Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20010037145 A1
Publication typeApplication
Application numberUS 09/887,462
Publication dateNov 1, 2001
Filing dateJun 21, 2001
Priority dateDec 8, 1999
Also published asUS6251136
Publication number09887462, 887462, US 2001/0037145 A1, US 2001/037145 A1, US 20010037145 A1, US 20010037145A1, US 2001037145 A1, US 2001037145A1, US-A1-20010037145, US-A1-2001037145, US2001/0037145A1, US2001/037145A1, US20010037145 A1, US20010037145A1, US2001037145 A1, US2001037145A1
InventorsJudy Guruwaiya, Deborra Millare, Steven Wu
Original AssigneeGuruwaiya Judy A., Millare Deborra Sanders, Wu Steven Z-H
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Coated stent
US 20010037145 A1
Abstract
A pharmacological agent is applied to a stent in dry, micronized form over a sticky base coating. A membrane forming polymer, selected for its ability to allow the diffusion of the pharmacological agent therethrough, is applied over the entire stent.
Images(1)
Previous page
Next page
Claims(23)
What is claimed:
1. A method for coating a stent, comprising the steps of:
providing a stent;
applying a base layer of sticky material to selected surfaces of said stent;
applying pharmacological agent in micronized, dry form to selected surfaces coated by said base layer; and
applying a membrane forming polymer coating through which said pharmacological agent is able to diffuse to all surfaces of said stent.
2. The method of
claim 1
, wherein said base layer is applied to all surfaces of said stent.
3. The method of
claim 1
, wherein said stent is masked so as to apply said base layer to only selected surfaces of said stent.
4. The method of
claim 1
, wherein said pharmacological agent is applied to all surfaces having said base layer applied thereto.
5. The method of
claim 1
, wherein said stent is masked so as to apply said pharmacological agent to only selected surfaces coated with said base coat.
6. The method of
claim 1
, wherein a plurality of pharmacological agents are applied to selected surfaces having said base layer applied thereto.
7. The method of
claim 6
, wherein said plurality of pharmacological agents comprises a uniform mixture.
8. The method of
claim 6
, wherein selected pharmacological agents of said plurality of pharmacological agents are applied.
9. The method of
claim 1
, wherein, the base layer is selected from the group consisting of vitronectin, fibronectin, gelatin and collagen.
10. The method of
claim 1
, wherein said base layer is applied by dipping.
11. The method of
claim 1
, wherein said pharmacological agent is applied by rolling said stent in a mass of said pharmacological agent.
12. The method of
claim 1
, wherein said pharmacological agent is applied by blowing said dry, micronized particles onto said stent.
13. The method of
claim 1
, wherein said membrane forming polymer comprises EVa.
14. The method of
claim 1
, wherein said membrane forming polymer comprises a fluoropolymer film.
15. A coated stent, comprising:
an expandable structure;
a base coating of sticky material;
an intermediate coating of pharmacological agent in dry, micronized form; and
an outer coating of membrane forming polymer through which said pharmacological agent is capable of diffusing.
16. The coated stent of
claim 12
, wherein said base coating is present on only selected surfaces of said expandable structure.
17. The coated stent of
claim 12
, wherein said pharmacological agent is present on only selected base coated surfaces.
18. The coated stent of
claim 12
, wherein said intermediate coating comprises a plurality of pharmacological agents.
19. The coated stent of
claim 15
, wherein said plurality of pharmacological agents is homogeneously distributed throughout said intermediate coating.
20. The coated stent of
claim 15
, wherein said plurality of pharmacological agents is heterogeneously distributed throughout said intermediate coating.
21. The coated stent of
claim 17
, wherein said expandable structure has exterior surfaces and interior surfaces and wherein a first of said plurality of pharmacological agents is distributed on said exterior surfaces and a second of said pharmacological agents is distributed on said interior surfaces.
22. The coated stent of
claim 12
, wherein said outer coating comprises EVA.
23. The coated stent of
claim 12
, wherein said outer coating comprises a fluoropolymer film.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    This invention relates generally to expandable intraluminal vascular grafts, commonly referred to as stents, and more particularly pertains to the coating of stents with materials that allow for the controlled release of pharmacological agents.
  • [0002]
    Stents are implanted within vessels in an effort to maintain the patency thereof by preventing collapse and/or impeding restenosis. Implantation of a stent is typically accomplished by mounting the stent on the expandable portion of a balloon catheter, maneuvering the catheter through the vasculature so as to position the stent at the treatment site within the body lumen, and inflating the balloon to expand the stent so as to engage the lumen wall. The stent deforms in the expanded configuration allowing the balloon to be deflated and the catheter removed to complete the implantation procedure. The use of self-expanding stents obviates the need for a balloon delivery device. Instead, a constraining sheath that is initially fitted about the stent is simply retracted once the stent is in position adjacent the treatment site. Stents and stent delivery catheters are well known in the art.
  • [0003]
    The success of a stent placement can be assessed by evaluating a number of factors, such as thrombosis, neointimal hyperplasia, smooth muscle cell migration and proliferation following implantation of the stent, injury to the artery wall, overall loss of luminal patency, stent diameter in vivo, thickness of the stent, and leukocyte adhesion to the luminal lining of stented arteries. The chief areas of concern are early subacute thrombosis, and eventual restenosis of the blood vessel due to intimal hyperplasia.
  • [0004]
    Therapeutic pharmacological agents have been developed to address some of the concerns associated with the placement of a stent and it is often desirable to provide localized pharmacological treatment of a vessel at the site being supported by the stent. It has been found convenient to utilize the implanted stent for such purpose wherein the stent serves both as a support for the lumen wall as a well as delivery vehicle for the pharmacological agent. However, the metallic materials typically employed in the construction of stents in order to satisfy the mechanical strength requirements are not generally capable of carrying and releasing drugs. On the other hand, while various polymers are known that are quite capable of carrying and releasing drugs, they generally do not have the requisite strength characteristics. Moreover, the structural and mechanical capabilities of a polymer may be significantly reduced as such polymer is loaded with a drug. A previously devised solution to such dilemma has therefore been the coating of a stent's metallic structure with a drug carrying polymer material in order to provide a stent capable of both supporting adequate mechanical loads as well as delivering drugs.
  • [0005]
    Various approaches have previously been employed to join drug-carrying polymers to metallic stents including for example dipping, spraying and conforming processes. Additionally, methods have been disclosed wherein the metallic structure of the stent has been formed or treated so as to create a porous surface that enhances the ability to retain the applied materials. However, such methods have generally failed to provide a quick, easy and inexpensive way of loading drugs onto a stent, have been limited insofar as the maximum amount of drug that can be loaded onto a stent and are limited in terms of their ability to control the rate of release of the drug upon implantation of the stent. Additionally, some of the heretofore known methods are highly specific wherein they are substantially limited in terms of which underlying stent material the coating can be applied to.
  • SUMMARY OF THE INVENTION
  • [0006]
    The present invention overcomes the shortcomings of the prior art methods for loading a drug onto a stent. The process enables large amounts of one or more drugs to be quickly and easily loaded onto the stent and provides for the subsequent release of such drug at a very controlled rate. A stent constructed in accordance with the present invention is capable of releasing substantially greater dosages of drugs at substantially more controlled release rates than has heretofore been possible. Moreover, the present invention allows for the drug releasing materials to be applied to any stent construction material.
  • [0007]
    The method of the present invention requires the sequential application of three layers of different materials onto a stent's surfaces. A first layer is applied to all or to selected surfaces of a stent and serves as a base or primer coat which readily adheres to the material of which the stent is constructed and in turn, is able to attract and retain the subsequently applied pharmacological agent. Such pharmacological agent, in the form of dry, micronized particles is dusted directly onto all or onto only selected surfaces of the base layer coated stent to form a second layer. A membrane forming polymer is subsequently applied over the coated stent surfaces wherein such polymer is selected for its ability to permit the diffusion of the pharmacological agent therethrough.
  • [0008]
    The base layer material is selected for its ability to form a sticky coating on the particular material used in the construction of the stent. Such first layer may be applied to all or selected surfaces of the stent. The pharmacological material is used in a dry, micronized form which allows the amount of material applied to the base layer to be precisely controlled. The top layer material is selected for its ability to form a membrane over the entire surface of the stent be it the bare stent material, the base layer coat or the pharmacological agent, and for its ability to permit the diffusion of the pharmacological agent therethrough. The amount of pharmacological material deposited in the second layer determines the total dosage that can delivered while the thickness of the top layer determines the rate of delivery.
  • [0009]
    The particular surface or surfaces on which the pharmacological agent is deposited determines where the agent is delivered upon implantation. More specifically, pharmacological material deposited on the exterior surfaces of the stent causes the agent to pass directly into the lumen wall while deposition of the agent on the interior surfaces of the stent causes the agent to be released directly into the blood flow. Alternatively, coating only the upstream edge or only the downstream edge of the stent may be desirable to achieve a specific effect. By selectively coating the stent surfaces with the base layer, the distribution of the pharmacological agent may be controlled accordingly as the dry particles will only adhere to those areas that have the sticky coating. Alternatively, the entire stent may be base coated while the application of the pharmacological agent is precisely controlled by limiting its distribution to only preselected areas. Well known masking techniques may be used for such purpose. The membrane forming material may be applied by any well known technique such as for example by dipping or spraying while material is in its liquid form. Allowing the material to form a continuous membrane completes the fabrication process.
  • [0010]
    These and other features and advantages of the present invention will become apparent from the following detailed description of preferred embodiments which, taken in conjunction with the accompanying drawings, illustrate by way of example the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0011]
    [0011]FIG. 1 is a perspective view of a stent.
  • [0012]
    [0012]FIG. 2 is a greatly enlarged cross-sectional view, such as taken along lines 2-2 of FIG. 1, of a stent fabricated in accordance with the present invention.
  • [0013]
    [0013]FIG. 3 is a greatly enlarged cross-sectional view of an alternative embodiment stent fabricated in accordance with the present invention.
  • [0014]
    [0014]FIG. 4 is a greatly enlarged cross-sectional view of another alternative embodiment stent fabricated in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0015]
    The stent constructed in accordance with the present invention is employed as a drug delivery device which is implanted in the body and may simultaneously serve to support the body lumen at the deployment site. The present invention is not limited to any particular stent configuration or delivery method nor is the construction of the stent structure limited to the use of any particular construction material.
  • [0016]
    [0016]FIG. 1 is a perspective view generally depicting a stent 12. Such view is not intended to represent any particular stent configuration or structure but is merely provided to put into context the cross-sectional views of the various embodiments shown in FIGS. 2-4.
  • [0017]
    [0017]FIG. 2 shows an embodiment 14 of the present invention wherein the underlying structure of the stent 16 has a total of three layers of materials coated onto all of its surfaces. A first layer, or base coat 18 is shown applied directly to the surfaces of the stent upon which a second layer, comprising a pharmacological agent 20, is applied. A third layer, in the form of a continuous membrane 22, encapsulates the entire device.
  • [0018]
    The base coat 18 serves as a primer by readily adhering to the underlying stent's surfaces and then readily accepting and retaining a pharmacological agent applied thereto. The base coat material may consist of vitronectin, fibronectin, gelatin, collagen or the like. Such materials are readily available, are relatively inexpensive and dry to form a sticky coating. The desired stickiness is achieved with the application of a very thin even coating of the base coat on the stent which serves to minimize the overall wall thickness of the device and further has the desirable effect of minimizing the amount of webbing that forms between adjacent structural components of the stent. The base layer may be applied by any of several methods including for example dipping, spraying, sponging or brushing. In the embodiment illustrated in FIG. 2, the underlying stent structure is simply dipped or submerged in the base coat material while in its liquid form to uniformly coat all surfaces of the stent. The dipping solution should not dissolve the drug particles. Upon drying or curing, all exposed surfaces of the stent remain sticky.
  • [0019]
    The pharmacological agent 20 is supplied in the form of dry, micronized particles that readily adhere to the sticky base layer surface. A variety of pharmacological agents are commercially available in such form having a preferred particle size of about 1 to 0.5 microns. Examples of such agents include but are not limited to antibiotic, anti-thrombotic and anti-restenotic drugs. Additionally, any such micronized agents can be combined in any of various combinations in order to dispense a desired cocktail of pharmacological agents to the patient. For example, a number of different pharmacological agents can be combined in each micronized particle. Alternatively, micronized particles of individual pharmacological agents can be intermixed prior to application to the sticky base layer. As a further alternative, different pharmacological agents can be applied to different surfaces of the stent. In the particular embodiment illustrated, the micronized particles are applied to all surfaces of the base coated stent wherein such application may be achieved by any of a number of well known methods. For example, the particles may be blown onto the sticky surface or optionally, may simply be rolled in the powder. The former approach allows the total amount of pharmacological agent that is to be applied to the stent to be precisely controlled.
  • [0020]
    The outer membrane 22 encapsulates the entire stent to cover all of its surfaces, including any bare stent structure, any exposed base coating or the layer of micronized drug particles. The material is selected for its membrane forming characteristic and its biocompatiblity as well as its permeability to the pharmacological agent. The chemical composition of the membrane forming polymer and that of the pharmacological agent in combination with the thickness of the applied outer layer will determine the diffusion rate of the pharmacological agent. An example of a suitable material is ethylene vinyl alcohol (EVA) into which the base coated and pharmacological agent carrying stent may simply be dipped. The EVA forms the desired membrane upon curing.
  • [0021]
    Alternatively, fluorocarbon films may be employed to serve as the outer layer in the stent of the present invention. Such films have been successfully used as drug-delivery capsules and are capable of serving a similar function when applied about the exterior of the stent of the present invention. A representative example of such film is described in the paper entitled Development of a Model for rf. PE-CVD-Deposited Fluoropolymer Films Using C3F6 by Jason Christos, et al in the Journal of Undergraduate Research in Engineering, page 52.
  • [0022]
    [0022]FIG. 3 illustrates an alternative embodiment 24 of the present invention. The underlying stent structure, base layer, pharmacological agent and outer membrane layer are identified by the same reference numerals employed in FIG. 2. In this particular embodiment, the base layer 18 is again applied to all surfaces of the underlying stent structure 16 while the pharmacological agent 20 is applied to only selected surfaces. This is achieved by masking those areas in which no pharmacological agent is to become adhered to the sticky base layer. In the particular embodiment that is illustrated, only the exterior surface has the pharmacological agent adhered thereto. Alternatively, a second, different pharmacological agent may be applied to the interior surface of the stent such that a single stent serves to dispense a first pharmacological agent into the lumen walls while the second agent is simultaneously dispensed into the blood flow. In either embodiment, the outer membrane 22 covers the entire stent.
  • [0023]
    [0023]FIG. 4 illustrates another alternative embodiment 26 of the present invention. The underlying stent structure, base layer, pharmacological agent and outer membrane layers are again identified by the same reference numerals employed in FIGS. 2 and 3. In this particular embodiment the base layer 18 is selectively applied to various surface of the underlying stent structure 16. This achieved by masking those areas were no base layer and consequently no pharmacological agent 20 is to be present. The illustration shows the base layer as being exclusively applied to the exterior surface of the stent. Any of a variety of masking techniques can be employed to achieve the selective coating pattern. The subsequently applied pharmacological agent in the form of dry, micronized particles, only adheres to those surfaces having the sticky base layer coating. The outer membrane forming layer 22 is again applied to all surfaces.
  • [0024]
    In use, the stent is deployed using conventional techniques. Once in position the pharmacological agent gradually diffuses into the adjacent tissue at a rate dictated by the parameters associated with the applied outer membrane. The total dosage that is delivered is of course limited by the total amount of pharmacological agent that had been loaded onto the stent's various surfaces. The pharmacological agent is selected to treat the deployment site and/or locations downstream thereof. For example, deployment in the carotid artery will serve to deliver such agent to the brain.
  • [0025]
    While a particular form of the invention has been illustrated and described, it will also be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited except by the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4278087 *Apr 28, 1980Jul 14, 1981Alza CorporationDevice with integrated operations for controlling release of agent
US4952419 *Mar 12, 1989Aug 28, 1990Eli Lilly And CompanyMethod of making antimicrobial coated implants
US5891420 *Apr 21, 1997Apr 6, 1999Aeropharm Technology LimitedEnvironmentally safe triancinolone acetonide aerosol formulations for oral inhalation
US6129905 *Aug 13, 1997Oct 10, 2000Aeropharm Technology, Inc.Aerosol formulations containing a sugar as a dispersant
US6140355 *Jan 13, 1994Oct 31, 2000Alfa Wassermann S.P.A.Pharmaceutical compositions containing rifaximin for treatment of vaginal infections
US6316018 *Jan 26, 2000Nov 13, 2001Ni DingDrug-releasing coatings for medical devices
US6355058 *Dec 30, 1999Mar 12, 2002Advanced Cardiovascular Systems, Inc.Stent with radiopaque coating consisting of particles in a binder
US6358556 *Jan 23, 1998Mar 19, 2002Boston Scientific CorporationDrug release stent coating
US6368658 *Apr 17, 2000Apr 9, 2002Scimed Life Systems, Inc.Coating medical devices using air suspension
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6790228Dec 28, 2000Sep 14, 2004Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
US6908624Dec 16, 2002Jun 21, 2005Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
US7022372Nov 12, 2002Apr 4, 2006Advanced Cardiovascular Systems, Inc.Compositions for coating implantable medical devices
US7147659Oct 28, 2004Dec 12, 2006Cordis Neurovascular, Inc.Expandable stent having a dissolvable portion
US7176261 *Oct 21, 2005Feb 13, 2007Medtronic, Inc.Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US7258891 *Apr 7, 2003Aug 21, 2007Advanced Cardiovascular Systems, Inc.Stent mounting assembly and a method of using the same to coat a stent
US7335265Oct 8, 2002Feb 26, 2008Advanced Cardiovascular Systems Inc.Apparatus and method for coating stents
US7556837Jul 7, 2009Advanced Cardiovascular Systems, Inc.Method for coating stents
US7645474Jul 31, 2003Jan 12, 2010Advanced Cardiovascular Systems, Inc.Method and system of purifying polymers for use with implantable medical devices
US7648725May 19, 2006Jan 19, 2010Advanced Cardiovascular Systems, Inc.Clamp mandrel fixture and a method of using the same to minimize coating defects
US7648727Aug 26, 2004Jan 19, 2010Advanced Cardiovascular Systems, Inc.Methods for manufacturing a coated stent-balloon assembly
US7678143Nov 12, 2003Mar 16, 2010Advanced Cardiovascular Systems, Inc.Ethylene-carboxyl copolymers as drug delivery matrices
US7682647Mar 23, 2010Advanced Cardiovascular Systems, Inc.Thermal treatment of a drug eluting implantable medical device
US7682648Nov 3, 2003Mar 23, 2010Advanced Cardiovascular Systems, Inc.Methods for forming polymeric coatings on stents
US7682669Mar 23, 2010Advanced Cardiovascular Systems, Inc.Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US7691401May 17, 2005Apr 6, 2010Advanced Cardiovascular Systems, Inc.Poly(butylmethacrylate) and rapamycin coated stent
US7699889May 2, 2008Apr 20, 2010Advanced Cardiovascular Systems, Inc.Poly(ester amide) block copolymers
US7704544Oct 7, 2003Apr 27, 2010Advanced Cardiovascular Systems, Inc.System and method for coating a tubular implantable medical device
US7713637Mar 3, 2006May 11, 2010Advanced Cardiovascular Systems, Inc.Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US7732535Mar 23, 2005Jun 8, 2010Advanced Cardiovascular Systems, Inc.Coating for controlled release of drugs from implantable medical devices
US7735449Jul 28, 2005Jun 15, 2010Advanced Cardiovascular Systems, Inc.Stent fixture having rounded support structures and method for use thereof
US7749263Jan 7, 2008Jul 6, 2010Abbott Cardiovascular Systems Inc.Poly(ester amide) filler blends for modulation of coating properties
US7758880Jul 20, 2010Advanced Cardiovascular Systems, Inc.Biocompatible polyacrylate compositions for medical applications
US7758881Jul 20, 2010Advanced Cardiovascular Systems, Inc.Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7766884May 25, 2007Aug 3, 2010Advanced Cardiovascular Systems, Inc.Polymers of fluorinated monomers and hydrophilic monomers
US7772359Sep 9, 2008Aug 10, 2010Advanced Cardiovascular Systems, Inc.Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7775178May 26, 2006Aug 17, 2010Advanced Cardiovascular Systems, Inc.Stent coating apparatus and method
US7776926Dec 11, 2002Aug 17, 2010Advanced Cardiovascular Systems, Inc.Biocompatible coating for implantable medical devices
US7785512May 25, 2004Aug 31, 2010Advanced Cardiovascular Systems, Inc.Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7785647Aug 31, 2010Advanced Cardiovascular Systems, Inc.Methods of providing antioxidants to a drug containing product
US7786249Sep 9, 2008Aug 31, 2010Advanced Cardiovascular Systems, Inc.Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7794743Sep 14, 2010Advanced Cardiovascular Systems, Inc.Polycationic peptide coatings and methods of making the same
US7795467Sep 14, 2010Advanced Cardiovascular Systems, Inc.Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US7803394Nov 17, 2006Sep 28, 2010Advanced Cardiovascular Systems, Inc.Polycationic peptide hydrogel coatings for cardiovascular therapy
US7803406Aug 26, 2005Sep 28, 2010Advanced Cardiovascular Systems, Inc.Polycationic peptide coatings and methods of coating implantable medical devices
US7807210Apr 5, 2004Oct 5, 2010Advanced Cardiovascular Systems, Inc.Hemocompatible polymers on hydrophobic porous polymers
US7807211May 27, 2004Oct 5, 2010Advanced Cardiovascular Systems, Inc.Thermal treatment of an implantable medical device
US7807722Nov 26, 2003Oct 5, 2010Advanced Cardiovascular Systems, Inc.Biobeneficial coating compositions and methods of making and using thereof
US7820190Jan 2, 2004Oct 26, 2010Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
US7820732Oct 26, 2010Advanced Cardiovascular Systems, Inc.Methods for modulating thermal and mechanical properties of coatings on implantable devices
US7823533Nov 2, 2010Advanced Cardiovascular Systems, Inc.Stent fixture and method for reducing coating defects
US7867547Dec 19, 2005Jan 11, 2011Advanced Cardiovascular Systems, Inc.Selectively coating luminal surfaces of stents
US7875286Jan 25, 2011Advanced Cardiovascular Systems, Inc.Polycationic peptide coatings and methods of coating implantable medical devices
US7887871Feb 15, 2011Advanced Cardiovascular Systems, Inc.Method and system for irradiation of a drug eluting implantable medical device
US7892592Feb 22, 2011Advanced Cardiovascular Systems, Inc.Coating abluminal surfaces of stents and other implantable medical devices
US7901703Mar 23, 2007Mar 8, 2011Advanced Cardiovascular Systems, Inc.Polycationic peptides for cardiovascular therapy
US7919075Mar 20, 2002Apr 5, 2011Advanced Cardiovascular Systems, Inc.Coatings for implantable medical devices
US7967998Jun 28, 2011Advanced Cardiocasvular Systems, Inc.Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US7976891Jul 12, 2011Advanced Cardiovascular Systems, Inc.Abluminal stent coating apparatus and method of using focused acoustic energy
US7985440Sep 7, 2005Jul 26, 2011Advanced Cardiovascular Systems, Inc.Method of using a mandrel to coat a stent
US7985441May 4, 2006Jul 26, 2011Yiwen TangPurification of polymers for coating applications
US7989018Mar 31, 2006Aug 2, 2011Advanced Cardiovascular Systems, Inc.Fluid treatment of a polymeric coating on an implantable medical device
US8003156May 4, 2006Aug 23, 2011Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US8007775Aug 30, 2011Advanced Cardiovascular Systems, Inc.Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US8017140Sep 13, 2011Advanced Cardiovascular System, Inc.Drug-delivery stent formulations for restenosis and vulnerable plaque
US8017237Sep 13, 2011Abbott Cardiovascular Systems, Inc.Nanoshells on polymers
US8021676Jul 8, 2005Sep 20, 2011Advanced Cardiovascular Systems, Inc.Functionalized chemically inert polymers for coatings
US8029816Oct 4, 2011Abbott Cardiovascular Systems Inc.Medical device coated with a coating containing elastin pentapeptide VGVPG
US8042487Oct 25, 2011Advanced Cardiovascular Systems, Inc.System for coating stents
US8048441Nov 1, 2011Abbott Cardiovascular Systems, Inc.Nanobead releasing medical devices
US8048448Nov 1, 2011Abbott Cardiovascular Systems Inc.Nanoshells for drug delivery
US8052912Nov 8, 2011Advanced Cardiovascular Systems, Inc.Temperature controlled crimping
US8052988Nov 8, 2011Advanced Cardiovascular Systems, Inc.Methods for fabricating coatings for drug delivery devices having gradient of hydration
US8062350Nov 22, 2011Abbott Cardiovascular Systems Inc.RGD peptide attached to bioabsorbable stents
US8067023Nov 29, 2011Advanced Cardiovascular Systems, Inc.Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US8067025Mar 20, 2007Nov 29, 2011Advanced Cardiovascular Systems, Inc.Nitric oxide generating medical devices
US8069814Dec 6, 2011Advanced Cardiovascular Systems, Inc.Stent support devices
US8109904Feb 7, 2012Abbott Cardiovascular Systems Inc.Drug delivery medical devices
US8110211Sep 22, 2004Feb 7, 2012Advanced Cardiovascular Systems, Inc.Medicated coatings for implantable medical devices including polyacrylates
US8110243May 15, 2008Feb 7, 2012Advanced Cardiovascular Systems, Inc.Coating for a stent and a method of forming the same
US8114150Jun 14, 2006Feb 14, 2012Advanced Cardiovascular Systems, Inc.RGD peptide attached to bioabsorbable stents
US8118863Feb 21, 2008Feb 21, 2012Abbott Cardiovascular Systems Inc.RGD peptide attached to bioabsorbable stents
US8147769May 16, 2007Apr 3, 2012Abbott Cardiovascular Systems Inc.Stent and delivery system with reduced chemical degradation
US8173199May 8, 2012Advanced Cardiovascular Systems, Inc.40-O-(2-hydroxy)ethyl-rapamycin coated stent
US8182527May 22, 2012Cordis CorporationHeparin barrier coating for controlled drug release
US8192752Jun 5, 2012Advanced Cardiovascular Systems, Inc.Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US8197879Jun 12, 2012Advanced Cardiovascular Systems, Inc.Method for selectively coating surfaces of a stent
US8231962Jul 31, 2012Advanced Cardiovascular Systems, Inc.Coatings for drug delivery devices having gradient of hydration
US8236048Apr 27, 2004Aug 7, 2012Cordis CorporationDrug/drug delivery systems for the prevention and treatment of vascular disease
US8277926Oct 2, 2012Advanced Cardiovascular Systems, Inc.Methods for fabricating coatings for drug delivery devices having gradient of hydration
US8293367Jul 15, 2011Oct 23, 2012Advanced Cardiovascular Systems, Inc.Nanoshells on polymers
US8293890Apr 30, 2004Oct 23, 2012Advanced Cardiovascular Systems, Inc.Hyaluronic acid based copolymers
US8303609Sep 28, 2001Nov 6, 2012Cordis CorporationCoated medical devices
US8303651Nov 6, 2012Advanced Cardiovascular Systems, Inc.Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US8304012Nov 6, 2012Advanced Cardiovascular Systems, Inc.Method for drying a stent
US8309112Nov 13, 2012Advanced Cardiovascular Systems, Inc.Coatings for implantable medical devices comprising hydrophilic substances and methods for fabricating the same
US8357391Jan 22, 2013Advanced Cardiovascular Systems, Inc.Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US8361539Jan 29, 2013Advanced Cardiovascular Systems, Inc.Methods of forming microparticle coated medical device
US8435550May 7, 2013Abbot Cardiovascular Systems Inc.Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8449905May 28, 2013Covidien LpLiquid and low melting coatings for stents
US8465789Jul 18, 2011Jun 18, 2013Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US8506617Jun 21, 2002Aug 13, 2013Advanced Cardiovascular Systems, Inc.Micronized peptide coated stent
US8551512Mar 22, 2004Oct 8, 2013Advanced Cardiovascular Systems, Inc.Polyethylene glycol/poly(butylene terephthalate) copolymer coated devices including EVEROLIMUS
US8563025Jan 23, 2006Oct 22, 2013Advanced Cardiovascular Systems, Inc.Coatings for implantable medical devices
US8568764May 31, 2006Oct 29, 2013Advanced Cardiovascular Systems, Inc.Methods of forming coating layers for medical devices utilizing flash vaporization
US8586069Dec 29, 2005Nov 19, 2013Abbott Cardiovascular Systems Inc.Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US8586075Nov 27, 2012Nov 19, 2013Abbott Cardiovascular Systems Inc.Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US8592036Sep 20, 2012Nov 26, 2013Abbott Cardiovascular Systems Inc.Nanoshells on polymers
US8596215Jul 18, 2011Dec 3, 2013Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US8597673Dec 13, 2006Dec 3, 2013Advanced Cardiovascular Systems, Inc.Coating of fast absorption or dissolution
US8603530Jun 14, 2006Dec 10, 2013Abbott Cardiovascular Systems Inc.Nanoshell therapy
US8603536Sep 15, 2003Dec 10, 2013Advanced Cardiovascular Systems, Inc.Microparticle coated medical device
US8603634Mar 23, 2009Dec 10, 2013Abbott Cardiovascular Systems Inc.End-capped poly(ester amide) copolymers
US8609123Nov 29, 2004Dec 17, 2013Advanced Cardiovascular Systems, Inc.Derivatized poly(ester amide) as a biobeneficial coating
US8616152 *Aug 6, 2012Dec 31, 2013Abbott Cardiovascular Systems Inc.Stent coating apparatus
US8637110Jul 18, 2011Jan 28, 2014Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US8647655Jun 18, 2010Feb 11, 2014Abbott Cardiovascular Systems Inc.Biocompatible polyacrylate compositions for medical applications
US8673334Sep 19, 2007Mar 18, 2014Abbott Cardiovascular Systems Inc.Stent coatings comprising hydrophilic additives
US8685430Jul 13, 2007Apr 1, 2014Abbott Cardiovascular Systems Inc.Tailored aliphatic polyesters for stent coatings
US8685431Mar 16, 2004Apr 1, 2014Advanced Cardiovascular Systems, Inc.Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8703167Jun 5, 2006Apr 22, 2014Advanced Cardiovascular Systems, Inc.Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8703169Aug 8, 2007Apr 22, 2014Abbott Cardiovascular Systems Inc.Implantable device having a coating comprising carrageenan and a biostable polymer
US8741378Dec 23, 2004Jun 3, 2014Advanced Cardiovascular Systems, Inc.Methods of coating an implantable device
US8741379Jul 18, 2011Jun 3, 2014Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US8758801Nov 27, 2012Jun 24, 2014Abbott Cardiocascular Systems Inc.Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US8778014Mar 31, 2004Jul 15, 2014Advanced Cardiovascular Systems, Inc.Coatings for preventing balloon damage to polymer coated stents
US8778375Apr 29, 2005Jul 15, 2014Advanced Cardiovascular Systems, Inc.Amorphous poly(D,L-lactide) coating
US8778376Jun 9, 2006Jul 15, 2014Advanced Cardiovascular Systems, Inc.Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8808342Apr 23, 2013Aug 19, 2014Abbott Cardiovascular Systems Inc.Nanoshell therapy
US8871236Jun 6, 2013Oct 28, 2014Abbott Cardiovascular Systems Inc.Biocompatible polyacrylate compositions for medical applications
US8871883Jul 27, 2010Oct 28, 2014Abbott Cardiovascular Systems Inc.Biocompatible coating for implantable medical devices
US8900618Mar 15, 2013Dec 2, 2014Covidien LpLiquid and low melting coatings for stents
US8961588Sep 26, 2006Feb 24, 2015Advanced Cardiovascular Systems, Inc.Method of coating a stent with a release polymer for 40-O-(2-hydroxy)ethyl-rapamycin
US8986726Jun 6, 2013Mar 24, 2015Abbott Cardiovascular Systems Inc.Biocompatible polyacrylate compositions for medical applications
US9028859Jul 7, 2006May 12, 2015Advanced Cardiovascular Systems, Inc.Phase-separated block copolymer coatings for implantable medical devices
US9056155May 29, 2007Jun 16, 2015Abbott Cardiovascular Systems Inc.Coatings having an elastic primer layer
US9067000Nov 18, 2013Jun 30, 2015Abbott Cardiovascular Systems Inc.End-capped poly(ester amide) copolymers
US9084671Jul 15, 2013Jul 21, 2015Advanced Cardiovascular Systems, Inc.Methods of forming a micronized peptide coated stent
US9101697Apr 11, 2014Aug 11, 2015Abbott Cardiovascular Systems Inc.Hyaluronic acid based copolymers
US9114198Nov 19, 2003Aug 25, 2015Advanced Cardiovascular Systems, Inc.Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US9175162Sep 19, 2007Nov 3, 2015Advanced Cardiovascular Systems, Inc.Methods for forming stent coatings comprising hydrophilic additives
US20040054104 *Sep 5, 2002Mar 18, 2004Pacetti Stephen D.Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20040086542 *Dec 16, 2002May 6, 2004Hossainy Syed F.A.Coating for implantable devices and a method of forming the same
US20040138695 *Jun 5, 2003Jul 15, 2004Shu-Tung LiCoatings of implants
US20050187376 *Mar 23, 2005Aug 25, 2005Pacetti Stephen D.Coating for controlled release of drugs from implantable medical devices
US20060088572 *Oct 21, 2005Apr 27, 2006Medtronic, Inc.Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US20060095112 *Oct 28, 2004May 4, 2006Jones Donald KExpandable stent having a dissolvable portion
US20070026131 *Sep 26, 2006Feb 1, 2007Advanced Cardiovascular Systems, Inc.40-O-(2-hydroxy)ethyl-rapamycin coated stent
US20070073381 *Nov 7, 2006Mar 29, 2007Jones Donald KExpandable stent having a dissolvable portion
US20080107795 *Jan 14, 2008May 8, 2008Hossainy Syed FMethod for Coating Stents
US20080110396 *Jan 14, 2008May 15, 2008Hossainy Syed FSystem for Coating Stents
US20080281394 *Jul 18, 2008Nov 13, 2008Jones Donald KCovered stent having a dissolvable portion
US20120291703 *Nov 22, 2012Advanced Cardiovascular Systems, Inc.Stent coating apparatus
USRE45744Nov 7, 2013Oct 13, 2015Abbott Cardiovascular Systems Inc.Temperature controlled crimping
EP1652495A1 *Oct 28, 2005May 3, 2006Cordis Neurovascular, Inc.Expandable stent having a dissolvable portion
WO2002058753A2 *Dec 21, 2001Aug 1, 2002Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
WO2002058753A3 *Dec 21, 2001Jan 16, 2003Advanced Cardiovascular SystemCoating for implantable devices and a method of forming the same
Classifications
U.S. Classification623/1.15, 623/1.46
International ClassificationA61L31/16, A61F2/06, A61L31/10, A61F2/90
Cooperative ClassificationA61F2002/91533, A61F2002/072, A61L31/16, A61L2420/08, A61F2/915, A61L2300/608, A61L31/10, A61F2/91, A61F2230/0013
European ClassificationA61F2/915, A61F2/91, A61L31/10, A61L31/16