
  • the sample can be analyzed at a time later than the time of collection or at a location remote from the location of collection or both.
  • Blood extraction device 10 comprises a housing 12 . Disposed within the housing 12 are a vacuum pump 14 , a lancing assembly 16 , a battery 18 , and electronics 20 . A switch 22 is provided to activate electronics 20 .
  • the housing 12 is preferably made from a plastic material. It is preferably of sufficient size to contain all of the components that are required for forming an unobstructed opening in the area of the skin from which the sample of blood is to be extracted, extracting the sample of blood from the unobstructed opening in the skin, preferably with the aid of a vacuum and a stretching of the skin, and collecting the extracted sample in an amount sufficient to carry out a diagnostic test. Methods of preparing the housing 12 are well-known to one of ordinary skill in the art. As stated previously, the housing 12 is not required, but is preferred for the convenience of the patient and the protection of the components.
  • the vacuum pump 14 must be capable of providing a vacuum that will provide sufficient suction to stretch the portion of the skin in the region from which the sample of blood is to be extracted.
  • the portion of stretched skin is raised a distance of 1 to 10 mm, preferably 3 to 5 mm, from the plane of the body part of which it is a portion.
  • the suction provided by the vacuum pump 14 is stretching the appropriate portion of skin, the suction provided by the vacuum pump 14 also causes the stretched portion to become engorged with blood.
  • the level of suction provided must be sufficient to cause a relatively large volume of blood to become engorged at the point that the vacuum is applied.
  • the vacuum pump 14 must also be capable of providing sufficient suction to extract blood from the opening in the skin at a rate sufficient to extract at least 1 ⁇ L of blood within a period of five minutes.
  • a vacuum pump 14 that is suitable for the device of this invention can be a diaphragm pump, a piston pump, a rotary vane pump, or any other pump that will perform the required functions set forth previously.
  • the vacuum pump 14 employs a self-contained permanent magnet DC motor.
  • Vacuum pumps that are suitable for this invention are well-known to those of ordinary skill in the art and are commercially available.
  • a vacuum pump suitable for use in the present invention is available from T-Squared Manufacturing Company, Nutley, N.J., and has the part number T2-03.08.004.
  • the vacuum pump 14 is preferably capable of providing a pressure of down to about ⁇ 14.7 psig, and is more preferably operated at from about ⁇ 3.0 psig to about ⁇ 10.0 psig.
  • the area of the skin subjected to vacuum preferably ranges up to about 50 cm 2 , more preferably from about 0.1 to about 5.0 cm 2 .
  • the period of vacuum application prior to forming the opening in the skin i.e., for increasing the availability of blood to the application site, preferably ranges up to about 5 minutes, preferably from about 1 to about 15 seconds.
  • the period of vacuum application subsequent to forming the opening in the skin i.e., for aiding in the extraction of blood from the unobstructed opening, preferably ranges up to about 5 minutes, preferably from about 1 to about 60 seconds.
  • the vacuum provided by the vacuum pump 14 can be continuous or pulsed. A continuous vacuum is preferred for the reason that it requires fewer components than does a pulsed vacuum. It is preferred that the vacuum applied not cause irreversible damage to the skin. It is preferred that the vacuum applied not produce bruises and discolorations of the skin that persist for several days. It is also preferred that the level of vacuum applied and duration of application of vacuum not be so excessive that it causes the dermis to separate from the epidermis, which results in the formation of a blister filled with fluid.
  • the vacuum pump feature offers significant advantages over the method and apparatus described in U.S. Pat. No. 5,320,607, in which a sealed vacuum chamber in a state of preexisting reduced pressure is used.
  • the use of a vacuum pump provides the user with greater control of blood extraction conditions than does a sealed vacuum chamber in a state of preexisting reduced pressure. For example, if the vacuum is insufficient, energy can be provided to the vacuum pump to bring about a higher level of vacuum, thereby providing greater suction.
  • the lancing assembly 16 comprises at least one lancet.
  • Standard lancets can be used in the lancing assembly of this invention.
  • Narrow gauge (28 to 30 gauge) lancets are preferred.
  • Lancets suitable for this invention can be made from metal or plastic. Lancets suitable for this invention can have single points or multiple points.
  • the depth of penetration of the lancet preferably ranges from about 0.4 to about 2.5 mm, more preferably from about 0.4 to about 1.6 mm.
  • the length of the lancet or lancets preferably ranges from about 1 mm to about 5 mm.
  • the lancing assembly is preferably located so that the user can easily replace used lancets.
  • the lancet of the lancing assembly 16 can be cocked manually or automatically, e.g., by means of a vacuum-actuated piston or diaphragm.
  • the lancet of the lancing assembly 16 can be triggered by manually or automatically, e.g., by means of a vacuum-actuated piston or diaphragm.
  • Lancing assemblies are well-known in the art. Representative examples of lancing assemblies suitable for this invention are described in U.S. Pat. Nos. Re. 32,922, 4,203,446, 4,990,154, and 5,487,748, all of which are incorporated herein by reference. A particularly suitable lancing assembly for this invention is described in U.S. Pat. No. Re. 32,922. However, any lancing assembly selected should operate in conjunction with the other features of the apparatus of this invention. For example, if a vacuum is employed, the lancing assembly must be designed so that a vacuum can be formed and drawn through the assembly. The lancing assembly can be designed to allow automatic cocking and automatic triggering of the lancet.
  • the vacuum pump 14 is connected to the lancing assembly 16 by an evacuation tube 24 .
  • the air that is evacuated from the lancing assembly 16 by the vacuum pump 14 is removed via the evacuation tube 24 .
  • the evacuation tube 24 is typically made from a polymeric material.
  • a check valve 26 is placed between the vacuum pump 14 and the lancing assembly 16 at a point in the evacuation tube 24 to prevent air removed from the lancing assembly 16 by the vacuum pump 14 from flowing back to the lancing assembly 16 and adversely affecting the vacuum.
  • a source of power for the vacuum pump 14 can be disposed within the housing 12 .
  • a source of power suitable for the device of this invention is a battery 18 .
  • an external source of power can be used to operate the vacuum pump 14 .
  • the power source is actuated by the electronics 20 , which, in turn, is actuated by the switch 22 .
  • the electronics 20 may incorporate a microprocessor or microcontroller.
  • the function of the electronics 20 is to switch power on and off to operate the various components in the apparatus. These components include, but are not limited to, the vacuum pump 14 .
  • the electronics 20 can also be use to switch power on and off to operate components in alternative embodiments, e.g., heating elements, lancets, indicating devices, and valves.
  • Electronics suitable for this invention is the “TATTLETALE MODEL 5F” controller/data logger, commercially available from Onset Computer Corporation, 536 MacArthur Blvd. P.O. Box 3450, Pocasset, Mass. 02559-3450.
  • Auxiliary electronic devices such as power transistors, pressure monitors, and OP-Amps (operational amplifiers), may also be required in order to provide an interface between the controller and the operational components. All electronics required for this invention are well-known to one of ordinary skill in the art and are commercially available.
  • Auxiliary electronic devices suitable for use in this invention include the following components: Component Source Catalog Number Mosfet Drivers International Rectifier IRLD024 El Segundo, CA Op-Amp National Semiconductor LM358 Santa Clara, CA Status LED Hewlett-Packard HLMPD150 Newark Electronics Schaumburg, IL Pressure Sensor Sensym, Inc. SDX15D4 Milpitas, CA
  • FIG. 3 illustrates by way of a block diagram how the foregoing electronic components can be arranged to carry out the method of the present invention.
  • the nosepiece 30 of the lancing assembly 16 is applied to the surface of the skin, designated herein by the letter “S”.
  • the end of the nosepiece 30 that contacts the skin is equipped with a seal 32 .
  • the purpose of the seal 32 is to prevent air from leaking into blood extraction chamber 34 , so that the vacuum pump 14 can provide sufficient suction action for increasing the availability of blood to the area of the skin from which the sample is to be extracted, stretching the skin, and extracting the sample of blood from the unobstructed opening in the skin.
  • the seal 32 surrounds an opening 33 in the nosepiece 30 .
  • the opening 33 in the nosepiece allows communication between the surface of the skin and a blood extraction chamber 34 in the nosepiece 30 .
  • the seal 32 is preferably made of a rubber or an elastomeric material.
  • FIG. 4 illustrates an alternative position for the seal 32 .
  • the seal is designated by the reference numeral 32 ′.
  • the remaining parts of FIG. 4 are the same as those of FIG. 2, and , accordingly, retain the same reference numerals as were used in FIG. 2.
  • the switch 22 is actuated, typically by being pressed, thereby activating the electronics 20 , which starts the vacuum pump 14 .
  • the vacuum pump 14 then provides a suction action.
  • the suction action of the vacuum pump 14 causes the skin circumscribed by the seal 32 to become engorged with blood. Engorgement of the skin with blood is accompanied by a stretching of and rising up of the skin up to opening 33 .
  • the lancing assembly 16 is triggered, thereby causing the lancet 36 to penetrate the skin that has risen up to the opening 33 and that is engorged with blood.
  • the lancet 36 is preferably triggered automatically, by a solenoid valve 38 that causes a vacuum-actuated piston (not shown) to trigger the lancet 36 .
  • the lancet 36 is then retracted, preferably automatically. Thereupon, the blood flows out of the unobstructed opening resulting from the lancet 36 , and, aided by the vacuum generated by the vacuum pump 14 , is collected.
  • the electronics 20 causes the vacuum pump 14 to stop.
  • the device 10 can then be removed from the surface of the skin after another solenoid valve (not shown because it is hidden under solenoid valve 38 ) is opened to vent the vacuum to allow ease of removal of the device from the surface of the skin.
  • Solenoid valves suitable for use with the apparatus described herein are commercially available from The Lee Company, Essex, Conn. and have the part number LHDA0511111H.
  • the blood is preferably directly collected on the application zone of a glucose detector, e.g., a reflectance strip or biosensor.
  • the blood can then be used as the sample for a determination of glucose concentration in blood.
  • the blood can be collected by other collection devices, such as, for example, a capillary tube or absorbent paper.
  • the apparatus of the present invention can include a glucose detector for analyzing the blood sample extracted by the apparatus.
  • Glucose detectors are well-known in the art. With respect to glucose monitoring, there are two major categories of glucose detectors—reflectometers and biosensors. Representative examples of reflectometers suitable for this invention are described in U.S. Pat. No. 4,627,445, incorporated herein by reference. Representative examples of biosensors suitable for this invention are described in U.S. Pat. No. 5,509,410, incorporated herein by reference.
  • the glucose detector is preferably disposed in the nosepiece 30 of the lancing assembly 16 .
  • the glucose detector must be located at a position sufficiently close to the site of blood extraction so that the quantity of extracted blood collected will be sufficient to carry out a standard glucose monitoring test. Typically, this distance will preferably be no more than 5 mm from the site of blood extraction, more preferably no more than 3 mm from the site of blood extraction, most preferably no more than 1 mm from the site of blood extraction. Care must be taken in the placement of the glucose detector so that the detector does not adversely affect the vacuum, when a vacuum is employed to aid in the extraction of blood.
  • the glucose detector 40 should be modified, if necessary, so that the blood collected in the collection zone of the glucose detector is capable of being used to activate the glucose detector.
  • FIG. 2 also illustrates a manner for disposing a glucose detector 40 in the nosepiece 30 of the lancing assembly 16 .
  • This invention provides numerous advantages over blood extraction devices of the prior art. Among these advantages are the following:
  • This example illustrates that greater volumes of blood can be extracted and collected by applying a vacuum, pulsed or continuous, after piercing than can be extracted and collected when no vacuum is applied. No vacuum was applied prior to piercing.
  • Pain of 2 person felt definite prick, not as painful as piercing of finger by standard finger lancet
  • Pain of 3 person felt definite pain, approximately equal to a piercing of finger by standard finger lancet
  • the “MEDISENSE” lancet device was modified to allow vacuum to be pulled through the lancet assembly.
  • the vacuum Prior to puncturing, the vacuum was applied for a period of 30 seconds; subsequent to puncturing, the vacuum was applied for a period of 30 seconds.
  • the skin was under vacuum at the time the lancet was triggered. After the lancet was triggered, the lancet assembly was removed, and the vacuum was used to apply the same level of vacuum that had been used for the vacuum prior to puncturing.
  • the vacuum both prior to puncturing and subsequent to puncturing, was applied with a pipette tip having a diameter of 8 mm (“RAININ RT-200”).
  • the pipette tip of the vacuum device was held level to the plane of the skin. Blood was then collected into capillary tubes. The amount of blood collected was determined by measuring the length of blood in the tubes.
  • This example illustrates that localized heating of the area to be pierced followed by vacuum after piercing results in a greater volume of blood being extracted than does extraction with only vacuum after piercing.
  • Heat was applied with a heating block, which was an aluminum block having a square face covered with a “KAPTON” film heater element controlled by an “OMEGA” DP41 temperature controller using a T-type thermocouple. Vacuum was applied after each puncturing for 30 seconds at ⁇ 5.0 psig. Blood was collected into capillary tubes. The amount of blood collected was determined by measuring the length of blood in the tubes. The percentage of collections in which the volume of blood collected exceeded 1.0 ⁇ L was calculated. Pain was also tracked. Blood collection results are set forth in TABLE III. TABLE III Percent of samples Pre-piercing heating Average volume of blood having >1 ⁇ L of blood duration (seconds) samples collected ( ⁇ L) collected 15 6.91 94 60 11.6 100
  • the average volume of blood collected using a pre-heating duration of 15 seconds was more than twice the average volume of blood collected at a post-puncturing vacuum level of ⁇ 5.0 psig., with no pre-heating. See the results of Example 1 for this comparison (6.91 ⁇ L vs. 3.1 ⁇ L).
  • the average volume of blood collected using a pre-heating duration of 60 seconds was approximately four times the average volume of blood collected at a post-puncturing vacuum level of ⁇ 5.0 psig, with no pre-heating. See the results of Example 1 for this comparison (11.6 ⁇ L vs. 3.1 ⁇ L).
  • This example illustrates the effect that stretching the skin upwardly with a vacuum has on the extraction of blood.
  • the first fixture was a 15 mm diameter vacuum fixture (i.e., a hollow cylindrical tube) used without a net strung across the opening of the tube.
  • the second fixture was a 15 mm diameter vacuum fixture (i.e., a hollow cylindrical tube) used with a net strung across the opening of the tube. The net prevented skin from being raised up into the vacuum fixture.
  • Vacuum was applied for less than five seconds prior to puncturing.
  • the forearm was punctured under a vacuum of either ⁇ 5.0 psig or ⁇ 7.5 psig.
  • the vacuum applied was maintained for 30 seconds after puncturing.
  • the diameter of the pipette tip used to apply vacuum after puncturing was varied, with diameters of 4, 6, 8, and 10 mm being used.
  • Four punctures per condition were carried out per person. Accordingly, it can be seen that a total of 128 runs were carried out. Blood was collected into capillary tubes. The amount of blood collected was determined by measuring the length of blood in the tubes. The percentage of collections in which the volume of blood collected exceeded 1.0 ⁇ L was calculated. Sensation of pain was also recorded.
  • TABLE VA vacuum level ⁇ 5.0 psig Percent of samples Vacuum diameter Average volume of blood having >1 ⁇ L of blood (mm) sample collected ( ⁇ L) collected 4 0.3 0 6 1.7 69 8 3.4 94 10 4.1 100
  • TABLE VB vacuum level ⁇ 7.5 psig Percent of samples Average volume of blood having > 1 ⁇ L of Vacuum diameter (mm) sample collected ( ⁇ L) blood collected 4 0.8 25 6 3.1 94 8 3.4 81 10 6.3 94
  • volume of blood collected and success rates i.e., percent of samples having >1 ⁇ L of blood collected
  • percent of samples having >1 ⁇ L of blood collected were found to vary directly with the area of skin raised up into the device by the vacuum. A much greater volume of skin was raised up into the larger diameter pipette tip than into the smaller diameter pipette tips.
  • This example illustrates that a plastic multiple point lancet can be used with heat and vacuum to collect a useful amount of blood.
  • Heat was applied with a heating block, which comprised an aluminum block having one face covered with a “KAPTON” film heater element controlled by an “OMEGA” DP41 temperature controller using a T-type thermocouple and the opposite face in contact with the larger base of a frustum of a cone made of copper.
  • the larger base of the frustum had a diameter of 0.50 in.
  • the height of the frustum was 0.50 in.
  • the smaller base of the frustum had a diameter of 0.35 in.
  • the smaller base had a cylindrical opening having a diameter of 0.125 in.
  • the cylindrical opening had a common axis with the frustum.
  • the cylindrical opening reduced the heating surface of the copper frustum.
  • Vacuum ( ⁇ 5.0 psig) was applied for a period of 30 seconds after puncturing.
  • the vacuum in contact with the skin was formed by a pipette tip having a diameter of 8 mm.
  • the pipette tip was held level with the plane of the skin.
  • Blood was collected into capillary tubes. The amount of blood collected was determined by measuring the length of blood in the tubes. The percentage of collections in which the volume of blood collected exceeded 1.0 ⁇ L was calculated. Sensation of pain was also recorded. Blood collection results are set forth in TABLE VI. TABLE VI Average volume of Percent of samples Temperature (° C.)/ blood having > 1 ( ⁇ L) of Time (seconds) sample collected ( ⁇ L) blood collected 40/15 2.4 31 40/60 2.6 50 45/15 2.3 56 45/60 5.2 81
  • This example demonstrates that a blood extraction process employing a multi-point plastic lancet, pre-piercing heating, skin stretching, and post-piercing vacuum can extract at least 1 ⁇ L of blood at least 50% of the time.

Abstract

Method and apparatus for obtaining a sample of blood from a patient for subsequent diagnostic tests, e.g., glucose monitoring. In one aspect of the invention, the method comprises the steps of:
(a) forming an unobstructed opening in the area of the skin from which the sample of blood is to be extracted; and
(b) extracting the sample of blood from the unobstructed opening in the skin, with the aid of a vacuum and a stretching of the skin.
In another aspect of the invention, an apparatus for carrying out the method described previously is provided. The apparatus comprises:
(a) a device for forming an unobstructed opening in an area of skin from which said sample is to be extracted, preferably a lancing assembly; and
(b) a vacuum pump.
Preferably, the apparatus also includes a housing.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to a method and apparatus for obtaining samples of blood for diagnostic purposes. [0002]
  • 2. Discussion of the Art [0003]
  • The prevalence of diabetes has been increasing markedly in the world. At this time, diagnosed diabetics represented about 3% of the population of the United States. It is believed that the total actual number of diabetics in the United States is over 16,000,000. Diabetes can lead to numerous complications, such as, for example, retinopathy, nephropathy, and neuropathy. [0004]
  • The most important factor for reducing diabetes-associated complications is the maintenance of an appropriate level of glucose in the blood stream. The maintenance of the appropriate level of glucose in the blood stream may prevent and even reverse many of the effects of diabetes. [0005]
  • Glucose monitoring devices of the prior art have operated on the principle of taking blood from an individual by a variety of methods, such as by needle or lancet. An individual then coats a paper strip carrying chemistry with the blood, and finally insert the blood-coated strip into a blood glucose meter for measurement of glucose concentration by determination of change in reflectance. [0006]
  • The medical apparatus of the prior art for monitoring the level of glucose in the blood stream required that an individual have separately available a needle or lancet for extracting blood from the individual, strips carrying blood chemistry for creating a chemical reaction with respect to the glucose in the blood stream and changing color, and a blood glucose meter for reading the change in color indicating the level of glucose in the blood stream. The level of blood glucose, when measured by a glucose meter, is read from a strip carrying the blood chemistry through the well-known process of reading reflectometers for glucose oxidation. [0007]
  • Generally lancets comprise a blade and a pressable end opposed thereto, with the blade having an acute end capable of being thrust into skin of a human. By striking the pressable portion, the acute end of the blade will pierce the skin, for example, of the finger. The finger lancet is primarily used to obtain small volumes of blood, i.e., less than 1 mL. Diabetics use the finger lancet to obtain volumes of blood less than 25 μL for analysis for glucose. A small amount of blood for the blood test will ooze out of the skin. There are many small blood vessels in each finger so that a finger can be squeezed to cause a larger drop of blood to ooze. The finger is one of the most sensitive parts of the body; accordingly, the finger lancet leads to even more pain than what would be experienced by extracting blood via lancet at a different body site. The finger lancet presents another problem because of the limited area available on the fingers for lancing. Because it is recommended that diabetics monitor their blood glucose levels four to six times per day, the limited area on the fingers calls for repeated lancing of areas that are already sore. Because fingers are sensitive to pain, it is a recent tendency that the arm is subjected to blood sampling. See, for example, U.S. Pat. No. 4,653,513. The device of U.S. Pat. No. 4,653,513 comprises a cylindrical housing and a lancet support, which has a gasket or flexible portion slidably accommodated in the housing. Springs will retract the lancet support to thereby reduce air pressure in the housing so that it sucks a blood sample, automatically and immediately after a lancet pierces the skin. See also U.S. Pat. No. 5,320,607, which discloses a device comprising a sealed vacuum chamber in a state of preexisting reduced pressure, a support member for the sealed vacuum chamber, the support member defining a suction portion adjacent the sealed vacuum chamber, the suction portion, in cooperation with the sealed vacuum chamber, exposing an area of the skin of a patient to a reduced pressure state when the device is actuated, and means arranged within the suction portion for slightly rupturing a portion of the area of skin of the patient exposed to the reduced pressure state. [0008]
  • Because the blood volume requirements for a standard glucose test strip is typically 3 μL or more, an area of the body that can generate that much blood from a lancet wound must be used. It is believed, however, that improvements in glucose test strip technology will reduce the volume of blood needed to 1 to 3 μL. Because the finger is well supplied with blood and the amount of blood can be increased by squeezing the finger after lancing, the finger is the currently preferred body site for lancing, even though lancing of the finger is painful. [0009]
  • A less painful technique for obtaining body fluids could be found if a reliable method were found for lancing a body part that is less sensitive to pain than the finger and obtaining a useful amount of blood from that body part. A body part such as the forearm is much less sensitive to pain than the finger, but the amount of blood resulting from the lancing procedure is generally of an inadequate volume for use with current detection technology. Ways of increasing blood flow to the finger are common knowledge. The recommendation is made to diabetics to run their finger under hot water prior to lancing to improve the blood flow in the finger and the amount of blood collected from the finger. Running hot water over a body part to improve blood flow is impractical for areas such as the forearm or thigh. The availability of hot water is also a concern. [0010]
  • It would be desirable to develop a technique and apparatus for obtaining blood for diagnostic purposes in a painless, reliable manner. [0011]
  • SUMMARY OF THE INVENTION
  • This invention provides a method and apparatus for extracting a sample of blood from a patient for subsequent diagnostic tests, e.g., glucose monitoring. In one aspect of the invention, the method comprises the steps of: [0012]
  • (a) forming an unobstructed opening in the area of the skin from which the sample of blood is to be extracted; and [0013]
  • (b) extracting the sample of blood from the unobstructed opening in the skin, with the aid of vacuum and stretching of the skin. [0014]
  • In a preferred embodiment of the method, step (a) is preceded by the step of increasing the availability of blood in the portion of the skin from which the sample is to be extracted. In this preferred embodiment, the availability of blood in the portion of the skin from which the sample is to be extracted can be increased by means of a vacuum, which is applied to the surface of the skin in the vicinity of the opening prior to forming the opening in the skin. The vacuum causes the portion of the skin in the vicinity of the blood extraction site to become engorged with blood. The vacuum also causes the portion of the skin in the vicinity of the blood extraction site to become stretched. An opening in this stretched portion of skin can be formed with a cutting or puncturing device, e.g., a lancet, or other device capable of forming an opening in the skin, e.g., a laser or a fluid jet. If a cutting or puncturing device is used to form the opening, it must be retracted from the opening prior to the step of extracting the sample of blood from the opening. This retraction will allow the unrestricted flow of blood through the opening. After the opening is formed, a vacuum is used to aid in extracting the sample of blood from the opening in the skin. The sample can be analyzed from the drops of blood that collect on the surface of the skin at the site of the opening by applying the blood directly to a glucose detector. It is preferred, however, that the sample be collected in such a manner, e.g., via a capillary tube, that it can be analyzed by conventional diagnostic devices, such as, for example, a biosensor. In another preferred embodiment, the sample can be collected in a collection zone that is integrated with a conventional diagnostic device, e.g., a biosensor. [0015]
  • In an alternative of the aforementioned preferred embodiment, the availability of blood in the area of the skin from which the sample is to be extracted can be increased by means of applying thermal energy to that area of skin. The thermal energy causes the blood in that area of the skin to flow more rapidly, thereby allowing more blood to be collected per given unit of time. In this alternative embodiment, steps (a) and (b) can be carried out in the same manner as they were carried out in the aforementioned preferred embodiment. [0016]
  • In another aspect of the invention, an apparatus for collecting a sample of body fluid for analysis in a diagnostic test, e.g., blood, is provided. In a preferred embodiment, the apparatus comprises: [0017]
  • (a) a housing; [0018]
  • (b) a device for forming an unobstructed opening in an area of skin from which said sample is to be extracted, preferably a lancing assembly; and [0019]
  • (c) a vacuum pump. [0020]
  • It is also possible to dispense with the housing. However, the housing is preferred for the convenience of the patient and the protection of the components. [0021]
  • The vacuum pump requires a source of power. If the apparatus includes a housing, the source of power can be disposed within the housing. Alternatively, the source of power can be external to the housing. [0022]
  • The preferred device for forming an unobstructed opening in the area of the skin from which the sample of blood is to be extracted is a lancing assembly, which comprises a lancet for forming an opening in the skin. Alternatively, the unobstructed opening in the skin can be formed by a laser or a fluid jet. [0023]
  • The vacuum pump can serve the dual purposes of (1) stretching the skin and (2) enhancing the extraction of the sample of blood from the unobstructed opening in the skin. Preferably, the vacuum pump can serve the triple purposes of (1) stretching the skin, (2) increasing the availability of blood to the area of the skin from which the sample is to be extracted, and (3) enhancing the extraction of the sample of blood from the unobstructed opening in the skin. Preferably, the housing further contains electronics having programmed instructions to switch the vacuum pump on and off to maintain the desired level of vacuum. [0024]
  • The apparatus preferably contains valves, such as, for example, solenoid valves, for triggering the lancet of the lancing assembly and releasing the vacuum at the conclusion of the blood extraction procedure. The apparatus can optionally contain a heating element to increase the availability of blood to the area of the skin from which the sample is to be extracted. The apparatus can also contain a glucose detector integrated with the apparatus, e.g., a biosensor, to analyze the sample of blood collected by the apparatus. [0025]
  • The method and apparatus of this invention provide several advantages over the methods and apparatus of the prior art. First, a sufficient amount of blood can be extracted from parts of the body, other than the finger, for conducting glucose monitoring tests. Second, by rendering other parts of the body suitable for extracting blood, the use of a painful finger lance can be avoided. Third, by increasing the availability of blood at the site where the blood is to be extracted, the period of time required for extracting the sample can be reduced. Because of these advantages, the diabetic patient is more likely to monitor glucose levels in the blood at the intervals prescribed by his doctor.[0026]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of the components of a preferred embodiment of the apparatus of this invention. In this Figure, the cover of the housing is removed. [0027]
  • FIG. 2 is a schematic diagram illustrating how a vacuum causes a portion of the skin to become stretched prior to the formation of an opening in the skin from which the sample of blood is extracted. FIG. 2 also illustrates the spatial relationship between the nosepiece of lancing assembly and a glucose detector, e.g., a biosensor. [0028]
  • FIG. 3 is a block diagram illustrating the electronics of the preferred embodiment. [0029]
  • FIG. 4 is a schematic diagram illustrating an alternative seal for the vacuum of the device of the present invention.[0030]
  • DETAILED DESCRIPTION
  • The embodiments of this invention require the following steps to carry out the function of obtaining a sample of blood for carrying out a diagnostic test, e.g., glucose monitoring: [0031]
  • (a) forming an unobstructed opening in the area of the skin from which the sample of blood is to be extracted; and [0032]
  • (b) extracting the sample of blood from the unobstructed opening in the skin, with the aid of a vacuum and a stretching of the skin. [0033]
  • The step of forming an unobstructed opening in the area of the skin from which the sample of blood is to be extracted is carried out by a piercing device or some other type of device capable of forming an unobstructed opening in the skin. Piercing devices suitable for this invention include, but are not limited to, mechanical lancing assemblies. Other type of device capable of forming an unobstructed opening in the skin include, but are not limited to, lasers and fluid jets. Other types of devices capable of forming an unobstructed opening in the skin can be used, and this disclosure should not be construed so as to be limited to the devices listed. Mechanical lancing assemblies are well-known in the art. These assemblies comprise include standard steel lancets, serrated devices, and multiple tip devices. The lancets can be made from metal or plastic. Multiple tip devices provide redundancy, which can reduce the number of failures and increase the volume of blood extracted. [0034]
  • Lasers suitable for forming an unobstructed opening in the skin to draw blood are also well-known in the art. See for example, U.S. Pat. Nos. 4,775,361, 5,165,418, 5,374,556, International Publication Number WO 94/09713, and Lane et al. (1984) IBM Research Report—“Ultraviolet-Laser Ablation of Skin”, all of which are incorporated herein by reference. Lasers that are suitable for forming an unobstructed opening in the skin the skin include Er:YAG, Nd:YAG, and semiconductor lasers. [0035]
  • Fluid jets suitable for forming an unobstructed opening in the skin employ a high pressure jet of fluid, preferably a saline solution, to penetrate the skin. [0036]
  • Regardless of what type of device is utilized to form an unobstructed opening in the skin, the opening formed by the device must be unobstructed. As used herein, the term “unobstructed” means free from clogging, hampering, blocking, or closing up by an obstacle. More specifically, the expressions “unobstructed opening in the area of the skin from which the sample is to be extracted”, “unobstructed opening in the skin”, and the like are intended to mean that the portion of the opening below the surface of the skin is free from any foreign object that would clog, hamper, block, or close up the opening, such as, for example, a needle of any type. For example, if a lancet is used to form the opening, it must be retracted from the opening prior to the commencement of the extraction of blood. Because lasers and fluid jets do not require contact with the skin to form openings in the skin, these types of devices typically provide unobstructed openings. However, these expressions are not intended to include foreign objects at the surface of the skin or above the surface of the skin, such as, for example, a glucose monitor. This feature, i.e., the unobstructed opening, can be contrasted with the opening used in the method and apparatus described in U.S. Pat. No. 5,320,607, in which the piercing and cutting means remains in the skin during the duration of the period of blood extraction. By leaving the opening unobstructed, blood can be extracted much more rapidly from the opening than it would be extracted if the piercing and cutting means were allowed to remain in the opening. In addition, the requirement of an unobstructed opening exposes the body to a foreign object either not at all or for only a very short period of time, which is welcomed by the patient. [0037]
  • The step of extracting the sample of blood from the opening in the skin is carried out by a combination of extraction enhancing elements. Extraction enhancing elements suitable for use in this invention include, but are not limited to, vacuum, skin stretching elements, and heating elements. It has been discovered that when these elements are used in combination, the volume of blood extracted is greatly increased, particularly when a vacuum is applied in combination with skin stretching. In this combination, the vacuum not only causes the blood to be rapidly removed from the unobstructed opening by suction, it also causes a portion of the skin in the vicinity of the opening to be stretched. Stretching of the skin can be effected by other means, such as mechanical means or adhesives. Mechanical means include devices for pinching or pulling the skin; adhesives bring about stretching of the skin by means of pulling. It is preferred to use a vacuum to effect stretching of the skin. Like a vacuum, a heating element operates more effectively in combination with other techniques, e.g., stretching of the skin. [0038]
  • In the preferred embodiment of this invention, step (a), the step of forming the unobstructed opening, is preceded by the step of increasing the availability of blood at the area of the skin from which the sample is to be extracted. The availability of blood at a given area of the skin can be increased by at least two methods. In one method, a vacuum can be used to cause blood flowing through blood vessels to pool in the area of the skin where the vacuum is applied. In another method, heat can be used to cause blood flowing through blood vessels to flow more rapidly in the area of the skin where heat is applied, thereby allowing a greater quantity of blood to be extracted from the blood extraction site per unit of time. Although the step of increasing the availability of blood in the vicinity of the blood extraction site is not required, the employment of this step can result in a greater volume of blood extracted. Elements for increasing the availability of blood at a blood extraction site that are suitable for use in this invention include, but are not limited to, vacuum, localized heating element, skin stretching element, and chemicals. As stated previously, applying a vacuum to the area of the skin from which blood is to be extracted can increase blood availability under and within the skin at the application site. The vacuum can also be used to stretch the skin upwardly into a chamber, thereby increasing pooling of blood under and within the skin. This combination of vacuum and skin stretching can be an extension of the combination used to extract blood from the opening in the skin, as previously described. It is well-known that heat can increase perfusion on the large scale of a limb or a finger. Chemical means, such as histamine, can be used to cause a physiological response to increase perfusion under and within the skin. [0039]
  • In the preferred embodiments of the invention, the extracted blood is also collected. The step of collecting the sample of blood can be carried out in a variety of ways. For example, the blood can be collected in capillary tubes or absorbent paper. Alternatively, the blood can be allowed to remain in the lancet assembly, from which it can used directly in a diagnostic test. Most preferably, the sample of blood is collected on the application zone of a glucose detector, from where it can be used directly to provide an indication of the concentration of glucose in the blood. Regardless of the manner in which the blood sample is collected, the sample can be analyzed at a time later than the time of collection or at a location remote from the location of collection or both. [0040]
  • A preferred embodiment of the invention will now be described in detail. Blood extraction device [0041] 10 comprises a housing 12. Disposed within the housing 12 are a vacuum pump 14, a lancing assembly 16, a battery 18, and electronics 20. A switch 22 is provided to activate electronics 20.
  • The [0042] housing 12 is preferably made from a plastic material. It is preferably of sufficient size to contain all of the components that are required for forming an unobstructed opening in the area of the skin from which the sample of blood is to be extracted, extracting the sample of blood from the unobstructed opening in the skin, preferably with the aid of a vacuum and a stretching of the skin, and collecting the extracted sample in an amount sufficient to carry out a diagnostic test. Methods of preparing the housing 12 are well-known to one of ordinary skill in the art. As stated previously, the housing 12 is not required, but is preferred for the convenience of the patient and the protection of the components.
  • The [0043] vacuum pump 14 must be capable of providing a vacuum that will provide sufficient suction to stretch the portion of the skin in the region from which the sample of blood is to be extracted. Typically, the portion of stretched skin is raised a distance of 1 to 10 mm, preferably 3 to 5 mm, from the plane of the body part of which it is a portion. As the suction provided by the vacuum pump 14 is stretching the appropriate portion of skin, the suction provided by the vacuum pump 14 also causes the stretched portion to become engorged with blood. The level of suction provided must be sufficient to cause a relatively large volume of blood to become engorged at the point that the vacuum is applied. The vacuum pump 14 must also be capable of providing sufficient suction to extract blood from the opening in the skin at a rate sufficient to extract at least 1 μL of blood within a period of five minutes. A vacuum pump 14 that is suitable for the device of this invention can be a diaphragm pump, a piston pump, a rotary vane pump, or any other pump that will perform the required functions set forth previously. Typically, the vacuum pump 14 employs a self-contained permanent magnet DC motor. Vacuum pumps that are suitable for this invention are well-known to those of ordinary skill in the art and are commercially available. A vacuum pump suitable for use in the present invention is available from T-Squared Manufacturing Company, Nutley, N.J., and has the part number T2-03.08.004.
  • The [0044] vacuum pump 14 is preferably capable of providing a pressure of down to about −14.7 psig, and is more preferably operated at from about −3.0 psig to about −10.0 psig. The area of the skin subjected to vacuum preferably ranges up to about 50 cm2, more preferably from about 0.1 to about 5.0 cm2. The period of vacuum application prior to forming the opening in the skin, i.e., for increasing the availability of blood to the application site, preferably ranges up to about 5 minutes, preferably from about 1 to about 15 seconds. The period of vacuum application subsequent to forming the opening in the skin, i.e., for aiding in the extraction of blood from the unobstructed opening, preferably ranges up to about 5 minutes, preferably from about 1 to about 60 seconds. The vacuum provided by the vacuum pump 14 can be continuous or pulsed. A continuous vacuum is preferred for the reason that it requires fewer components than does a pulsed vacuum. It is preferred that the vacuum applied not cause irreversible damage to the skin. It is preferred that the vacuum applied not produce bruises and discolorations of the skin that persist for several days. It is also preferred that the level of vacuum applied and duration of application of vacuum not be so excessive that it causes the dermis to separate from the epidermis, which results in the formation of a blister filled with fluid.
  • The vacuum pump feature offers significant advantages over the method and apparatus described in U.S. Pat. No. 5,320,607, in which a sealed vacuum chamber in a state of preexisting reduced pressure is used. The use of a vacuum pump provides the user with greater control of blood extraction conditions than does a sealed vacuum chamber in a state of preexisting reduced pressure. For example, if the vacuum is insufficient, energy can be provided to the vacuum pump to bring about a higher level of vacuum, thereby providing greater suction. [0045]
  • The lancing [0046] assembly 16 comprises at least one lancet. Standard lancets can be used in the lancing assembly of this invention. Narrow gauge (28 to 30 gauge) lancets are preferred. Lancets suitable for this invention can be made from metal or plastic. Lancets suitable for this invention can have single points or multiple points. The depth of penetration of the lancet preferably ranges from about 0.4 to about 2.5 mm, more preferably from about 0.4 to about 1.6 mm. The length of the lancet or lancets preferably ranges from about 1 mm to about 5 mm. The lancing assembly is preferably located so that the user can easily replace used lancets. The lancet of the lancing assembly 16 can be cocked manually or automatically, e.g., by means of a vacuum-actuated piston or diaphragm. The lancet of the lancing assembly 16 can be triggered by manually or automatically, e.g., by means of a vacuum-actuated piston or diaphragm.
  • Lancing assemblies are well-known in the art. Representative examples of lancing assemblies suitable for this invention are described in U.S. Pat. Nos. Re. 32,922, 4,203,446, 4,990,154, and 5,487,748, all of which are incorporated herein by reference. A particularly suitable lancing assembly for this invention is described in U.S. Pat. No. Re. 32,922. However, any lancing assembly selected should operate in conjunction with the other features of the apparatus of this invention. For example, if a vacuum is employed, the lancing assembly must be designed so that a vacuum can be formed and drawn through the assembly. The lancing assembly can be designed to allow automatic cocking and automatic triggering of the lancet. [0047]
  • The [0048] vacuum pump 14 is connected to the lancing assembly 16 by an evacuation tube 24. The air that is evacuated from the lancing assembly 16 by the vacuum pump 14 is removed via the evacuation tube 24. The evacuation tube 24 is typically made from a polymeric material. A check valve 26 is placed between the vacuum pump 14 and the lancing assembly 16 at a point in the evacuation tube 24 to prevent air removed from the lancing assembly 16 by the vacuum pump 14 from flowing back to the lancing assembly 16 and adversely affecting the vacuum.
  • A source of power for the [0049] vacuum pump 14 can be disposed within the housing 12. A source of power suitable for the device of this invention is a battery 18. Alternatively, an external source of power can be used to operate the vacuum pump 14. The power source is actuated by the electronics 20, which, in turn, is actuated by the switch 22.
  • The [0050] electronics 20 may incorporate a microprocessor or microcontroller. The function of the electronics 20 is to switch power on and off to operate the various components in the apparatus. These components include, but are not limited to, the vacuum pump 14. The electronics 20 can also be use to switch power on and off to operate components in alternative embodiments, e.g., heating elements, lancets, indicating devices, and valves. Electronics suitable for this invention is the “TATTLETALE MODEL 5F” controller/data logger, commercially available from Onset Computer Corporation, 536 MacArthur Blvd. P.O. Box 3450, Pocasset, Mass. 02559-3450. Auxiliary electronic devices, such as power transistors, pressure monitors, and OP-Amps (operational amplifiers), may also be required in order to provide an interface between the controller and the operational components. All electronics required for this invention are well-known to one of ordinary skill in the art and are commercially available. Auxiliary electronic devices suitable for use in this invention include the following components:
    Component Source Catalog Number
    Mosfet Drivers International Rectifier IRLD024
    El Segundo, CA
    Op-Amp National Semiconductor LM358
    Santa Clara, CA
    Status LED Hewlett-Packard HLMPD150
    Newark Electronics
    Schaumburg, IL
    Pressure Sensor Sensym, Inc. SDX15D4
    Milpitas, CA
  • FIG. 3 illustrates by way of a block diagram how the foregoing electronic components can be arranged to carry out the method of the present invention. [0051]
  • Operation of the blood extraction device [0052] 10 will now be described. Referring now to FIGS. 1, 2 and 3, the nosepiece 30 of the lancing assembly 16 is applied to the surface of the skin, designated herein by the letter “S”. The end of the nosepiece 30 that contacts the skin is equipped with a seal 32. The purpose of the seal 32 is to prevent air from leaking into blood extraction chamber 34, so that the vacuum pump 14 can provide sufficient suction action for increasing the availability of blood to the area of the skin from which the sample is to be extracted, stretching the skin, and extracting the sample of blood from the unobstructed opening in the skin. The seal 32 surrounds an opening 33 in the nosepiece 30. The opening 33 in the nosepiece allows communication between the surface of the skin and a blood extraction chamber 34 in the nosepiece 30. The seal 32 is preferably made of a rubber or an elastomeric material. FIG. 4 illustrates an alternative position for the seal 32. In FIG. 4, the seal is designated by the reference numeral 32′. The remaining parts of FIG. 4 are the same as those of FIG. 2, and , accordingly, retain the same reference numerals as were used in FIG. 2.
  • The [0053] switch 22 is actuated, typically by being pressed, thereby activating the electronics 20, which starts the vacuum pump 14. The vacuum pump 14 then provides a suction action. The suction action of the vacuum pump 14 causes the skin circumscribed by the seal 32 to become engorged with blood. Engorgement of the skin with blood is accompanied by a stretching of and rising up of the skin up to opening 33.
  • After an appropriate period of time, which is typically pre-set by the programmer of the electronics, the lancing [0054] assembly 16 is triggered, thereby causing the lancet 36 to penetrate the skin that has risen up to the opening 33 and that is engorged with blood. The lancet 36 is preferably triggered automatically, by a solenoid valve 38 that causes a vacuum-actuated piston (not shown) to trigger the lancet 36. The lancet 36 is then retracted, preferably automatically. Thereupon, the blood flows out of the unobstructed opening resulting from the lancet 36, and, aided by the vacuum generated by the vacuum pump 14, is collected. When sufficient blood has been collected or a pre-set time interval has passed, the electronics 20 causes the vacuum pump 14 to stop. The device 10 can then be removed from the surface of the skin after another solenoid valve (not shown because it is hidden under solenoid valve 38) is opened to vent the vacuum to allow ease of removal of the device from the surface of the skin. Solenoid valves suitable for use with the apparatus described herein are commercially available from The Lee Company, Essex, Conn. and have the part number LHDA0511111H.
  • The blood is preferably directly collected on the application zone of a glucose detector, e.g., a reflectance strip or biosensor. The blood can then be used as the sample for a determination of glucose concentration in blood. Alternatively, the blood can be collected by other collection devices, such as, for example, a capillary tube or absorbent paper. [0055]
  • The apparatus of the present invention can include a glucose detector for analyzing the blood sample extracted by the apparatus. Glucose detectors are well-known in the art. With respect to glucose monitoring, there are two major categories of glucose detectors—reflectometers and biosensors. Representative examples of reflectometers suitable for this invention are described in U.S. Pat. No. 4,627,445, incorporated herein by reference. Representative examples of biosensors suitable for this invention are described in U.S. Pat. No. 5,509,410, incorporated herein by reference. [0056]
  • The glucose detector is preferably disposed in the [0057] nosepiece 30 of the lancing assembly 16. The glucose detector must be located at a position sufficiently close to the site of blood extraction so that the quantity of extracted blood collected will be sufficient to carry out a standard glucose monitoring test. Typically, this distance will preferably be no more than 5 mm from the site of blood extraction, more preferably no more than 3 mm from the site of blood extraction, most preferably no more than 1 mm from the site of blood extraction. Care must be taken in the placement of the glucose detector so that the detector does not adversely affect the vacuum, when a vacuum is employed to aid in the extraction of blood. In addition, the glucose detector 40 should be modified, if necessary, so that the blood collected in the collection zone of the glucose detector is capable of being used to activate the glucose detector.
  • FIG. 2 also illustrates a manner for disposing a [0058] glucose detector 40 in the nosepiece 30 of the lancing assembly 16.
  • This invention provides numerous advantages over blood extraction devices of the prior art. Among these advantages are the following: [0059]
  • 1. Ability to use parts of the body, other than the finger, as a site for the extraction of blood; [0060]
  • 2. Reduction of pain by eliminating the need to lance the finger; [0061]
  • 3. Increase in speed of collection of blood samples by means of pre-treatment comprising a combination of stretching of the skin in conjunction with heat or vacuum or both heat and vacuum; [0062]
  • 4. Incorporation of glucose detector in apparatus for extracting the blood sample. [0063]
  • The following examples illustrate various features of the present invention but is not intended to in any way limit the scope of the invention as set forth in the claims. In the following examples, the term “pierce” and forms thereof and the term “puncture” and forms thereof are used interchangeably. [0064]
  • EXAMPLES Example 1
  • This example illustrates that greater volumes of blood can be extracted and collected by applying a vacuum, pulsed or continuous, after piercing than can be extracted and collected when no vacuum is applied. No vacuum was applied prior to piercing. [0065]
  • Each of four people had his forearm (dorsal forearm) punctured four times (at four different positions on the forearm) with a “BD ULTRA-FINE” lancet in a “MEDISENSE” lancet assembly (Model no. 97101) at two different levels of vacuum (−2.5 psig and −5.0 psig) and for each different vacuum pulsing frequencies (0, 0.2, 0.8, 3.2, 12.8, 25, 100 hertz). The vacuum was applied with a pipette tip having a diameter of 8 mm (“RAININ RT-200”). Four control runs without a vacuum were also carried out (one puncture per person). A total of 60 punctures per person were carried out. Accordingly, it can be seen that a total of 240 runs were carried out. [0066]
  • The vacuum was applied for a duration of 30 seconds after puncturing. Blood was collected into capillary tubes. In the control runs, the samples were extracted and collected 30 seconds after puncturing. The amount of blood collected was determined by measuring the length of blood in the tubes. The percentage of collections in which the volume of blood collected exceeded 1.0 μL was calculated. Sensation of pain was also recorded. The following pain scores were used: [0067]
  • Pain of 1=person did not feel anything or not sure if anything was felt [0068]
  • Pain of 2=person felt definite prick, not as painful as piercing of finger by standard finger lancet [0069]
  • Pain of 3=person felt definite pain, approximately equal to a piercing of finger by standard finger lancet [0070]
  • Blood Collection Results are Set Forth in Table I.
  • [0071]
    TABLE I
    Average Percent of Average Percent of
    volume of samples volume of samples
    blood sample having >1 μL blood sample having >1 μL
    collected at of blood collected at of blood
    Frequency −2.5 psig collected at −5.0 psig collected at
    (hertz) (μL) −2.5 psig (μL) −5.0 psig
     0 1.6 69 3.1 94
    (Con-
    tinuous)
    0.2 1.1 44 3.0 94
    0.8 1.1 63 75
    3.2 1.5 56 3.8 75
    12.8  1.8 75 3.1 100 
    25 2.3 75 3.2 94
    100  2.4 81 2.7 88
  • With no vacuum, average volume of blood collected was 0.8 μL and 31% of the samples collected contained more than 1 μL. The pain results were as follows: [0072]
    pain of 1 = 81%
    pain of 2 = 17%
    pain of 3 =  2%
  • The control runs (no vacuum) provided much lower volumes of blood collected than did the runs where vacuum was applied. Increased vacuum resulted in higher volumes of blood extracted. The pain was minimal, with only 2% of the punctures resulting in pain comparable to that resulting from a piercing of the finger. [0073]
  • Example 2
  • This example illustrates that application of vacuum prior to piercing as well as after piercing results in a greater volume of blood extracted than does the application of vacuum only after piercing. [0074]
  • Each of four people had his forearm (dorsal forearm, middle of forearm) punctured sixteen times (at sixteen different positions on the forearm) with a “BD ULTRA-FINE” lancet in a modified “MEDISENSE” lancet assembly at four different levels of vacuum. The four levels of vacuum used were −2.5, −5.0, −7.5, and −10.0 psig. The “MEDISENSE” lancet device was modified to allow vacuum to be pulled through the lancet assembly. Four punctures per person were carried out at each of the four levels of continuous vacuum. Accordingly, it can be seen that a total of 64 runs were carried out. [0075]
  • Prior to puncturing, the vacuum was applied for a period of 30 seconds; subsequent to puncturing, the vacuum was applied for a period of 30 seconds. The skin was under vacuum at the time the lancet was triggered. After the lancet was triggered, the lancet assembly was removed, and the vacuum was used to apply the same level of vacuum that had been used for the vacuum prior to puncturing. The vacuum, both prior to puncturing and subsequent to puncturing, was applied with a pipette tip having a diameter of 8 mm (“RAININ RT-200”). The pipette tip of the vacuum device was held level to the plane of the skin. Blood was then collected into capillary tubes. The amount of blood collected was determined by measuring the length of blood in the tubes. The percentage of collections in which the volume of blood collected exceeded 1.0 μL was calculated. Sensation of pain was also recorded. Blood collection results are set forth in TABLE II. [0076]
    TABLE II
    Percent of samples
    Average volume of blood having >1 μL of blood
    Vacuum level (psig) sample collected (μL) collected
    −2.5 4.6  94
    −5.0 7.8 100
    −7.5 9.2 100
    −10.0 14.0 100
  • The pain results were as follows: [0077]
    pain of 1 = 58%
    pain of 2 = 31%
    pain of 3 = 11%
  • A nearly linear relationship between level of vacuum and volume of blood collected was observed. The average volume of blood collected with vacuum applied prior and after piercing was approximately twice that collected with vacuum applied only after piercing without vacuum applied prior to piercing. See the results of Example 1 for this comparison (7.8 μL vs. 3.1 μL). The volume of blood collected was always above 1 μL for all levels of vacuum, except −2.5 psig. [0078]
  • Example 3
  • This example illustrates that localized heating of the area to be pierced followed by vacuum after piercing results in a greater volume of blood being extracted than does extraction with only vacuum after piercing. [0079]
  • Each of four people had his forearm (dorsal forearm, middle of forearm) punctured eight times (at eight different positions on the forearm) with a “BD ULTRA-FINE” lancet in a “MEDISENSE” lancet assembly with heat applied (45° C.) prior to piercing for two different time periods, 15 seconds and 60 seconds. A total of 32 runs were carried out, 16 runs where the pre-heating duration was 15 seconds and 16 runs where the pre-heating duration was 60 seconds. [0080]
  • Heat was applied with a heating block, which was an aluminum block having a square face covered with a “KAPTON” film heater element controlled by an “OMEGA” DP41 temperature controller using a T-type thermocouple. Vacuum was applied after each puncturing for 30 seconds at −5.0 psig. Blood was collected into capillary tubes. The amount of blood collected was determined by measuring the length of blood in the tubes. The percentage of collections in which the volume of blood collected exceeded 1.0 μL was calculated. Pain was also tracked. Blood collection results are set forth in TABLE III. [0081]
    TABLE III
    Percent of samples
    Pre-piercing heating Average volume of blood having >1 μL of blood
    duration (seconds) samples collected (μL) collected
    15 6.91  94
    60 11.6 100
  • The pain results were as follows: [0082]
    pain of 1 = 91%
    pain of 2 =  9%
    pain of 3 =  0%
  • The average volume of blood collected using a pre-heating duration of 15 seconds was more than twice the average volume of blood collected at a post-puncturing vacuum level of −5.0 psig., with no pre-heating. See the results of Example 1 for this comparison (6.91 μL vs. 3.1 μL). The average volume of blood collected using a pre-heating duration of 60 seconds was approximately four times the average volume of blood collected at a post-puncturing vacuum level of −5.0 psig, with no pre-heating. See the results of Example 1 for this comparison (11.6 μL vs. 3.1 μL). [0083]
  • Example 4
  • This example illustrates the effect that stretching the skin upwardly with a vacuum has on the extraction of blood. [0084]
  • Each of four people had his forearm (dorsal forearm, middle of forearm) punctured eight times (at eight different positions on the forearm) with a “BD ULTRA-FINE” lancet in a “MEDISENSE” lancet assembly. Vacuum was applied for a period of 30 seconds prior to puncturing at −5.0 psig using two different vacuum fixtures. The first fixture was a 15 mm diameter vacuum fixture (i.e., a hollow cylindrical tube) used without a net strung across the opening of the tube. The second fixture was a 15 mm diameter vacuum fixture (i.e., a hollow cylindrical tube) used with a net strung across the opening of the tube. The net prevented skin from being raised up into the vacuum fixture. The same vacuum fixture used prior to puncturing was applied for a period of 30 seconds after puncturing. The fixture was held level with the plane of the skin. Four punctures were carried out per person per condition (without net, with net). Accordingly, it can be seen that a total of 32 runs were carried out. Blood was collected into capillary tubes. The amount of blood collected was determined by measuring the length of blood in the tubes. The percentage of collections in which the volume of blood collected exceeded 1.0 μL was calculated. Sensation of pain was also recorded. Blood collection results are set forth in TABLE IV. [0085]
    TABLE IV
    Percent of samples
    Average volume of blood having >1 μL of blood
    Net across nosepiece sample collected (μL) collected
    No 5.2 87
    Yes 0.6 19
  • The pain results were as follows: [0086]
    pain of 1 = 94%
    pain of 2 =  6%
    pain of 3 =  0%
  • The magnitude of the difference in volume of blood collected and success rates (i.e., percent of samples having >1 μL of blood collected) between the condition of stretching the skin in combination with a vacuum and the condition of not stretching the skin in combination with a vacuum was unexpected. The pain scores were low. This example demonstrates that the combination of skin stretching and applied vacuum significantly increased the volume of blood extracted. [0087]
  • Example 5
  • This example illustrates the effect the area of the extraction site has on the volume of blood collected. [0088]
  • Each of four people had his forearm (dorsal forearm, middle of forearm) punctured at 32 different positions on the forearm with a “BD ULTRA-FINE” lancet in a modified “MEDISENSE” lancet assembly. The “MEDISENSE” lancet assembly had been modified with a more powerful spring and a port had been added. [0089]
  • Vacuum was applied for less than five seconds prior to puncturing. The forearm was punctured under a vacuum of either −5.0 psig or −7.5 psig. The vacuum applied was maintained for 30 seconds after puncturing. The diameter of the pipette tip used to apply vacuum after puncturing was varied, with diameters of 4, 6, 8, and 10 mm being used. Four punctures per condition (diameter, vacuum level) were carried out per person. Accordingly, it can be seen that a total of 128 runs were carried out. Blood was collected into capillary tubes. The amount of blood collected was determined by measuring the length of blood in the tubes. The percentage of collections in which the volume of blood collected exceeded 1.0 μL was calculated. Sensation of pain was also recorded. Blood collection results are set forth in TABLE VA and VB. [0090]
    TABLE VA
    vacuum level = −5.0 psig
    Percent of samples
    Vacuum diameter Average volume of blood having >1 μL of blood
    (mm) sample collected (μL) collected
    4 0.3  0
    6 1.7 69
    8 3.4 94
    10  4.1 100 
  • [0091]
    TABLE VB
    vacuum level = −7.5 psig
    Percent of samples
    Average volume of blood having > 1 μL of
    Vacuum diameter (mm) sample collected (μL) blood collected
    4 0.8 25
    6 3.1 94
    8 3.4 81
    10  6.3 94
  • The pain results were as follows: [0092]
    pain of 1 = 89%
    pain of 2 = 10%
    pain of 3 = 1%
  • The volume of blood collected and success rates (i.e., percent of samples having >1 μL of blood collected) were found to vary directly with the area of skin raised up into the device by the vacuum. A much greater volume of skin was raised up into the larger diameter pipette tip than into the smaller diameter pipette tips. [0093]
  • Example 6
  • This example illustrates that a plastic multiple point lancet can be used with heat and vacuum to collect a useful amount of blood. [0094]
  • Each of four people had his forearm (dorsal forearm, middle of forearm) punctured sixteen times (at sixteen different positions on the forearm) with a Greer Derma PIK® System for allergy testing (Greer Laboratories, Inc., Lenoir, N.C. 28645) modified to fit into a “MEDISENSE” lancet assembly. Pre-heating was carried out at approximately 40° C. and 45° C. for 15 and 60 seconds prior to puncturing. Four punctures were carried out per condition (temperature, time) per person. Accordingly, it can be seen that a total of 64 runs were carried out. [0095]
  • Heat was applied with a heating block, which comprised an aluminum block having one face covered with a “KAPTON” film heater element controlled by an “OMEGA” DP41 temperature controller using a T-type thermocouple and the opposite face in contact with the larger base of a frustum of a cone made of copper. The larger base of the frustum had a diameter of 0.50 in. The height of the frustum was 0.50 in. The smaller base of the frustum had a diameter of 0.35 in. The smaller base had a cylindrical opening having a diameter of 0.125 in. The cylindrical opening had a common axis with the frustum. The cylindrical opening reduced the heating surface of the copper frustum. Vacuum (−5.0 psig) was applied for a period of 30 seconds after puncturing. The vacuum in contact with the skin was formed by a pipette tip having a diameter of 8 mm. The pipette tip was held level with the plane of the skin. Blood was collected into capillary tubes. The amount of blood collected was determined by measuring the length of blood in the tubes. The percentage of collections in which the volume of blood collected exceeded 1.0 μL was calculated. Sensation of pain was also recorded. Blood collection results are set forth in TABLE VI. [0096]
    TABLE VI
    Average volume of Percent of samples
    Temperature (° C.)/ blood having > 1 (μL) of
    Time (seconds) sample collected (μL) blood collected
    40/15 2.4 31
    40/60 2.6 50
    45/15 2.3 56
    45/60 5.2 81
  • The pain results were as follows: [0097]
    pain of 1 = 100%
    pain of 2 = 0%
    pain of 3 = 0%
  • This example demonstrates that a blood extraction process employing a multi-point plastic lancet, pre-piercing heating, skin stretching, and post-piercing vacuum can extract at least 1 μL of blood at least 50% of the time. [0098]
  • Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention, and it should be understood that this invention is not to be unduly limited to the illustrative embodiments set forth herein. [0099]

Claims (30)

What is claimed is:
1. A method for obtaining a sample of blood for a diagnostic test, said method comprising the steps of:
(a) forming an unobstructed opening in an area of skin from which said sample is to be extracted;
(b) extracting said sample from said unobstructed opening in said area of said skin, with the aid of vacuum and stretching of the skin.
2. The method of
claim 1
, wherein said diagnostic test is a test to determine the concentration of glucose in blood.
3. The method of
claim 1
, further comprising the step of increasing the availability of blood to said area of said skin from which said sample is to be extracted prior to forming said opening in said area of said skin from which said sample is to be extracted.
4. The method of
claim 3
, wherein a vacuum is used to increase the availability of blood to said area of said skin from which said sample is to be extracted prior to forming said opening in said area of said skin from which said sample is to be extracted.
5. The method of
claim 4
, wherein stretching is used to increase the availability of blood to said area of said skin from which said sample is to be extracted prior to forming said opening in said area of said skin from which said sample is to be extracted.
6. The method of
claim 3
, wherein heat is used to increase the availability of blood to said area of said skin from which said sample is to be extracted prior to forming said opening in said area of said skin from which said sample is to be extracted.
7. The method of
claim 6
, wherein heat is used to increase the availability of blood to said area of said skin from which said sample is to be extracted prior to forming said opening in said area of said skin from which said sample is to be extracted.
8. The method of
claim 1
, wherein said opening in said area of said skin from which the sample is to be extracted is formed by a lancet.
9. The method of
claim 8
, wherein said lancet is cocked by means of a vacuum.
10. The method of
claim 8
, wherein said lancet is triggered by means of a vacuum.
11. The method of
claim 1
, wherein said extracted sample is analyzed by means of a glucose detector.
12. The method of
claim 11
, wherein said glucose detector employs a reflectometer.
13. The method of
claim 11
, wherein said glucose detector employs a biosensor.
14. The method of
claim 8
, wherein said lancet penetrates said skin to a depth of no more than 1.6 mm.
15. The method of
claim 1
, wherein said opening in said area of said skin from which the sample is to be extracted is formed by a laser.
16. The method of
claim 1
, wherein said opening in said area of said skin from which the sample is to be extracted is formed by a fluid jet.
17. The method of
claim 1
, wherein said blood is obtained from a forearm.
18. The method of
claim 1
, wherein said blood is obtained at a pain level lower than that experienced when a finger is pierced by a standard finger lancet.
19. An apparatus for suitable for obtaining a sample of body fluid for analysis in a diagnostic test, said apparatus comprising:
(a) a device for forming an unobstructed opening in an area of skin from which said sample is to be extracted; and
(b) a vacuum pump for extracting said sample from said unobstructed opening in said area of said skin.
20. The apparatus of
claim 19
, further including a housing.
21. The apparatus of
claim 19
, wherein said device for forming said unobstructed opening comprises a lancet disposed in a lancing assembly.
22. The apparatus of
claim 21
, wherein said lancing assembly comprises a nosepiece having a seal, whereby a vacuum can be formed through the lancing assembly by said vacuum pump.
23. The apparatus of
claim 19
wherein said lancet is capable of being retracted after it forms said unobstructed opening in said skin.
24. The apparatus of
claim 19
, wherein said device for forming said unobstructed opening is a laser.
25. The apparatus of
claim 19
wherein said device for forming said unobstructed opening is a fluid jet.
26. The apparatus of
claim 19
, further comprising a heating element.
27. The apparatus of
claim 19
, further comprising a glucose detector.
28. The apparatus of
claim 27
, wherein said glucose detector is a biosensor.
29. The apparatus of
claim 27
, wherein said glucose detector is a reflectometer.
30. The apparatus of
claim 22
, wherein said vacuum is applied by a fixture having a major dimension ranging from about 2 mm to about 10 mm.
US09/532,729 1996-12-06 2000-03-22 Method and apparatus for obtaining blood for diagnostic tests Expired - Lifetime US6283926B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/532,729 US6283926B1 (en) 1996-12-06 2000-03-22 Method and apparatus for obtaining blood for diagnostic tests

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/759,698 US6063039A (en) 1996-12-06 1996-12-06 Method and apparatus for obtaining blood for diagnostic tests
US09/532,729 US6283926B1 (en) 1996-12-06 2000-03-22 Method and apparatus for obtaining blood for diagnostic tests

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/759,698 Continuation US6063039A (en) 1996-12-06 1996-12-06 Method and apparatus for obtaining blood for diagnostic tests

Publications (2)

Publication Number Publication Date
US6283926B1 US6283926B1 (en) 2001-09-04
US20010031931A1 true US20010031931A1 (en) 2001-10-18

Family

ID=25056630

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/759,698 Expired - Lifetime US6063039A (en) 1996-12-06 1996-12-06 Method and apparatus for obtaining blood for diagnostic tests
US09/532,729 Expired - Lifetime US6283926B1 (en) 1996-12-06 2000-03-22 Method and apparatus for obtaining blood for diagnostic tests

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/759,698 Expired - Lifetime US6063039A (en) 1996-12-06 1996-12-06 Method and apparatus for obtaining blood for diagnostic tests

Country Status (1)

Country Link
US (2) US6063039A (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020103499A1 (en) * 2001-01-22 2002-08-01 Perez Edward P. Lancet device having capillary action
US20040059256A1 (en) * 2001-09-26 2004-03-25 Edward Perez Method and apparatus for sampling bodily fluid
US20080139903A1 (en) * 2006-12-08 2008-06-12 Isense Corporation Method and apparatus for insertion of a sensor using an introducer
US20080319291A1 (en) * 2000-11-21 2008-12-25 Dominique Freeman Blood Testing Apparatus Having a Rotatable Cartridge with Multiple Lancing Elements and Testing Means
US20090005664A1 (en) * 2000-11-21 2009-01-01 Dominique Freeman Blood Testing Apparatus Having a Rotatable Cartridge with Multiple Lancing Elements and Testing Means
US20090099437A1 (en) * 2007-10-11 2009-04-16 Vadim Yuzhakov Lancing Depth Adjustment Via Moving Cap
US20090281455A1 (en) * 2006-01-05 2009-11-12 Matsushita Electric Industrial Co., Ltd. Blood test apparatus
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7666150B2 (en) 1996-05-17 2010-02-23 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US20100056954A1 (en) * 2008-09-02 2010-03-04 Eli Oren Device For Extracting Blood Samples
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7727168B2 (en) 1996-05-17 2010-06-01 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US7731900B2 (en) 2002-11-26 2010-06-08 Roche Diagnostics Operations, Inc. Body fluid testing device
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7758518B2 (en) 2001-06-08 2010-07-20 Roche Diagnostics Operations, Inc. Devices and methods for expression of bodily fluids from an incision
US7780631B2 (en) 1998-03-30 2010-08-24 Pelikan Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7785272B2 (en) 2001-06-08 2010-08-31 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US7828749B2 (en) 1996-05-17 2010-11-09 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7841991B2 (en) 1996-05-17 2010-11-30 Roche Diagnostics Operations, Inc. Methods and apparatus for expressing body fluid from an incision
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901363B2 (en) 1996-05-17 2011-03-08 Roche Diagnostics Operations, Inc. Body fluid sampling device and methods of use
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909774B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7976478B2 (en) 2006-03-22 2011-07-12 Panasonic Corporation Blood test apparatus and method of controlling the same
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7981055B2 (en) 2001-06-12 2011-07-19 Pelikan Technologies, Inc. Tissue penetration device
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8021631B2 (en) 2002-12-23 2011-09-20 Roche Diagnostics Operations, Inc. Body fluid testing device
US8043317B2 (en) 2000-10-31 2011-10-25 Roche Diagnostics Operations, Inc. System for withdrawing blood
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8251921B2 (en) 2003-06-06 2012-08-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8296918B2 (en) 2003-12-31 2012-10-30 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a fluid sampling device with improved analyte detecting member configuration
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8414504B2 (en) 2006-03-22 2013-04-09 Panasonic Corporation Blood test device
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8523784B2 (en) 2001-08-29 2013-09-03 Roche Diagnostics Operations, Inc. Analytical device with lancet and test element
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US8880138B2 (en) * 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9031630B2 (en) 2006-02-28 2015-05-12 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9795326B2 (en) 2009-07-23 2017-10-24 Abbott Diabetes Care Inc. Continuous analyte measurement systems and systems and methods for implanting them
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9901296B2 (en) 2000-03-04 2018-02-27 Roche Diabetes Care, Inc. Blood lancet with hygienic tip protection

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE227844T1 (en) 1997-02-06 2002-11-15 Therasense Inc SMALL VOLUME SENSOR FOR IN-VITRO DETERMINATION
US6592552B1 (en) * 1997-09-19 2003-07-15 Cecil C. Schmidt Direct pericardial access device and method
US6706000B2 (en) * 1997-11-21 2004-03-16 Amira Medical Methods and apparatus for expressing body fluid from an incision
US8287483B2 (en) 1998-01-08 2012-10-16 Echo Therapeutics, Inc. Method and apparatus for enhancement of transdermal transport
US7066884B2 (en) * 1998-01-08 2006-06-27 Sontra Medical, Inc. System, method, and device for non-invasive body fluid sampling and analysis
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US20040171980A1 (en) 1998-12-18 2004-09-02 Sontra Medical, Inc. Method and apparatus for enhancement of transdermal transport
EP1192269A2 (en) 1999-06-18 2002-04-03 Therasense, Inc. MASS TRANSPORT LIMITED i IN VIVO /i ANALYTE SENSOR
US6283982B1 (en) * 1999-10-19 2001-09-04 Facet Technologies, Inc. Lancing device and method of sample collection
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
AU2001270299A1 (en) * 2000-07-03 2002-01-14 Kodiak Technologies, Inc. Thermal container with data monitoring system
US7310543B2 (en) 2001-03-26 2007-12-18 Kumetrix, Inc. Silicon microprobe with integrated biosensor
AU2002315179A1 (en) * 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Blood sampling device with diaphragm actuated lancet
US6678542B2 (en) * 2001-08-16 2004-01-13 Optiscan Biomedical Corp. Calibrator configured for use with noninvasive analyte-concentration monitor and employing traditional measurements
US7004928B2 (en) 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
US7027848B2 (en) * 2002-04-04 2006-04-11 Inlight Solutions, Inc. Apparatus and method for non-invasive spectroscopic measurement of analytes in tissue using a matched reference analyte
US7258693B2 (en) * 2002-04-19 2007-08-21 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7371247B2 (en) * 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7303726B2 (en) * 2002-05-09 2007-12-04 Lifescan, Inc. Minimal procedure analyte test system
IES20020794A2 (en) * 2002-10-04 2003-02-19 Minroc Techn Promotions Ltd A down-the-hole hammer
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
DE60336834D1 (en) 2002-10-09 2011-06-01 Abbott Diabetes Care Inc FUEL FEEDING DEVICE, SYSTEM AND METHOD
US7727181B2 (en) * 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7572237B2 (en) * 2002-11-06 2009-08-11 Abbott Diabetes Care Inc. Automatic biological analyte testing meter with integrated lancing device and methods of use
US20060184189A1 (en) * 2002-11-15 2006-08-17 Lorin Olson Cap for a dermal tissue lancing device
JP4359675B2 (en) * 2002-12-13 2009-11-04 アークレイ株式会社 Puncture device
US20040120848A1 (en) * 2002-12-20 2004-06-24 Maria Teodorczyk Method for manufacturing a sterilized and calibrated biosensor-based medical device
US7052652B2 (en) 2003-03-24 2006-05-30 Rosedale Medical, Inc. Analyte concentration detection devices and methods
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US8071028B2 (en) 2003-06-12 2011-12-06 Abbott Diabetes Care Inc. Method and apparatus for providing power management in data communication systems
US9101302B2 (en) * 2004-05-03 2015-08-11 Abbott Diabetes Care Inc. Analyte test device
US7384402B2 (en) * 2004-06-10 2008-06-10 Roche Diagnostics Operations, Inc. Expression pad
US7582262B2 (en) 2004-06-18 2009-09-01 Roche Diagnostics Operations, Inc. Dispenser for flattened articles
US7512432B2 (en) 2004-07-27 2009-03-31 Abbott Laboratories Sensor array
US8211038B2 (en) 2004-09-17 2012-07-03 Abbott Diabetes Care Inc. Multiple-biosensor article
US20060094945A1 (en) 2004-10-28 2006-05-04 Sontra Medical Corporation System and method for analyte sampling and analysis
CA2601441A1 (en) 2005-03-21 2006-09-28 Abbott Diabetes Care Inc. Method and system for providing integrated medication infusion and analyte monitoring system
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US20060281187A1 (en) 2005-06-13 2006-12-14 Rosedale Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
WO2007041244A2 (en) 2005-09-30 2007-04-12 Intuity Medical, Inc. Multi-site body fluid sampling and analysis cartridge
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
EP2010276B1 (en) * 2006-04-26 2014-01-22 Covidien LP Multi-stage microporation device
US8372015B2 (en) * 2006-08-28 2013-02-12 Intuity Medical, Inc. Body fluid sampling device with pivotable catalyst member
US8221336B2 (en) * 2006-09-19 2012-07-17 Panasonic Corporation Blood sensor and blood examining instrument including same
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
RU2444980C2 (en) 2007-03-07 2012-03-20 Эко Терапьютикс, Инк. Transdermal system of analite monitoring and methods of analite detection
AU2008245585B2 (en) 2007-04-27 2011-10-06 Echo Therapeutics, Inc. Skin permeation device for analyte sensing or transdermal drug delivery
EP2293719B1 (en) 2008-05-30 2015-09-09 Intuity Medical, Inc. Body fluid sampling device -- sampling site interface
JP2011522616A (en) * 2008-06-04 2011-08-04 セブンス センス バイオシステムズ,インコーポレーテッド Compositions and methods for single-step diagnosis
CA2726067C (en) 2008-06-06 2020-10-20 Intuity Medical, Inc. Detection meter and mode of operation
US10383556B2 (en) 2008-06-06 2019-08-20 Intuity Medical, Inc. Medical diagnostic devices and methods
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US20100213057A1 (en) 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
US9033898B2 (en) 2010-06-23 2015-05-19 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
JP6078230B2 (en) 2009-03-02 2017-02-08 セブンス センス バイオシステムズ,インコーポレーテッド Techniques and devices related to blood sampling
US9119578B2 (en) 2011-04-29 2015-09-01 Seventh Sense Biosystems, Inc. Plasma or serum production and removal of fluids under reduced pressure
US9295417B2 (en) 2011-04-29 2016-03-29 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
US9041541B2 (en) 2010-01-28 2015-05-26 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
WO2010129375A1 (en) 2009-04-28 2010-11-11 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
EP2456351B1 (en) 2009-07-23 2016-10-12 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
US9770560B2 (en) 2009-11-12 2017-09-26 Pourang Bral Means and method to administer injections with little or no pain
US10973994B2 (en) 2013-09-16 2021-04-13 Pourang Bral Means and method to invade skin, mucosa, and underlying tissues with little or no pain
US10226586B2 (en) 2011-05-26 2019-03-12 Pourang Bral Means and method to painlessly puncture skin
US8919605B2 (en) 2009-11-30 2014-12-30 Intuity Medical, Inc. Calibration material delivery devices and methods
US8460210B2 (en) * 2010-01-19 2013-06-11 Christopher A. Jacobs Vacuum assisted lancing system with controlled rate and method for blood extraction with minimal pain
US8657763B2 (en) 2010-01-19 2014-02-25 Christopher A. Jacobs Vacuum assisted lancing system with elective vacuum release and method for blood extraction with minimal pain
WO2011162823A1 (en) 2010-06-25 2011-12-29 Intuity Medical, Inc. Analyte monitoring methods and systems
US20120016308A1 (en) 2010-07-16 2012-01-19 Seventh Sense Biosystems, Inc. Low-pressure packaging for fluid devices
US20130158482A1 (en) 2010-07-26 2013-06-20 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
WO2012021801A2 (en) 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
EP2992827B1 (en) 2010-11-09 2017-04-19 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
EP2701600B1 (en) 2011-04-29 2016-06-08 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
EP3750480B1 (en) 2011-08-03 2022-02-02 Intuity Medical, Inc. Body fluid sampling arrangement
EP3513727B1 (en) 2013-04-15 2020-09-09 Becton, Dickinson and Company Biological fluid sampling device
WO2014205412A1 (en) 2013-06-21 2014-12-24 Intuity Medical, Inc. Analyte monitoring system with audible feedback
EP4289356A3 (en) 2015-09-09 2024-02-28 Drawbridge Health, Inc. Devices for sample collection, stabilization and preservation
US11166658B2 (en) * 2016-07-28 2021-11-09 Invitae Corporation Blood sampling system and method
GB2590814B (en) 2017-01-10 2021-11-03 Drawbridge Health Inc Devices, systems, and methods for sample collection
US20210106261A1 (en) 2018-05-14 2021-04-15 Loop Medical Sa Sample collection device, system and method for extracting and collecting a sample of a fluid of a user,
EP3821804B1 (en) 2019-11-13 2022-11-23 Loop Medical SA Sample collection device for extracting and collecting a sample of a fluid of a user

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32922A (en) * 1861-07-30 Samuel nowlan
DE596981C (en) * 1931-10-30 1934-05-12 Mario Demarchi Dr Injection syringe
US3815579A (en) * 1972-06-05 1974-06-11 S Rose Blood withdrawing means
US3815529A (en) 1973-04-04 1974-06-11 Singer Co Manual needle elevating device
DE2642896C3 (en) * 1976-09-24 1980-08-21 7800 Freiburg Precision snapper for setting standard stab wounds in the skin for diagnostic purposes
US4273639A (en) 1979-06-20 1981-06-16 Eastman Kodak Company Capillary bridge in apparatus for determining ionic activity
US4360016A (en) * 1980-07-01 1982-11-23 Transidyne General Corp. Blood collecting device
USRE32922E (en) 1983-01-13 1989-05-16 Paul D. Levin Blood sampling instrument
US5509410A (en) * 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
DK492083D0 (en) * 1983-10-26 1983-10-26 Medical Press Service APPLICATION FOR EXTINGUISHING POISON FROM BUTTONS OR BIT OF INSECTS AND OTHER ANIMALS
FR2574299B1 (en) * 1984-12-10 1987-09-11 Thiriet Lucien RESETABLE VACUUM CARTRIDGE AND MEANS FOR CONTAINING AND USING THE VACUUM
FR2577808A1 (en) * 1985-02-22 1986-08-29 Alain Dubos SUCTION DEVICE, IN PARTICULAR FOR A VENOM SUCTION SUCTION CUP, COMPRISING A VACUUM PUMP CONNECTABLE TO AN EXTERNAL CHAMBER
US5279294A (en) 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US4627445A (en) * 1985-04-08 1986-12-09 Garid, Inc. Glucose medical monitoring system
WO1986007632A1 (en) 1985-06-21 1986-12-31 Matsushita Electric Industrial Co., Ltd. Biosensor and method of manufacturing same
WO1987000413A1 (en) * 1985-07-26 1987-01-29 Microtech Medical Company, Inc. Non-invasive collection means and method
US4653513A (en) * 1985-08-09 1987-03-31 Dombrowski Mitchell P Blood sampler
DD242962B1 (en) * 1985-11-25 1989-11-15 Bezirkskrankenhaus Karl Marx S DEVICE FOR CAPILLARY BLOOD COLLECTION
DE3708031A1 (en) * 1986-03-20 1987-11-12 Wolfgang Dr Med Wagner Measurement device or induction device with measurement device, or device for material recovery for a measurement device for metabolic states in the blood by puncturing under reduced pressure in a suction cup with displacement of the measurement zone outside the tip region of the puncturing device
US4775361A (en) * 1986-04-10 1988-10-04 The General Hospital Corporation Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport
EP0254203A3 (en) 1986-07-22 1988-10-05 Personal Diagnostics, Inc. Optical analyzer
DE3806574A1 (en) * 1987-03-10 1989-09-07 Wolfgang Dr Med Wagner Device for metabolic control
GB2222251A (en) * 1987-09-08 1990-02-28 Wolfgang Wagner Device for metabolism control
US5362307A (en) * 1989-01-24 1994-11-08 The Regents Of The University Of California Method for the iontophoretic non-invasive-determination of the in vivo concentration level of an inorganic or organic substance
ATE97791T1 (en) * 1988-10-31 1993-12-15 Avl Medical Instr Ag DEVICE FOR DETERMINING THE CONCENTRATION OF AT LEAST ONE SUBSTANCE PRESENT IN ORGANIC TISSUE.
EP0371503B1 (en) 1988-11-30 1995-03-08 Kyoto Daiichi Kagaku Co., Ltd. Device for assay of liquid sample
US5054499A (en) * 1989-03-27 1991-10-08 Swierczek Remi D Disposable skin perforator and blood testing device
US4990154A (en) * 1989-06-19 1991-02-05 Miles Inc. Lancet assembly
US5037431A (en) 1989-11-03 1991-08-06 The Curators Of The University Of Missouri Surgical liquid lance apparatus
WO1991009139A1 (en) 1989-12-15 1991-06-27 Boehringer Mannheim Corporation Redox mediator reagent and biosensor
US5161532A (en) * 1990-04-19 1992-11-10 Teknekron Sensor Development Corporation Integral interstitial fluid sensor
DE69224182T2 (en) 1991-02-27 1998-06-10 Boehringer Mannheim Corp IMPROVED TEST STRIP
CA2069060C (en) 1991-06-26 2003-07-29 Daniel Shichman Powered trocar
WO1993003673A1 (en) 1991-08-22 1993-03-04 Cascade Medical, Inc. Disposable reagent unit with blood or fluid guard
JP2572823Y2 (en) * 1992-02-13 1998-05-25 株式会社アドバンス Simple blood sampler
US5165418B1 (en) * 1992-03-02 1999-12-14 Nikola I Tankovich Blood sampling device and method using a laser
GB9207120D0 (en) * 1992-04-01 1992-05-13 Owen Mumford Ltd Improvements relating to blood sampling devices
JPH0617706U (en) 1992-06-26 1994-03-08 吉彦 鈴木 Blood pump
US5374556A (en) * 1992-07-23 1994-12-20 Cell Robotics, Inc. Flexure structure for stage positioning
JPH0824680B2 (en) * 1992-10-26 1996-03-13 日本電気株式会社 Suction leachate sampling device
US5643252A (en) * 1992-10-28 1997-07-01 Venisect, Inc. Laser perforator
JP2630197B2 (en) * 1993-04-28 1997-07-16 株式会社ニッショー Blood suction device
JP3494183B2 (en) * 1993-08-10 2004-02-03 株式会社アドバンス Simple blood collection device
US5554153A (en) * 1994-08-29 1996-09-10 Cell Robotics, Inc. Laser skin perforator
JPH08317918A (en) 1995-05-25 1996-12-03 Advance Co Ltd Blood drawing device
US5569223A (en) * 1995-06-06 1996-10-29 Home Access Health Corporation Apparatus and method for enhancing blood flow to obtain a blood sample
US5662127A (en) * 1996-01-17 1997-09-02 Bio-Plas, Inc. Self-contained blood withdrawal apparatus and method

Cited By (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696596B2 (en) 1996-05-17 2014-04-15 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7901363B2 (en) 1996-05-17 2011-03-08 Roche Diagnostics Operations, Inc. Body fluid sampling device and methods of use
US8231549B2 (en) 1996-05-17 2012-07-31 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US7841991B2 (en) 1996-05-17 2010-11-30 Roche Diagnostics Operations, Inc. Methods and apparatus for expressing body fluid from an incision
US7828749B2 (en) 1996-05-17 2010-11-09 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7727168B2 (en) 1996-05-17 2010-06-01 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US8740813B2 (en) 1996-05-17 2014-06-03 Roche Diagnostics Operations, Inc. Methods and apparatus for expressing body fluid from an incision
US7666150B2 (en) 1996-05-17 2010-02-23 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US7731668B2 (en) 1996-05-17 2010-06-08 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US8690798B2 (en) 1996-05-17 2014-04-08 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US8123701B2 (en) 1996-05-17 2012-02-28 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7780631B2 (en) 1998-03-30 2010-08-24 Pelikan Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US9901296B2 (en) 2000-03-04 2018-02-27 Roche Diabetes Care, Inc. Blood lancet with hygienic tip protection
US9839387B2 (en) 2000-10-31 2017-12-12 Roche Diabetes Care, Inc. System for withdrawing blood
US8043317B2 (en) 2000-10-31 2011-10-25 Roche Diagnostics Operations, Inc. System for withdrawing blood
US10617340B2 (en) 2000-10-31 2020-04-14 Roche Diabetes Care, Inc. System for withdrawing blood
US8636758B2 (en) 2000-10-31 2014-01-28 Roche Diagnostics Operations, Inc. System for withdrawing blood
US20080319291A1 (en) * 2000-11-21 2008-12-25 Dominique Freeman Blood Testing Apparatus Having a Rotatable Cartridge with Multiple Lancing Elements and Testing Means
US20090005664A1 (en) * 2000-11-21 2009-01-01 Dominique Freeman Blood Testing Apparatus Having a Rotatable Cartridge with Multiple Lancing Elements and Testing Means
US8641644B2 (en) * 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7803123B2 (en) 2001-01-22 2010-09-28 Roche Diagnostics Operations, Inc. Lancet device having capillary action
US8257276B2 (en) 2001-01-22 2012-09-04 Roche Diagnostics Operations, Inc. Lancet device having capillary action
US20020103499A1 (en) * 2001-01-22 2002-08-01 Perez Edward P. Lancet device having capillary action
US6866675B2 (en) 2001-01-22 2005-03-15 Roche Diagnostics Operations, Inc. Lancet device having capillary action
US7758518B2 (en) 2001-06-08 2010-07-20 Roche Diagnostics Operations, Inc. Devices and methods for expression of bodily fluids from an incision
US8257277B2 (en) 2001-06-08 2012-09-04 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US7785272B2 (en) 2001-06-08 2010-08-31 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US9538941B2 (en) 2001-06-08 2017-01-10 Roche Diabetes Care, Inc. Devices and methods for expression of bodily fluids from an incision
US8986223B2 (en) 2001-06-08 2015-03-24 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US8192372B2 (en) 2001-06-08 2012-06-05 Roche Diagnostics Operations, Inc. Test media cassette for bodily fluid testing device
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US8206319B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8206317B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US8679033B2 (en) 2001-06-12 2014-03-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8641643B2 (en) 2001-06-12 2014-02-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US8211037B2 (en) 2001-06-12 2012-07-03 Pelikan Technologies, Inc. Tissue penetration device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8622930B2 (en) 2001-06-12 2014-01-07 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8216154B2 (en) 2001-06-12 2012-07-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US8382683B2 (en) 2001-06-12 2013-02-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360991B2 (en) 2001-06-12 2013-01-29 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981055B2 (en) 2001-06-12 2011-07-19 Pelikan Technologies, Inc. Tissue penetration device
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8845550B2 (en) 2001-06-12 2014-09-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8343075B2 (en) 2001-06-12 2013-01-01 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8016774B2 (en) 2001-06-12 2011-09-13 Pelikan Technologies, Inc. Tissue penetration device
US8337421B2 (en) 2001-06-12 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8282577B2 (en) 2001-06-12 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8162853B2 (en) 2001-06-12 2012-04-24 Pelikan Technologies, Inc. Tissue penetration device
US9694144B2 (en) 2001-06-12 2017-07-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US9802007B2 (en) 2001-06-12 2017-10-31 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9937298B2 (en) 2001-06-12 2018-04-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8123700B2 (en) 2001-06-12 2012-02-28 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8523784B2 (en) 2001-08-29 2013-09-03 Roche Diagnostics Operations, Inc. Analytical device with lancet and test element
US9215993B2 (en) 2001-08-29 2015-12-22 Roche Diagnostics Operations, Inc. Analytical device with lancet and test element
US20040267160A9 (en) * 2001-09-26 2004-12-30 Edward Perez Method and apparatus for sampling bodily fluid
US20040059256A1 (en) * 2001-09-26 2004-03-25 Edward Perez Method and apparatus for sampling bodily fluid
US7758516B2 (en) 2001-09-26 2010-07-20 Roche Diagnostics Operations, Inc. Method and apparatus for sampling bodily fluid
US9560993B2 (en) 2001-11-21 2017-02-07 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8197423B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8157748B2 (en) 2002-04-19 2012-04-17 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8235915B2 (en) 2002-04-19 2012-08-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9907502B2 (en) 2002-04-19 2018-03-06 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8062231B2 (en) 2002-04-19 2011-11-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9839386B2 (en) 2002-04-19 2017-12-12 Sanofi-Aventis Deustschland Gmbh Body fluid sampling device with capacitive sensor
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9724021B2 (en) 2002-04-19 2017-08-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337420B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7988644B2 (en) 2002-04-19 2011-08-02 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8366637B2 (en) 2002-04-19 2013-02-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US8382682B2 (en) 2002-04-19 2013-02-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9498160B2 (en) 2002-04-19 2016-11-22 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US8388551B2 (en) 2002-04-19 2013-03-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for multi-use body fluid sampling device with sterility barrier release
US8403864B2 (en) 2002-04-19 2013-03-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8414503B2 (en) 2002-04-19 2013-04-09 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8430828B2 (en) 2002-04-19 2013-04-30 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8491500B2 (en) 2002-04-19 2013-07-23 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8496601B2 (en) 2002-04-19 2013-07-30 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9339612B2 (en) 2002-04-19 2016-05-17 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8562545B2 (en) 2002-04-19 2013-10-22 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US8574168B2 (en) 2002-04-19 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with analyte sensing
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7959582B2 (en) 2002-04-19 2011-06-14 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8636673B2 (en) 2002-04-19 2014-01-28 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7938787B2 (en) 2002-04-19 2011-05-10 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9186468B2 (en) 2002-04-19 2015-11-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9089678B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9089294B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US8690796B2 (en) 2002-04-19 2014-04-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7909774B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9072842B2 (en) 2002-04-19 2015-07-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8202231B2 (en) 2002-04-19 2012-06-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8808201B2 (en) 2002-04-19 2014-08-19 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for penetrating tissue
US7875047B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8845549B2 (en) 2002-04-19 2014-09-30 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US8905945B2 (en) 2002-04-19 2014-12-09 Dominique M. Freeman Method and apparatus for penetrating tissue
US7731900B2 (en) 2002-11-26 2010-06-08 Roche Diagnostics Operations, Inc. Body fluid testing device
US8383041B2 (en) 2002-12-23 2013-02-26 Roche Diagnostics Operations, Inc. Body fluid testing device
US8021631B2 (en) 2002-12-23 2011-09-20 Roche Diagnostics Operations, Inc. Body fluid testing device
US8574496B2 (en) 2002-12-23 2013-11-05 Roche Diagnostics Operations, Inc. Body fluid testing device
US9034639B2 (en) 2002-12-30 2015-05-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8251921B2 (en) 2003-06-06 2012-08-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US10034628B2 (en) 2003-06-11 2018-07-31 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8945910B2 (en) 2003-09-29 2015-02-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8296918B2 (en) 2003-12-31 2012-10-30 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a fluid sampling device with improved analyte detecting member configuration
US9561000B2 (en) 2003-12-31 2017-02-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US9261476B2 (en) 2004-05-20 2016-02-16 Sanofi Sa Printable hydrogel for biosensors
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8880138B2 (en) * 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US7927290B2 (en) 2006-01-05 2011-04-19 Panasonic Corporation Blood test apparatus
US20110160614A1 (en) * 2006-01-05 2011-06-30 Panasonic Corporation Blood test apparatus
US20090281455A1 (en) * 2006-01-05 2009-11-12 Matsushita Electric Industrial Co., Ltd. Blood test apparatus
US9844329B2 (en) 2006-02-28 2017-12-19 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US9031630B2 (en) 2006-02-28 2015-05-12 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7976478B2 (en) 2006-03-22 2011-07-12 Panasonic Corporation Blood test apparatus and method of controlling the same
US8500655B2 (en) 2006-03-22 2013-08-06 Panasonic Corporation Blood test apparatus and method of controlling the same
US8414504B2 (en) 2006-03-22 2013-04-09 Panasonic Corporation Blood test device
US20110237978A1 (en) * 2006-03-22 2011-09-29 Panasonic Corporation Blood test apparatus and method of controlling the same
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US20080139903A1 (en) * 2006-12-08 2008-06-12 Isense Corporation Method and apparatus for insertion of a sensor using an introducer
WO2009048687A1 (en) * 2007-10-11 2009-04-16 Abbott Diabetes Care, Inc. Lancing depth adjustment via moving cap
US20090099437A1 (en) * 2007-10-11 2009-04-16 Vadim Yuzhakov Lancing Depth Adjustment Via Moving Cap
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US10328201B2 (en) 2008-07-14 2019-06-25 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US11621073B2 (en) 2008-07-14 2023-04-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US20100056954A1 (en) * 2008-09-02 2010-03-04 Eli Oren Device For Extracting Blood Samples
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9795326B2 (en) 2009-07-23 2017-10-24 Abbott Diabetes Care Inc. Continuous analyte measurement systems and systems and methods for implanting them
US10827954B2 (en) 2009-07-23 2020-11-10 Abbott Diabetes Care Inc. Continuous analyte measurement systems and systems and methods for implanting them
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation

Also Published As

Publication number Publication date
US6063039A (en) 2000-05-16
US6283926B1 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US6283926B1 (en) Method and apparatus for obtaining blood for diagnostic tests
US6306104B1 (en) Method and apparatus for obtaining blood for diagnostic tests
US6155992A (en) Method and apparatus for obtaining interstitial fluid for diagnostic tests
US6506168B1 (en) Apparatus and method for obtaining blood for diagnostic tests
US7247144B2 (en) Methods and apparatus for sampling and analyzing body fluid
AU2001264976A1 (en) Apparatus and method for obtaining blood for diagnostic tests
US20200405235A1 (en) Inspection chip and inspection device
JP2004522500A5 (en)
AU774042B2 (en) Method and apparatus for obtaining blood for diagnostic tests
MXPA99005239A (en) Method and apparatus for obtaining blood for diagnostic tests

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12