Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20010048151 A1
Publication typeApplication
Application numberUS 09/922,103
Publication dateDec 6, 2001
Filing dateAug 6, 2001
Priority dateMay 30, 1998
Also published asDE19845316A1, DE19845316C2, US6291259, US6407448
Publication number09922103, 922103, US 2001/0048151 A1, US 2001/048151 A1, US 20010048151 A1, US 20010048151A1, US 2001048151 A1, US 2001048151A1, US-A1-20010048151, US-A1-2001048151, US2001/0048151A1, US2001/048151A1, US20010048151 A1, US20010048151A1, US2001048151 A1, US2001048151A1
InventorsDong Chun
Original AssigneeHyundai Electronics Industries Co., Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Stackable ball grid array semiconductor package and fabrication method thereof
US 20010048151 A1
Abstract
A stackable Ball Grid Array (BGA) semiconductor chip package and a fabrication method thereof increases reliability and mount density of a semiconductor package. The stackable BGA semiconductor chip package includes a supporting member that includes a supporting plate and a supporting frame formed on edges of the supporting plate. Conductive patterns are formed in and extend through the supporting member. First metal traces are formed on a bottom of the supporting plate and the first metal traces are connected to first ends of the conductive patterns in the supporting member. Second metal traces are attached to an upper surface of a semiconductor chip, and the semiconductor chip is attached to the supporting member. The second metal traces are connected to bond pads of the chip, and to upper ends of the conductive patterns in the supporting member. A plurality of conductive balls are then attached to exposed portions of the first and/or the second metal traces.
Images(5)
Previous page
Next page
Claims(26)
What is claimed is:
1. A stackable chip package, comprising:
a supporting member having a plurality of conductive patterns formed therein;
a plurality of first conductive traces formed on a first surface of the supporting member, wherein respective ones first conductive traces are electrically coupled to corresponding ones of the conductive patterns;
a chip having chip pads, wherein the chip is attached to a second surface of the supporting member; and
a plurality of second conductive traces, wherein portions of the second conductive traces are arranged over the chip, and wherein respective ones of the second conductive traces are electrically coupled to corresponding ones of the chip pads and corresponding ones of the conductive patterns.
2. The stackable chip package of
claim 1
, wherein first ends of the second conductive traces are arranged over the chip, wherein middle portions of respective ones of the second conductive traces are electrically coupled to corresponding chip pads, and wherein second ends of respective ones of the second conductive traces are electrically coupled to corresponding ones of the conductive patterns.
3. The stackable chip package of
claim 1
, further comprising a solder resist covering portions of the plurality of first conductive traces, wherein the solder resist leaves connecting portions of the first conductive traces exposed.
4. The stackable chip package of
claim 3
, further comprising a plurality of conductive members, wherein respective ones of the conductive members are electrically coupled to corresponding ones of the connecting portions of the first conductive traces, and wherein the plurality of conductive members act as leads of the chip package.
5. The stackable chip package of
claim 1
, further comprising a solder resist covering portions of the plurality of second conductive traces, wherein the solder resist leaves connecting portions of the second conductive traces exposed.
6. The stackable chip package of
claim 5
, further comprising a plurality of conductive members, wherein respective ones of the conductive members are electrically coupled to corresponding ones of the connecting portions of the second conductive traces, and wherein the plurality of conductive members act as leads of the chip package.
7. The stackable chip package of
claim 6
, wherein the plurality of conductive members are arranged in an array over the chip.
8. The stackable chip package of
claim 1
, further comprising a molding resin that covers portions of the second conductive traces, and portions of the chip.
9. The stackable chip package of
claim 1
, wherein the supporting member comprises a supporting plate and a supporting frame formed at peripheral portions of the supporting plate.
10. The stackable chip package of
claim 9
, wherein the plurality of conductive patterns are formed in the supporting frame.
11. The stackable chip package of
claim 1
, further comprising an elastomer that attaches the plurality of second conductive traces to the chip.
12. The stackable chip package of
claim 11
, wherein an adhesive is interposed between the second conductive traces and the elastomer.
13. The stackable chip package of
claim 1
, wherein the plurality of first conductive traces are arranged on the first surface of the supporting member in substantially the same pattern as the plurality of second conductive traces are arranged over the chip.
14. A stackable chip package, comprising:
a supporting member having a plurality of conductive patterns formed therein;
a chip having chip pads, wherein the chip is attached to a upper surface of the supporting member;
a plurality of first conductive traces, wherein a first end of each first conductive trace is electrically coupled to a corresponding conductive pattern and a second end of each first conductive trace terminates below said chip;
a plurality of second conductive traces, wherein a first end of each second conductive trace terminates above said chip, a middle portion of each second conductive trace is electrically coupled to a corresponding chip pad, and a second end of each second conductive trace is electrically coupled to a corresponding conductive pattern.
15. The stackable chip package of
claim 14
, wherein said plurality of first conductive traces is formed on a lower surface of said supporting member.
16. The stackable chip package of
claim 14
, further comprising a solder resist covering portions of the plurality of first conductive traces, wherein the solder resist leaves connecting portions of the first conductive traces exposed.
17. The stackable chip package of
claim 16
, further comprising a plurality of conductive members, wherein respective ones of the conductive members are electrically coupled to corresponding ones of the connecting portions of the first conductive traces, and wherein the plurality of conductive members act as leads of the chip package.
18. The stackable chip package of
claim 14
, further comprising a solder resist covering portions of the plurality of second conductive traces, wherein the solder resist leaves connecting portions of the second conductive traces exposed.
19. The stackable chip package of
claim 18
, further comprising a plurality of conductive members, wherein respective ones of the conductive members are electrically coupled to corresponding ones of the connecting portions of the second conductive traces, and wherein the plurality of conductive members act as leads of the chip package.
20. The stackable chip package of
claim 19
, wherein the plurality of conductive members are arranged in an array over the chip.
21. The stackable chip package of
claim 14
, further comprising a molding resin that covers portions of the second conductive traces, and portions of the chip.
22. The stackable chip package of
claim 14
, wherein the supporting member comprises a supporting plate and supporting frame formed at peripheral portions of the supporting plate.
23. The stackable chip package of
claim 22
, wherein the plurality of conductive patterns are formed in the supporting frame.
24. The stackable chip package of
claim 14
, further comprising an elastomer that attaches the plurality of second conductive traces to the chip.
25. The stackable chip package of
claim 24
, wherein an adhesive is interposed between the second conductive traces and the elastomer.
26. The stackable chip package of
claim 14
, wherein the plurality of first conductive traces are arranged on the lower surface of the supporting member in substantially the same pattern as the plurality of second conductive traces are arranged over the chip.
Description
  • [0001]
    This application is a divisional of application Ser. No. 09/239,152, filed Jan. 28, 1999.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates to a stackable ball grid array (BGA) semiconductor package and a fabrication method thereof.
  • [0004]
    2. Background of the Related Art
  • [0005]
    Currently, there is an effort to produce a highly integrated semiconductor package having a large number of exterior connections. One example is a BGA semiconductor package in which a plurality of solder balls which are attached to a substrate are used as external terminals. In these BGA packages, a plurality of solder balls are attached to an upper or a lower surface of a substrate by the application of heat. The solder balls, which act as external terminals, are not easily bent or deformed by inpacts with solid objects.
  • [0006]
    [0006]FIG. 1 shows a structure of a background art BGA semiconductor package. As seen in FIG. 1, an elastomer 2 is attached to a center portion of an upper surface of a semiconductor chip 1, and a high strength adhesive resin 3 is formed on the elastomer 2. A plurality of metal traces, which transmit electric signals, are formed on the adhesive resin 3. First ends 4 a of the metal traces extend across a top surface of the adhesive resin 3, and second ends 4 b of each of the metal 5 traces are connected to chip pads 6 formed on a marginal portion of the upper surface of the semiconductor chip 1. A solder resist 5 covers the metal traces 4 a and the adhesive resin 3, except for exposed portions of the first ends 4 a of the metal traces, onto which solder balls will be attached. An encapsulant 7, such as a molding resin, covers the upper surface of the semiconductor chip 1, and the portions of the metal 10 traces that are not covered with the solder resist 5. Conductive balls 8 are then attached to the exposed portions of the metal traces to serve as output terminals.
  • [0007]
    Since the conductive balls are exposed on only one side of the package (in FIG. 1, the conductive balls are exposed at the upper surface thereof), it is impossible to fabricate a stackable package of high mount density.
  • SUMMARY OF THE INVENTION
  • [0008]
    It is an object of the present invention to provide a stackable BGA semiconductor package, and a fabrication method thereof, that maintain advantages of the conventional BGA package.
  • [0009]
    A stackable chip package embodying the invention includes a supporting member having a plurality of conductive patterns formed therein. A plurality of first conductive traces are formed on a surface of the supporting member, and respective ones of the first conductive traces are coupled to corresponding ones of the conductive patterns. A chip having chip pads is attached to a second surface of the supporting member, and a plurality of second conductive traces are arranged over the chip. Respective ones of the second conductive traces are electrically coupled to corresponding chip pads on the chip, and corresponding ones of the conductive patterns in the supporting member. An embodiment of the invention could also include a solder resist that covers selected portions of the first and second conductive traces. The solder resist would leave connecting portions of the first and second conductive traces exposed. Exterior leads, in the form of conductive balls, could then be connected to the connecting portions of the first and second conductive traces. A device embodying the invention could also include a molding resin that encapsulates portions of the conductive traces and the chip. The supporting member could include a supporting plate and a supporting frame that surrounds the supporting plate.
  • [0010]
    In a method embodying the invention, a supporting member having a plurality of conductive patterns is first formed. A plurality of first conductive traces are then formed on a first surface of the supporting member such that the conductive traces are electrically coupled to corresponding ones of the conductive patterns in the supporting member. A plurality of second traces are then attached to a surface of a chip, and the chip is attached to a second surface of the supporting member. Respective ones of the second conductive traces are attached to corresponding chip pads on the chip, and to corresponding ones of the conductive patterns in the supporting member. A method embodying the invention could also include the step of forming layers of solder resist over the first and second conductive traces, and removing portions of the solder resist to expose connecting portions of the first and second conductive traces. A method embodying the invention could also include attaching leads, in the form of conductive balls, to respective ones of the exposed connecting portions of the first and second conductive traces.
  • [0011]
    Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objects and advantages of the invention may be realized and attained as particularly pointed out in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0012]
    The accompanying drawings illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawing figures, like elements are identified with like reference numerals, and:
  • [0013]
    [0013]FIG. 1 is a vertical cross-sectional diagram of a background art BGA semiconductor package;
  • [0014]
    [0014]FIG. 2 is a vertical cross-sectional diagram of a stackable BGA semiconductor package according to a first embodiment of the present invention;
  • [0015]
    [0015]FIG. 3 is a vertical cross-sectional diagram of a stackable BGA semiconductor package according to a second embodiment of the present invention;
  • [0016]
    [0016]FIG. 4 is a vertical cross-sectional diagram of stacked BGA semiconductor packages according to the present invention; and
  • [0017]
    [0017]FIGS. 5A through 5H illustrate steps of a method of manufacturing a stackable BGA semiconductor package according to the present invention.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • [0018]
    [0018]FIG. 2 illustrates a stackable BGA semiconductor package according to a first embodiment of the present invention. As shown in FIG. 2, a supporting member 21 includes a supporting plate 23 surrounded by a supporting frame 25 having a predetermined height. Metal traces 24 a are attached to a lower surface of the supporting plate 23. In addition, a solder resist 27 covers portions of the metal traces 24 a and the supporting plate 23 to prevent short circuiting between solder balls and the metal traces, and to protect the metal traces 24 a from outside impacts. The solder resist 27 is partially removed to expose portions of the metal traces 24 a. The exposed portions of the metal traces 24 a act as connecting portions 24 b. The connecting portions 24 b are used to electrically connect the metal traces 24 a to conductive balls that act as external terminals.
  • [0019]
    Metal patterns 26 are formed between upper and lower surfaces of the supporting frame 25. One end of each of the metal patterns 26 is connected with an end of each of the metal traces 24 a. The other end of each of the metal patterns 26 is exposed at the upper surface of the supporting frame 25.
  • [0020]
    A semiconductor chip 1 is attached by an adhesive onto the supporting plate 23 of the supporting member 21. An elastomer 2 is attached to a center portion of the upper surface of the semiconductor chip 1, and a high strength adhesive resin 3 is formed on the elastomer 2. Metal traces which transmit electric signals are attached onto the adhesive resin 3. First ends 4 a of the metal traces extend over the top surface of the adhesive resin. Middle portions 4 b of the metal traces are connected with chip pads 6 formed on a marginal portion of the upper surface of the semiconductor chip 1. Second ends 4 c of the metal traces are connected with upper surfaces of the metal patterns 26 formed in the supporting frame 25.
  • [0021]
    A solder resist 5 covers the upper surface of the adhesive resin 3 and portions of the first ends 4 a of the metal traces. Conductive balls 8 a are attached to the exposed portions of the first ends 4 a of the metal traces. An encapsulant 28, such as a molding resin, covers exposed portions of the upper surface of the semiconductor chip 1, the metal traces, and the upper portion of the supporting frame 25.
  • [0022]
    Electrical signals which are output by the semiconductor chip 1 through the chip pads 6 can be externally transmitted over the conductive balls 8 a connected with the first ends 4 a of the metal traces. The electrical signals can also be externally transmitted through the connecting portions 24 b on the lower part of the supporting member 21, which are connected to the second ends 4 c of the metal traces through the metal patterns 26.
  • [0023]
    [0023]FIG. 3 is a vertical cross-sectional diagram of a stackable BGA semiconductor package according to a second embodiment of the present invention. The second embodiment is the same as the embodiment shown in FIG. 2, except that conductive balls 8 b are also attached to the exposed portions 24 b, of the metal traces 24 a formed on the lower part of the supporting member 21.
  • [0024]
    With each of the embodiments shown in FIGS. 2 and 3, it becomes possible to stack a plurality of BGA semiconductor packages over a single mounting position on a printed circuit board. Thus, the density of the semiconductor devices on a circuit board can be increased by using BGA packages embodying the invention.
  • [0025]
    [0025]FIG. 4 illustrates stacked BGA semiconductor packages using the stackable BGA semiconductor package according to the first embodiment of the present invention shown in FIG. 2. As shown therein, a plurality of stackable BGA semiconductor packages 100, 110, 120, 130 are stacked. Conductive balls 108 a, which are formed on an upper surface of the first package 100, connect the first ends 4 a of the metal traces on the first package 100 to the connecting portions 24 b formed on a lower surface of the second BGA semiconductor package 110. Conductive balls 118 a formed on an upper surface of the second package 110 connect the first ends 4 a of the metal traces on the second package 110 to the connecting portions 24 b on a lower surface of the third BGA semiconductor package 120. Conductive balls 128 a formed on an upper surface of the third package 120 connect the first ends 4 a of the metal traces on the third package 120 to the connecting portions 24 b on a lower surface of the fourth package 130.
  • [0026]
    [0026]FIG. 4 illustrates four stacked BGA packages, but the actual number of stacked BGA packages may be variously adjusted by a user according to his requirements. Conductive balls 138 a formed on the fourth package 130 can serve as external terminals which transmit signals from all the BGA packages to external circuits. For instance, the conductive balls 138 a could be connected to pads of a printed circuit board.
  • [0027]
    A method of fabricating a stackable BGA semiconductor chip package according to the present invention will now be described with reference to FIGS. 5A-5H.
  • [0028]
    In FIG. 5A, first the supporting member 21 is provided. The supporting member 21, includes the supporting plate 23 and the supporting frame 25. Metal traces 24 a are formed on a lower surface of the supporting plate 23. The solder resist 27 covers portions of the metal traces 24 a, but leaves the connecting portions 24 b exposed. The metal patterns 26 formed in the supporting frame 25, are exposed at the upper surface of the supporting frame 25, and are connected with the metal traces 24 a on the bottom of the supporting plate 23.
  • [0029]
    As shown in FIG. 5B, the semiconductor chip 1, which has chip pads 6 on a marginal portion of an upper surface thereof, is connected to a lower surface of an elastomer 2. A high strength adhesive 3 is attached to an upper surface of the elastomer 2. The metal traces are then attached to the upper surface of the adhesive 3. First end portions of each of the metal traces are attached to the adhesive 3, and the other end portions thereof extend from outer sides of the adhesive 3. Next, a layer of the solder resist 5 is formed on the metal traces and on the adhesive resin 3.
  • [0030]
    Next, as shown in FIG. 5C, the semiconductor chip assembly shown in FIG. 5B is attached to the supporting member 21 shown in FIG. 5A.
  • [0031]
    In FIG. 5D, using a bond tool 30, the chip pads 6 formed on the semiconductor chip 1 are connected to the middle portions 4 b of the metal traces by pressing down the middle portions 4 b.
  • [0032]
    As shown in FIG. 5E, second ends 4 c of the metal traces are cut off by the bond tool 30, and the second ends 4 c are connected with upper surfaces of the metal patterns 26 in the supporting frame 25.
  • [0033]
    As shown in FIG. 5F and 5G, a molding resin 28 is molded over the package so that it covers the exposed portions of the metal traces and the exposed portions of the chip 1 and chip pads 6. Next, portions of the solder resist 5 formed on the metal traces is removed to expose portions of the first ends 4 a of the metal traces that will be connected to conductive balls.
  • [0034]
    As shown in FIG. 5G, the conductive balls 8 a are then placed on the exposed portions of the first ends 4 a of the metal traces, and a reflow process is performed to attach the conductive balls 8 a to the metal traces.
  • [0035]
    One BGA package embodying the invention can be attached to a second BGA package embodying the invention by stacking the second package on the first package so that conductive balls on the first package align with corresponding connecting portions on a bottom surface of the second package, and then performing a reflow process to connect the two packages.
  • [0036]
    The foregoing embodiments are merely exemplary and are not to be construed as limiting the present invention. The present teaching can be readily applied to other types of apparatuses. The description of the present invention is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. For example, although metal traces and a conductive region in a semiconductor may not be structural equivalents in that metal traces use metal as an electrical conductor, whereas the conductive region in a semiconductor relies on charge carriers in the material to provide electrical conductivity, in the environment of conducting electricity, metal traces and a conductive region of a semiconductor may be equivalent structures.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6624507 *Aug 3, 2001Sep 23, 2003National Semiconductor CorporationMiniature semiconductor package for opto-electronic devices
US6642613 *Sep 4, 2001Nov 4, 2003National Semiconductor CorporationTechniques for joining an opto-electronic module to a semiconductor package
US6717253 *Nov 12, 2002Apr 6, 2004Advanced Semiconductor Engineering, Inc.Assembly package with stacked dies and signal transmission plate
US6838317Aug 29, 2003Jan 4, 2005National Semiconductor CorporationTechniques for joining an opto-electronic module to a semiconductor package
US6858468Apr 11, 2003Feb 22, 2005National Semiconductor CorporationTechniques for joining an opto-electronic module to a semiconductor package
US6916121Jun 6, 2002Jul 12, 2005National Semiconductor CorporationOptical sub-assembly for optoelectronic modules
US6973225Jun 6, 2002Dec 6, 2005National Semiconductor CorporationTechniques for attaching rotated photonic devices to an optical sub-assembly in an optoelectronic package
US6985668Jul 15, 2003Jan 10, 2006National Semiconductor CorporationMulti-purpose optical light pipe
US7019397 *May 11, 2001Mar 28, 2006Oki Electric Industry Co., Ltd.Semiconductor device, manufacturing method of semiconductor device, stack type semiconductor device, and manufacturing method of stack type semiconductor device
US7023705Jun 6, 2002Apr 4, 2006National Semiconductor CorporationCeramic optical sub-assembly for optoelectronic modules
US7086788Mar 30, 2005Aug 8, 2006National Semiconductor CorporationOptical sub-assembly for opto-electronic modules
US7156562Jul 15, 2003Jan 2, 2007National Semiconductor CorporationOpto-electronic module form factor having adjustable optical plane height
US7199440Dec 30, 2004Apr 3, 2007National Semiconductor CorporationTechniques for joining an opto-electronic module to a semiconductor package
US7247942Dec 15, 2004Jul 24, 2007National Semiconductor CorporationTechniques for joining an opto-electronic module to a semiconductor package
US7269027Jan 31, 2006Sep 11, 2007National Semiconductor CorporationCeramic optical sub-assembly for optoelectronic modules
US7288841Jun 12, 2006Oct 30, 2007Shinko Electric Industries, Co., Ltd.Laminated semiconductor package
US7405138Sep 27, 2005Jul 29, 2008Oki Electric Industry Co., Ltd.Manufacturing method of stack-type semiconductor device
US8022527 *Oct 20, 2010Sep 20, 2011Tessera, Inc.Edge connect wafer level stacking
US8043895Aug 7, 2008Oct 25, 2011Tessera, Inc.Method of fabricating stacked assembly including plurality of stacked microelectronic elements
US8076788Dec 13, 2011Tessera, Inc.Off-chip vias in stacked chips
US8101459Apr 29, 2004Jan 24, 2012Micron Technology, Inc.Methods for assembling semiconductor devices in stacked arrangements by positioning spacers therebetween
US8253229Aug 28, 2012Shinko Electric Industries Co., Ltd.Semiconductor package and stacked layer type semiconductor package
US8426957Apr 23, 2013Tessera, Inc.Edge connect wafer level stacking
US8431435Apr 30, 2013Tessera, Inc.Edge connect wafer level stacking
US8461672Jul 25, 2008Jun 11, 2013Tessera, Inc.Reconstituted wafer stack packaging with after-applied pad extensions
US8461673Jun 11, 2013Tessera, Inc.Edge connect wafer level stacking
US8466542Mar 12, 2010Jun 18, 2013Tessera, Inc.Stacked microelectronic assemblies having vias extending through bond pads
US8476774Dec 12, 2011Jul 2, 2013Tessera, Inc.Off-chip VIAS in stacked chips
US8513789Feb 9, 2007Aug 20, 2013Tessera, Inc.Edge connect wafer level stacking with leads extending along edges
US8513794Oct 17, 2011Aug 20, 2013Tessera, Inc.Stacked assembly including plurality of stacked microelectronic elements
US8551815Aug 1, 2008Oct 8, 2013Tessera, Inc.Stack packages using reconstituted wafers
US8623704 *Sep 11, 2006Jan 7, 2014Chippac, Inc.Adhesive/spacer island structure for multiple die package
US8637991 *Nov 14, 2011Jan 28, 2014Tessera, Inc.Microelectronic package with terminals on dielectric mass
US8647927Jan 27, 2011Feb 11, 2014Thales Holdings Uk PlcMicrowave circuit package
US8680662Jun 15, 2009Mar 25, 2014Tessera, Inc.Wafer level edge stacking
US8697457Jun 21, 2012Apr 15, 2014Bae Systems Information And Electronic Systems Integration Inc.Devices and methods for stacking individually tested devices to form multi-chip electronic modules
US8883562Jun 6, 2013Nov 11, 2014Tessera, Inc.Reconstituted wafer stack packaging with after-applied pad extensions
US8999810Aug 19, 2013Apr 7, 2015Tessera, Inc.Method of making a stacked microelectronic package
US9041227Mar 12, 2013May 26, 2015Invensas CorporationPackage-on-package assembly with wire bond vias
US9048234Jun 11, 2013Jun 2, 2015Tessera, Inc.Off-chip vias in stacked chips
US9095074Oct 17, 2014Jul 28, 2015Invensas CorporationStructure for microelectronic packaging with bond elements to encapsulation surface
US9105483Feb 24, 2012Aug 11, 2015Invensas CorporationPackage-on-package assembly with wire bond vias
US9123664Dec 3, 2014Sep 1, 2015Tessera, Inc.Stackable molded microelectronic packages
US9153562Dec 18, 2014Oct 6, 2015Tessera, Inc.Stacked packaging improvements
US9159708Jul 19, 2010Oct 13, 2015Tessera, Inc.Stackable molded microelectronic packages with area array unit connectors
US9218988Apr 1, 2014Dec 22, 2015Tessera, Inc.Microelectronic packages and methods therefor
US9224717Dec 9, 2014Dec 29, 2015Tessera, Inc.Package-on-package assembly with wire bonds to encapsulation surface
US9252122Aug 14, 2013Feb 2, 2016Invensas CorporationPackage-on-package assembly with wire bond vias
US9324681Sep 26, 2014Apr 26, 2016Tessera, Inc.Pin attachment
US9349706Feb 14, 2013May 24, 2016Invensas CorporationMethod for package-on-package assembly with wire bonds to encapsulation surface
US9378967Apr 6, 2015Jun 28, 2016Tessera, Inc.Method of making a stacked microelectronic package
US9391008Jul 31, 2012Jul 12, 2016Invensas CorporationReconstituted wafer-level package DRAM
US9412714May 30, 2014Aug 9, 2016Invensas CorporationWire bond support structure and microelectronic package including wire bonds therefrom
US20030026556 *Jun 6, 2002Feb 6, 2003National Semiconductor CorporationOptical sub-assembly for optoelectronic modules
US20030030143 *Aug 12, 2002Feb 13, 2003Ingo WennemuthElectronic component with stacked electronic elements and method for fabricating an electronic component
US20030057535 *Jun 6, 2002Mar 27, 2003National Semiconductor CorporationTechniques for attaching rotated photonic devices to an optical sub-assembly in an optoelectronic package
US20030141583 *Nov 12, 2002Jul 31, 2003Yang Chaur-ChinStacked package
US20030189214 *Apr 11, 2003Oct 9, 2003National Semiconductor Corporation, A Delaware Corp.Techniques for joining an opto-electronic module to a semiconductor package
US20040048417 *Aug 29, 2003Mar 11, 2004National Semiconductor Corporation, A Delaware Corp.Techniques for joining an opto-electronic module to a semiconductor package
US20050013560 *Jul 15, 2003Jan 20, 2005National Semiconductor CorporationOpto-electronic module form factor having adjustable optical plane height
US20050013581 *Jul 15, 2003Jan 20, 2005National Semiconductor CorporationMulti-purpose optical light pipe
US20050100294 *Dec 15, 2004May 12, 2005National Semiconductor CorporationTechniques for joining an opto-electronic module to a semiconductor package
US20050117835 *Dec 30, 2004Jun 2, 2005National Semiconductor Corporation, A Delaware Corp.Techniques for joining an opto-electronic module to a semiconductor package
US20060046436 *Sep 27, 2005Mar 2, 2006Shinji OhuchiManufacturing method of stack-type semiconductor device
US20060140534 *Jan 31, 2006Jun 29, 2006National Semiconductor CorporationCeramic optical sub-assembly for optoelectronic modules
US20060278968 *Jun 12, 2006Dec 14, 2006Shinko Electric Industries Co., Ltd.Laminated semiconductor package
US20070015314 *Sep 11, 2006Jan 18, 2007Chippac, IncAdhesive/Spacer Island Structure for Multiple Die Package
US20080083976 *Feb 9, 2007Apr 10, 2008Tessera, Inc.Edge connect wafer level stacking
US20080203552 *Mar 8, 2005Aug 28, 2008Unisemicon Co., Ltd.Stacked Package and Method of Fabricating the Same
US20080290491 *Oct 23, 2007Nov 27, 2008Shinko Electric Industries Co., Ltd.Semiconductor package and stacked layer type semiconductor package
US20090039528 *Aug 7, 2008Feb 12, 2009Tessera, Inc.Wafer level stacked packages with individual chip selection
US20090316378 *Dec 24, 2009Tessera Research LlcWafer level edge stacking
US20100230795 *Sep 16, 2010Tessera Technologies Hungary Kft.Stacked microelectronic assemblies having vias extending through bond pads
US20110006432 *Jul 25, 2008Jan 13, 2011Tessera, Inc.Reconstituted wafer stack packaging with after-applied pad extensions
US20110031629 *Oct 20, 2010Feb 10, 2011Tessera, Inc.Edge connect wafer level stacking
US20110033979 *Oct 20, 2010Feb 10, 2011Tessera, Inc.Edge connect wafer level stacking
US20110049696 *Nov 8, 2010Mar 3, 2011Tessera, Inc.Off-chip vias in stacked chips
US20110187007 *Aug 4, 2011Tessera, Inc.Edge connect wafer level stacking
US20110210431 *Sep 1, 2011Thales Holdings Uk PlcMicrowave circuit package
US20120119380 *Nov 14, 2011May 17, 2012Tessera, Inc.Microelectronic package with terminals on dielectric mass
EP1734581A1 *Jun 13, 2006Dec 20, 2006Shinko Electric Industries Co., Ltd.Laminated semiconductor package
EP1916713A2 *Oct 29, 2007Apr 30, 2008Shinko Electric Industries Co., Ltd.Semiconductor package and stacked layer type semiconductor package formed with it
EP1916713A3 *Oct 29, 2007Jan 27, 2010Shinko Electric Industries Co., Ltd.Semiconductor package and stacked layer type semiconductor package formed with it
Classifications
U.S. Classification257/686, 257/E23.19, 257/738, 257/E23.124, 257/778, 257/E25.023, 257/777
International ClassificationH01L25/11, H01L23/12, H01L25/18, H01L23/50, H01L23/055, H01L25/10, H01L23/31
Cooperative ClassificationH01L2924/181, H01L24/50, H01L2224/73219, H01L23/3107, H01L25/105, H01L23/055, H01L2225/1058
European ClassificationH01L25/10J, H01L23/055, H01L23/31H
Legal Events
DateCodeEventDescription
Nov 28, 2005FPAYFee payment
Year of fee payment: 4
Nov 18, 2009FPAYFee payment
Year of fee payment: 8
Aug 30, 2011ASAssignment
Owner name: HYNIX SEMICONDUCTOR INC., KOREA, REPUBLIC OF
Free format text: CHANGE OF NAME;ASSIGNOR:HYUNDAI ELECTRONICS INDUSTRIES CO., LTD.;REEL/FRAME:026828/0688
Effective date: 20010329
Nov 16, 2011ASAssignment
Owner name: 658868 N.B. INC., CANADA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HYNIX SEMICONDUCTOR INC.;REEL/FRAME:027234/0549
Effective date: 20110822
Jan 10, 2012ASAssignment
Owner name: ROYAL BANK OF CANADA, CANADA
Free format text: U.S. INTELLECTUAL PROPERTY SECURITY AGREEMENT (FOR NON-U.S. GRANTORS) - SHORT FORM;ASSIGNORS:658276N.B. LTD.;658868 N.B. INC.;MOSAID TECHNOLOGIES INCORPORATED;REEL/FRAME:027512/0196
Effective date: 20111223
Dec 5, 2013FPAYFee payment
Year of fee payment: 12
Mar 13, 2014ASAssignment
Owner name: CONVERSANT IP N.B. 868 INC., CANADA
Free format text: CHANGE OF NAME;ASSIGNOR:658868 N.B. INC.;REEL/FRAME:032439/0547
Effective date: 20140101
Aug 7, 2014ASAssignment
Owner name: CONVERSANT IP N.B. 868 INC., CANADA
Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344
Effective date: 20140611
Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.,
Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344
Effective date: 20140611
Owner name: CONVERSANT IP N.B. 276 INC., CANADA
Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:033484/0344
Effective date: 20140611
Sep 9, 2014ASAssignment
Owner name: CPPIB CREDIT INVESTMENTS INC., AS LENDER, CANADA
Free format text: U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:CONVERSANT IP N.B. 868 INC.;REEL/FRAME:033707/0001
Effective date: 20140611
Owner name: ROYAL BANK OF CANADA, AS LENDER, CANADA
Free format text: U.S. PATENT SECURITY AGREEMENT (FOR NON-U.S. GRANTORS);ASSIGNOR:CONVERSANT IP N.B. 868 INC.;REEL/FRAME:033707/0001
Effective date: 20140611
Jul 22, 2015ASAssignment
Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONVERSANT IP N.B. 868 INC.;REEL/FRAME:036159/0386
Effective date: 20150514