Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20010042866 A1
Publication typeApplication
Application numberUS 09/245,503
Publication dateNov 22, 2001
Filing dateFeb 5, 1999
Priority dateFeb 5, 1999
Also published asCN1262528A, DE10000088A1, US6800500, US7491565, US20040077114, US20060121702
Publication number09245503, 245503, US 2001/0042866 A1, US 2001/042866 A1, US 20010042866 A1, US 20010042866A1, US 2001042866 A1, US 2001042866A1, US-A1-20010042866, US-A1-2001042866, US2001/0042866A1, US2001/042866A1, US20010042866 A1, US20010042866A1, US2001042866 A1, US2001042866A1
InventorsCarrie Carter Coman, Fred A. Kish, Michael R. Krames, Paul S. Martin
Original AssigneeCarrie Carter Coman, Fred A. Kish, Michael R. Krames, Paul S. Martin
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Inxalygazn optical emitters fabricated via substrate removal
US 20010042866 A1
Abstract
Devices and techniques for fabricating InAlGaN light-emitting devices are described that result from the removal of light-emitting layers from the sapphire growth substrate. In several embodiments, techniques for fabricating a vertical InAlGaN light-emitting diode structure that result in improved performance and or cost-effectiveness are described. Furthermore, metal bonding, substrate liftoff, and a novel RIE device separation technique are employed to efficiently produce vertical GaN LEDs on a substrate chosen for its thermal conductivity and ease of fabrication.
Images(5)
Previous page
Next page
Claims(16)
We claim:
1. An InAlGaN light-emitting device comprising:
a host substrate;
an AlInGaN light-emitting structure, including device layers of a first and second polarity, proximate to a top side of the host substrate;
a first device contact to a top side of the AlInGaN light-emitting structure;
a wafer bonding layer, interposing the host substrate and the AlInGaN structure; and
a second device contact, positioned within the wafer bonding layer, electrically connected to a bottom side of the AlInGaN light-emitting structure.
2. A device, as defined in
claim 1
, wherein the second device contact contains at least 50% silver.
3. A device, as defined in
claim 1
, wherein the second device contact contains at least 50% aluminum.
4. A device, as defined in
claim 1
, wherein the host substrate is selected from a group that includes metals and semiconductors.
5. A device, as defined in
claim 4
, wherein the host substrate is selected from a group that includes silicon, germanium, glass, copper, and gallium arsenide.
6. A device, as defined in
claim 4
, wherein the host substrate is a semiconductor, further comprising a first substrate ohmic contact positioned on the top side of the host substrate.
7. A device, as defined in
claim 6
, further comprising a second substrate ohmic contact that is electrically connected to a bottom side of the host substrate.
8. A device, as defined in
claim 1
, further comprising a pair of polished mirrors positioned on two opposing side faces of the InAlGaN light-emitting structure forming an edge emitting laser.
9. A device, as defined in
claim 1
, further comprising:
a first dielectric Bragg reflector mirror, positioned on the top side of the InAlGaN light-emitting structure; and
a second dielectric Bragg reflector mirror, positioned within the wafer bonding layer, adjacent to the bottom side of the InAlGaN light emitting structure.
10. A method for fabricating a vertical conducting AlInGaN light-emitting device comprising the steps of:
growing an AlInGaN light-emitting structure that has device layers of a first and a second polarity on a growth substrate;
depositing a first ohmic metal layer onto an exposed side of the InAlGaN light-emitting structure;
depositing a second ohmic metal layer onto a host substrate; and
wafer bonding the first and second ohmic metal layers to form a first electrical contact within the wafer bond interface.
11. A method, as defined in
claim 10
, wherein the first ohmic metal layer is selected from a group that includes silver, nickel, aluminum, gold, and cobalt.
12. A method, as defined in
claim 10
, further comprising the steps of:
removing the growth substrate; and
fabricating a second electrical contact to a newly exposed side of InAlGaN light-emitting structure.
13. A method, as defined in
claim 12
, further comprising the step of etching mesas through the AlInGaN light-emitting structure corresponding to a desired device size.
14. A method, as defined in
claim 13
, further comprising the step of singulating the host substrate.
15. A method, as defined in
claim 10
, wherein the step of growing an InAlGaN light-emitting structure comprises the step of growing an AlInGaN film having a thickness greater than 50 microns on the growth substrate.
16. A method, as defined in
claim 10
, wherein the host substrate is selected from a group that includes metals and semiconductors.
Description
FIELD OF INVENTION

[0001] The present invention relates generally to the field of semiconductor optical emission devices, more particularly to a method for fabricating highly efficient and cost effective InAlGaN devices.

BACKGROUND

[0002] Sapphire has proven to be the preferred substrate for growing high efficiency InAlGaN light emitting devices because of its stability in the high temperature ammonia atmosphere of the epitaxial growth process. However, sapphire is an electrical insulator with poor thermal conductivity resulting in unusual and inefficient device designs. A typical LED structure grown on sapphire has two top side electrical contacts and a semitransparent metal layer to spread current over the p-contact. This contrasts with the standard vertical structure for current flow in LEDs grown on conducting substrates such as GaAs or GaP in which an electrical contact is on the top side of the semiconductor devcie and one is on the bottom. The two top side contacts on the sapphire based LED reduce the usable light emitting area of the device.

[0003] Furthermore, the low conductivity of the p-type InAlGaN layer results in the need for a semitransparent metal layer to spread current over the p-type semiconducting layer. The index of refraction of the sapphire (n˜1.7) is also lower than that of the InAlGaN layers (n˜2.2-2.6) grown upon it. Consequently, this mismatch in index of refraction (with the Sapphire being lower) results in waveguiding of the light between the absorbing semitransparent p-side current-spreading metallization and the sapphire. This results in absorption of 10-70% of the light generated in commercial InAlGaN device by the semitransparent metal layer.

[0004] Wafer bonding can be divided into two basic categories: direct wafer bonding, and metallic wafer bonding. In direct wafer bonding, the two wafers are fused together via mass transport at the bonding interface. Direct wafer bonding can be performed between any combination of semiconductor, oxide, and dielectric materials. It is usually done at high temperature (>400 C) and under uniaxial pressure. One suitable direct wafer bonding technique is described by Kish, et al, in U.S. Pat. No. 5,502,316. In metallic wafer bonding, a metallic layer is deposited between the two bonding substrates to cause them to adhere. This metallic layer may serve as an ohmic contact to either the active device, the substrate or both. One example of metallic bonding is flip-chip bonding, a technique used in the micro- and optoelectronics industry to attach a device upside down onto a substrate. Since flip-chip bonding is used to improve the heat sinking of a device, removal of the substrate depends upon the device structure and conventionally the only requirements of the metallic bonding layer are that it be electrically conductive and mechanically robust.

[0005] A vertical cavity optoelectronic structure is defined to consist of an active region that is formed by light emitting layer interposing confining layers that may be doped, un-doped, or contain a p-n junction. The structure also contains at least one reflective mirror that forms a Fabry-Perot cavity in the direction normal to the light emitting layers. Fabricating a vertical cavity optoelectronic structure in the GaN/InxAlyGazN/AlxGa1-xN (where x+y+z=0.5) material systems poses challenges that set it apart from other III-V material systems. It is difficult to grow InxAlyGazN structures with high optical quality. Current spreading is a major concern for InxAlyGazN devices. Lateral current spreading in the p-type material is 30 times less than that in the n-type material. Furthermore, the low thermal conductivity of the substrates adds complexity to the device design, since the devices should be mounted p-side down for optimal heat sinking.

[0006] One vertical cavity optoelectronic structure, e.g. a vertical cavity surface emitting laser (VCSEL), requires high quality mirrors, e.g. 99.5% reflectivity. One method to achieve high quality mirrors is through semiconductor growth techniques. To reach the high reflectivity required of distributed Bragg reflectors (DBRs) suitable for VCSELs (>99%), there are serious material issues for the growth of semiconductor InxAlyGazN DBRs, including cracking and dopant incorporation. These mirrors require many periods/layers of alternating indium aluminum gallium nitride compositions (InxAlyGazN/Inx,Aly,Gaz,N). Dielectric DBRs (D-DBR), in contrast to semiconductor DBRs, are relatively straightforward to make with reflectivities in excess of 99% in the spectral range spanned by the InxAlyGazN system. These mirrors are typically deposited by evaporation or sputter techniques, but MBE (molecular beam epitaxal) and MOCVD (metal-organic chemical vapor deposition) can also be employed. However, only one side of the active region can be accessed for D-DBR deposition unless the host substrate is removed. Producing an InxAlyGazN vertical cavity optoelectronic structure would be significantly easier if it was possible to bond and/or deposit D-DBRs on both sides of a InxAlyGazN active region.

[0007] In “Low threshold, wafer fused long wavelength vertical cavity lasers”, Applied Physics Letters, Vol. 64, No. 12, 1994, pp1463-1465, Dudley, et al. taught direct wafer bonding of AlAs/GaAs semiconductor DBRs to one side of a vertical cavity structure while in “Room-Temperature Continuous-Wave Operation of 1.430 μm Vertical-Cavity Lasers”, IEEE Photnoics Technology Letters, Vol. 7, Nol. 11, November 1995, Babic, et al. taught direct wafer bonded semiconductor DBRs to both sides of an InGaAsP VCSEL to use the large refractive index variations between AlAs/GaAs. As will be described, wafer bonding D-DBRs to InxAlyGazN is significantly more complicated than semiconductor to semiconductor wafer bonding, and was not known previously in the art.

[0008] In “Dielectrically-Bonded Long Wavelength Vertical Cavity Laser on GaAs Substrates Using Strain-Compensated Multiple Quantum Wells:, IEEE Photonics Technology Letters, Vol. 5, No. 12, December 1994, Chua et al. disclosed AlAs/GaAs semiconductor DBRs attached to an InGaAsP laser by means of a spin-on glass layer. Spin-on glass is not a suitable material for bonding in a VCSEL between the active layers and the DBR because it is difficult to control the precise thickness of spin on glass, and hence the critical layer control needed for a VCSEL cavity is lost. Furthermore, the properties of the spin-on glass may be inhomogeneous, causing scattering and other losses in the cavity.

[0009] Optical mirror growth of AlxGa1-xN/GaN pairs of semiconductor DBR mirrors with reflectivities adequate for VCSELs, e.g. >99%, is difficult. Theoretical calculations of reflectivity suggest that to achieve the required high reflectivity, a high index contrast is required that can only be provided by increasing the Al composition of the low-index AlxGa1-xN layer and/or by including more layer periods (material properties taken from Ambacher et al., MRS Internet Journal of Nitride Semicoductor Research, 2(22)1997). Either of these approaches introduces serious challenges. If current will be conducted through the DBR layers, it is important that the DBRs be conductive. To be sufficiently conductive, the AlxGa1-xN layer must be adequately doped. Dopant incorporation is insufficient unless the Al composition is reduced to below 50% for Si (n-type) doping and to below 17% for Mg (p-type) doping. However, the number of layer periods needed to achieve sufficient reflectivity using lower Al composition layers requires a large total thickness of AlxGa1-xN material, increasing the risk of epitaxial layer cracking and reducing compositional control. Indeed, the Al.30Ga.70N/GaN stack of FIG. 1 is already 2.5 μm thick and is far from sufficiently reflective for a VCSEL. Thus, a high reflectivity DBR based on this layer pair requires a total thickness significantly greater than 2.5 μm and would be difficult to grow reliably given the mismatch between AlN and GaN growth temperatures. Even though the cracking is not as great of an issue if the layers are undoped, compositional control and the AlN/GaN growth temperatures still pose great challenges to growing high reflectivity DBRs. Hence, even in applications where the DBRs do not have to conduct current, mirror stacks with reflectivities >99% in the InxAlyGazN material system have not been demonstrated. For this reason, dielectric-based DBR mirrors are preferred.

[0010] Semiconductor devices are manufactured many thousands to tens of thousands at a time on wafers. The wafers must be diced into individual die prior to packaging. If sapphire is used as the growth substrate one must thin and dice the sapphire substrate. The hardness and hexagonal crystal structure of sapphire make the dicing operation difficult and expensive.

SUMMARY OF THE INVENTION

[0011] In this invention, devices and techniques for fabricating InAlGaN light-emitting devices are described that result from the removal of light-emitting layers from the sapphire growth substrate. In several embodiments, techniques for fabricating a vertical InAlGaN light-emitting diode structure that result in improved performance and or cost-effectiveness are described. Furthermore, metal bonding, substrate liftoff, and a novel RIE device separation technique are employed to efficiently produce vertical GaN LEDs or vertical cavity surface emitting lasers (VCSELs) on a substrate chosen for its thermal conductivity and ease of fabrication.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012]FIG. 1 illustrates a preferred embodiment of an InAlGaN light-emitting device with a bonding layer comprised of ohmic contact layers to the InAlGaN heterostructure and adhesion layers to the host substrate.

[0013]FIG. 2 illustrates a preferred embodiment of an InAlGaN light-emitting device with a bonding layer comprised of ohmic contact layers to the InAlGaN heterostructure and also ohmic contact layers to an electrically conducting host substrate.

[0014]FIG. 3 illustrates a preferred embodiment of an InAlGaN light-emitting device with opposing distributed Bragg reflector (DBR) mirror stacks on either side of the light emitting layers to form vertical cavity device. The bonding layer is comprised of ohmic contact layers to the InAlGaN heterostructure and also ohmic contact layers to an electrically conducting host substrate.

[0015] FIGS. 4A-D illustrate a preferred method for dicing InAlGaN light-emitting devices.

[0016] In FIG. 4A, InAlGaN layers grown on a sapphire substrate are coated with ohmic contact and bonding layers.

[0017] In FIG. 4B, a host substrate is bonded to the InAlGaN layers prior to removal of the sapphire substrate.

[0018] In FIG. 4C, the InAlGaN devices are defined by mesa etching through the InAlGaN device.

[0019] In FIG. 4D, Devices are finally singulated by dicing the host substrate.

DETAILED DESCRIPTION OF THE DRAWINGS

[0020] This invention is concerned with building vertically conducting InAlGaN light emitting devices defined as devices in which the ohmic contacts to the InAlGaN device layers are on opposite sides, top & bottom, of the InAlGaN device layers.

[0021] One preferred structure according to the present invention is shown in FIG. 1. Initially, an InAlGaN light emitting device 20 is grown on a sacrificial growth substrate 30 such as sapphire. The structure is grown with the p-type layer 20 a exposed. A reflective ohmic contact 18 is deposited on top of the p-type InAlGaN layers 20 a. The InAlGaN structure is then bonded to a host substrate 12 by means of bonding layers 16 interposing the InAlGaN light emitting layers 20 and the host substrate 12. The bonding layer 16 materials are chosen to provide a strong mechanical bond and to be electrically conductive. In general, the bonding layer includes a plurality of layers, the first bonding layer 16 a that are deposited on the InAlGaN device layers and the second bonding layers 16 b that are deposited on the host substrate. The bonding layers 16 are deposited by any number of means known in the prior art, such as electron-beam evaporation, sputtering, and electroplating. After bonding, the sacrificial sapphire growth substrate 30 is removed via one of many substrate removal techniques as known in the prior art such as laser melting, mechanical polishing, and chemical etching of sacrificial layers. Then the InAlGaN layers are patterned, etched, and contacted to provide for an electrical injection light emitting device. The bonding layer serves as a low resistivity current spreading layer, an ohmic contact to the p-InAlGaN layers, and an adhesion layer to the host substrate.

[0022] Another preferred embodiment is shown in FIG. 2. As in FIG. 1, InAlGaN light-emitting device layers are grown atop a sacrificial substrate 30 and a reflective ohmic contact 18 is deposited on top of the exposed p-type layer 20 a. Now, the InAlGaN structure 20+18 is bonded to a host substrate 12 that is electrically conductive via bonding layers 16. This substrate may be a semiconductor, dielectric, or metal. In the case of a semiconductor substrate, the bonding layer must be adjacent or comprised of ohmic contact layers to the substrate 24 a, and a second ohmic contact is applied to the side of the substrate opposing the bonded interface 24 b. After attaching the host substrate, the sacrificial growth substrate is removed and an n-type ohmic contact 22 is provided to the n-InAlGaN layers. As a result, a vertically conductive InAlGaN light-emitting device is achieved. This device exhibits excellent current spreading due to the low resistitivity of the semiconductor or metal host substrate resulting in low forward voltage and high electrical to optical conversion efficiency. In addition, because there is only a single ohmic contact on the top of the device and none of the active region of the device is removed during the fabrication of the second ohmic contact to the device, more than 75% of the available active region is preserved for unblocked light emission compared to less than 40% in commercially available devices.

[0023] Another preferred embodiment is shown in FIG. 3. In this case, a DBR mirror stack 26 a is deposited to the p-InAlGaN layer 20 a in addition to the p-side ohmic contacts 18. The mirror stack can consist of one or more of the following materials: dielectric, semiconductor and metal. The structure is bonded to a host substrate 12 via bonding layers 16 which provides adhesion to the host substrate 12 and electrical contact to the p-side ohmic 18 contact metals. The bonding layer 16 material and thickness should be chosen to avoid compromising the DBR mirror stack reflectivity during the attachment of the host substrate. After removal of the sacrificial growth substrate 30, a second DBR mirror stack 26 b is deposited on the InAlGaN vertical cavity optoelectronic structure on the side opposing the first mirror stack 26 a. The optional second mirror stack 26 b is patterned and etched to provide areas for n-type ohmic contacts 22. For a vertical cavity surface emitting laser, the mirrors must have very high reflectivity >99%. For an resonant cavity LED, the reflectivity requirement of the mirror(s) is relaxed (>60%). The first and second substrate ohmic contacts 24 a, 24 b provide for a vertically conductive device.

[0024] A preferred method for fabricating InAlGaN light-emitting devices is shown in FIG. 4. FIG. 4a shows InAlGaN light emitting layers 20 a and 20 b grown on a growth substrate 30 with a reflective ohmic silver contact 18 deposited on top of the p-type InAlGaN layer. Silver is preferred for the p-type ohmic contact because of its high reflectivity to the wavelengths of light typically emitted from an InAlGaN light-emitting device and for its low contact resistance to p-type InAlGaN. Alternatively, for devices in which the InAlGaN layers are grown with the n-type layer furthest from the sapphire growth substrate, aluminum is an excellent choice for an ohmic metal since it also has high reflectivity in the visible wavelength region of light typically emitted by InAlGaN devices and also makes an excellent ohmic contact to n-type InAlGaN. Above the device structure is shown a low resistivity host substrate 12 provided with first 24 a and second 24 b ohmic contacts to facilitate vertical conduction. A bonding layer 16 a may be deposited on top of the first substrate ohmic contact. A second bonding layer 16 is optionally deposited on top of the p-side ohmic contact 18 to facilitate a mechanically strong metallic wafer bond in a later step. In FIG. 4b, the host substrate is shown wafer bonded to the InAlGaN layers via the bonding layers. In FIG. 4c, the growth substrate 30 has been removed and ohmic contact 22 to the n-InAlGaN layers is provided. Then, mesas 32 are etched through the InAlGaN layers to define individual device active areas. In FIG. 4d, the host substrate has been diced to singulate individual InAlGaN light emitting devices. Silicon is preferred for the host substrate because it is easy to thin and saw into very small chips, and can have low electrical resistivity and high thermal conductivity compared to other common substrates. This method allows simple dicing of the InAlGaN devices and avoids the problems associating with dicing sapphire. It is also possible to etch mesas prior to attaching the host substrate, rather than after removal of the growth substrate.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6586773 *Oct 31, 2001Jul 1, 2003Kabushiki Kaisha ToshibaDevice comprising substrate of one conductivity type, first bonding layer of gallium phosphide, second bonding layer of indium gallium phosphide, light-emitting active layer between two cladding layers, each of indium gallium aluminum phosphide
US6649437Aug 20, 2002Nov 18, 2003United Epitaxy Company, Ltd.Method of manufacturing high-power light emitting diodes
US6770542Dec 20, 2002Aug 3, 2004Osram Opto Semiconductors GmbhMethod for fabricating semiconductor layers
US6846686May 5, 2003Jan 25, 2005Kabushiki Kaisha ToshibaSemiconductor light-emitting device and method of manufacturing the same
US6865201 *Mar 22, 2002Mar 8, 2005Sharp Kabushiki KaishaSemiconductor laser device, method of fabricating the same and optical information reproduction apparatus
US7019330 *Aug 28, 2003Mar 28, 2006Lumileds Lighting U.S., LlcResonant cavity light emitting device
US7105857Jul 8, 2003Sep 12, 2006Nichia CorporationNitride semiconductor device comprising bonded substrate and fabrication method of the same
US7169632 *Sep 9, 2003Jan 30, 2007Osram GmbhRadiation-emitting semiconductor component and method for producing the semiconductor component
US7208337Sep 5, 2003Apr 24, 2007Osram Opto Semiconductors GmbhMethod of forming light emitting devices including forming mesas and singulating
US7244628 *May 21, 2004Jul 17, 2007Matsushita Electric Industrial Co., Ltd.Method for fabricating semiconductor devices
US7250638 *Sep 23, 2005Jul 31, 2007Lg Electronics Inc.Method of fabricating vertical structure LEDs
US7265392May 28, 2001Sep 4, 2007Osram GmbhLight-emitting-diode chip comprising a sequence of GaN-based epitaxial layers which emit radiation and a method for producing the same
US7301175Sep 30, 2003Nov 27, 2007Nichia CorporationLight emitting apparatus and method of manufacturing the same
US7319247Mar 16, 2001Jan 15, 2008Osram GmbhLight emitting-diode chip and a method for producing same
US7378334Feb 1, 2006May 27, 2008Nichia CorporationNitride semiconductor device comprising bonded substrate and fabrication method of the same
US7384807Jun 3, 2004Jun 10, 2008Verticle, Inc.Method of fabricating vertical structure compound semiconductor devices
US7390684Jul 27, 2006Jun 24, 2008Nichia CorporationLight emitting apparatus and method of manufacturing the same
US7391061 *Dec 22, 2005Jun 24, 2008Epistar CorporationLight emitting diode with thermal spreading layer
US7446341 *Sep 24, 2003Nov 4, 2008Osram GmbhRadiation-emitting semiconductor element
US7446346Feb 2, 2004Nov 4, 2008Osram Opto Semiconductor GmbhSemiconductor substrate for optoelectronic components and method for fabricating it
US7459373Nov 15, 2005Dec 2, 2008Verticle, Inc.Method for fabricating and separating semiconductor devices
US7462881Aug 30, 2007Dec 9, 2008Lg Electronics Inc.Method of fabricating vertical structure LEDs
US7465592Apr 27, 2005Dec 16, 2008Verticle, Inc.Method of making vertical structure semiconductor devices including forming hard and soft copper layers
US7480322May 15, 2007Jan 20, 2009The Regents Of The University Of CaliforniaElectrically-pumped (Ga,In,Al)N vertical-cavity surface-emitting laser
US7537949Mar 21, 2005May 26, 2009S.O.I.Tec Silicon On Insulator TechnologiesOptoelectronic substrate and methods of making same
US7557381Apr 2, 2007Jul 7, 2009Osram Opto Semiconductor GmbhSemiconductor component
US7563629Sep 23, 2005Jul 21, 2009Lg Electronics Inc.Method of fabricating vertical structure LEDs
US7569865 *Dec 3, 2004Aug 4, 2009Lg Electronics Inc.Method of fabricating vertical structure LEDs
US7576368Sep 5, 2007Aug 18, 2009Lg Electronics Inc.Method of fabricating vertical structure LEDs
US7588952 *Jan 7, 2005Sep 15, 2009Lg Electronics Inc.Method of fabricating vertical structure LEDs
US7606280 *Sep 18, 2007Oct 20, 2009Samsung Electro-Mechanics Co., Ltd.Method of producing multi-wavelength semiconductor laser device
US7606281 *Sep 19, 2007Oct 20, 2009Samsung Electro-Mechanics Co., Ltd.Method of producing multi-wavelength semiconductor laser device
US7659553 *Jun 18, 2007Feb 9, 2010Sanken Electric Co., Ltd.Light-emitting semiconductor device protected against reflector metal migration
US7678591 *Jul 18, 2001Mar 16, 2010Osram GmbhSemicoductor chip and method for production thereof
US7691656Apr 17, 2003Apr 6, 2010Osram GmbhMethod for fabricating a semiconductor component based on GaN
US7691659Feb 25, 2005Apr 6, 2010Osram GmbhRadiation-emitting semiconductor element and method for producing the same
US7772020Aug 2, 2007Aug 10, 2010Lg Electronics Inc.Method of fabricating vertical devices using a metal support film
US7816705Jul 21, 2009Oct 19, 2010Lg Electronics Inc.Method of fabricating vertical structure LEDs
US7821021Nov 7, 2006Oct 26, 2010Lg Electronics Inc.Diode having vertical structure and method of manufacturing the same
US7829359Mar 26, 2008Nov 9, 2010Lattice Power (Jiangxi) CorporationMethod for fabricating highly reflective ohmic contact in light-emitting devices
US7829909May 30, 2007Nov 9, 2010Verticle, Inc.Light emitting diodes and fabrication methods thereof
US7863638Jan 7, 2010Jan 4, 2011Lg Electroncis Inc.Diode having vertical structure and method of manufacturing the same
US7897992Jun 29, 2009Mar 1, 2011Bridgelux, Inc.Low optical loss electrode structures for LEDs
US7915632Jul 21, 2010Mar 29, 2011Lg Electronics Inc.Diode having vertical structure and method of manufacturing the same
US7928465Jun 9, 2010Apr 19, 2011Lg Electronics Inc.Method of fabricating vertical structure LEDs
US7932111 *Feb 23, 2005Apr 26, 2011Cree, Inc.Substrate removal process for high light extraction LEDs
US7939844May 30, 2007May 10, 2011Osram GmbhLight-emitting-diode chip comprising a sequence of GAN-based epitaxial layers which emit radiation and a method for producing the same
US7977133Mar 2, 2006Jul 12, 2011Verticle, Inc.Method of fabricating vertical structure compound semiconductor devices
US8008681Nov 8, 2010Aug 30, 2011Lg Electronics Inc.Diode having vertical structure and method of manufacturing the same
US8022386 *Dec 20, 2005Sep 20, 2011Lg Electronics Inc.Vertical topology light emitting device
US8026524Sep 22, 2010Sep 27, 2011Bridgelux, Inc.LEDs with low optical loss electrode structures
US8030665Apr 30, 2008Oct 4, 2011Nichia CorporationNitride semiconductor device comprising bonded substrate and fabrication method of the same
US8080879 *May 3, 2010Dec 20, 2011Bridgelux, Inc.Electrode structures for LEDs with increased active area
US8106417Oct 8, 2008Jan 31, 2012Lg Electronics Inc.Vertical topology light emitting device using a conductive support structure
US8114690Sep 22, 2010Feb 14, 2012Bridgelux, Inc.Methods of low loss electrode structures for LEDs
US8115221 *Jul 31, 2006Feb 14, 2012Samsung Electronics Co., Ltd.Single crystal nitride semiconductor material on conductive substrate using substrate decomposition prevention layer for nitride light emitting device
US8115226Sep 22, 2010Feb 14, 2012Bridgelux, Inc.Low optical loss electrode structures for LEDs
US8124433Feb 4, 2010Feb 28, 2012Bridgelux, Inc.Low optical loss electrode structures for LEDs
US8129209Dec 29, 2009Mar 6, 2012Osram AgMethod for fabricating a semiconductor component based on GaN
US8138511Dec 7, 2006Mar 20, 2012Osram AgRadiation-emitting semiconductor component and method for producing the semiconductor component
US8294172 *Apr 9, 2002Oct 23, 2012Lg Electronics Inc.Method of fabricating vertical devices using a metal support film
US8368115Aug 2, 2006Feb 5, 2013Lg Electronics Inc.Method of fabricating vertical devices using a metal support film
US8384120Mar 14, 2011Feb 26, 2013Lg Electronics Inc.Method of fabricating vertical structure LEDs
US8404505Jan 6, 2012Mar 26, 2013Samsung Display Co., Ltd.Nitride light emitting device of using substrate decomposition prevention layer and manufacturing method of the same
US8436393Apr 4, 2011May 7, 2013Osram GmbhLight-emitting-diode chip comprising a sequence of GaN-based epitaxial layers which emit radiation and a method for producing the same
US8541290Jun 7, 2011Sep 24, 2013SoitecOptoelectronic substrate and methods of making same
US8564016Nov 15, 2012Oct 22, 2013Lg Electronics Inc.Vertical topology light emitting device
US8581283Jan 28, 2011Nov 12, 2013Advanced Optoelectronic Technology, Inc.Photoelectric device having group III nitride semiconductor
US8592846Aug 24, 2011Nov 26, 2013Lg Electronics Inc.Diode having vertical structure and method of manufacturing the same
US8658446Nov 3, 2008Feb 25, 2014Osram Opto Semiconductors GmbhMethod for fabricating semiconductor substrate for optoelectronic components
US8669587Jul 3, 2013Mar 11, 2014Lg Innotek Co., Ltd.Vertical topology light emitting device
US8809086Feb 16, 2012Aug 19, 2014Osram GmbhMethod for fabricating a semiconductor component based on GaN
US8809898Jan 25, 2013Aug 19, 2014Lg Innotek Co., Ltd.Method of fabricating vertical structure LEDs
DE10245631A1 *Sep 30, 2002Apr 15, 2004Osram Opto Semiconductors GmbhHalbleiterbauelement und Verfahren zur Herstellung
EP1681712A1 *Jan 13, 2005Jul 19, 2006S.O.I. Tec Silicon on Insulator Technologies S.A.Method of producing substrates for optoelectronic applications
WO2006074933A1 *Jan 12, 2006Jul 20, 2006Soitec Silicon On InsulatorMethod of producing a substrate for an optoelectronic application
WO2007133766A2 *May 15, 2007Nov 22, 2007Daniel A CohenElectrically-pumped (ga,in, ai) n vertical-cavity surface-emitting laser
Classifications
U.S. Classification257/103, 257/99, 438/22
International ClassificationH01S5/323, H01S5/183, H01L33/32, H01L33/40
Cooperative ClassificationH01L33/40, H01S5/18341, H01L33/32, H01S5/32341, H01S5/0216, H01S5/0421
European ClassificationH01S5/183L, H01L33/32, H01L33/40
Legal Events
DateCodeEventDescription
Feb 15, 2011ASAssignment
Free format text: CHANGE OF NAME;ASSIGNORS:LUMILEDS LIGHTING U.S., LLC;LUMILEDS LIGHTING, U.S., LLC;LUMILEDS LIGHTING, U.S. LLC;AND OTHERS;REEL/FRAME:025850/0770
Owner name: PHILIPS LUMILEDS LIGHTING COMPANY LLC, CALIFORNIA
Effective date: 20110211
Oct 16, 2000ASAssignment
Owner name: LUMILEDS LIGHTING, U.S., LLC, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:011170/0223
Effective date: 20000906
May 30, 2000ASAssignment
Owner name: AGILENT TECHNOLOGIES INC, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:010977/0540
Effective date: 19991101
Apr 24, 2000ASAssignment
Owner name: HEWLETT-PACKARD COMPANY, COLORADO
Free format text: MERGER;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:010759/0049
Effective date: 19980520
Mar 20, 2000ASAssignment
Owner name: HEWLETT-PACKARD COMPANY, A CORP. OF DELAWARE, COLO
Free format text: CHANGE OF NAME;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:010668/0728
Effective date: 19980520
May 3, 1999ASAssignment
Owner name: HEWLETT-PACKARD COMPANY, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARTER-COMAN, CARRIE;KISH, FRED A., JR.;KRAMES, MICHAEL R.;AND OTHERS;REEL/FRAME:009937/0132;SIGNING DATES FROM 19990310 TO 19990423