US20010049138A1 - Method for chemically acellularizing a biological tissue sample - Google Patents

Method for chemically acellularizing a biological tissue sample Download PDF

Info

Publication number
US20010049138A1
US20010049138A1 US09/896,651 US89665101A US2001049138A1 US 20010049138 A1 US20010049138 A1 US 20010049138A1 US 89665101 A US89665101 A US 89665101A US 2001049138 A1 US2001049138 A1 US 2001049138A1
Authority
US
United States
Prior art keywords
solution
tissue sample
nerve
detergent
acellularized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/896,651
Other versions
US6448076B2 (en
Inventor
Robert Dennis
William Kuzon
Paul Cederna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Michigan
Original Assignee
University of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/153,721 external-priority patent/US6207451B1/en
Application filed by University of Michigan filed Critical University of Michigan
Priority to US09/896,651 priority Critical patent/US6448076B2/en
Assigned to REGENTS OF THE UNIVERSITY OF MICHIGAN, THE reassignment REGENTS OF THE UNIVERSITY OF MICHIGAN, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENNIS, ROBERT G., CEDERNA, PAUL S., KUZON, WILLIAM M., JR.
Publication of US20010049138A1 publication Critical patent/US20010049138A1/en
Application granted granted Critical
Publication of US6448076B2 publication Critical patent/US6448076B2/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITY OF MICHIGAN
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
    • C12N2533/92Amnion; Decellularised dermis or mucosa

Definitions

  • This invention relates to the field of tissue engineering, and more particularly to a method for chemically acellularizing a biological tissue sample, such as a peripheral nerve.
  • Peripheral nerve injuries are exceedingly common, occurring clinically after injury or surgical resection.
  • the resulting nerve gaps can produce significant disability and thus require surgical repair.
  • Primary end-to-end nerve coaptation is the procedure of choice for peripheral nerve reconstruction, but in many circumstances the gap between the proximal and distal stump is too large to allow for a tension-free repair. Under these circumstances, surgeons must employ alternate repair techniques, such as nerve grafting.
  • Peripheral nerve autografts are the gold standard for nerve grafting procedures and provide the optimal degree of reinnervation when primary end-to-end neurorrhaphy is not an option.
  • the functional deficits at the donor site following nerve graft harvest as well as the limited amounts of donor nerve tissue available restrict the use of autografts in many clinical situations.
  • TLN termino-lateral neurorrhaphy
  • TLN autogenous vein and plastic chamber conduits
  • TLN entails suturing the distal stump of a severed nerve to the side of an intact adjacent nerve which is not always available.
  • Autogenous vein grafts and plastic chambers are a plentiful supply of nerve regeneration conduits, yet neither provides the trophic support (nerve growth factor, etc.) necessary for axonal regeneration across nerve gaps greater than 2 cm, leading to poor functional outcomes.
  • Peripheral nerve allografts provide another alternative for nerve repair. Although allografts overcome the problems associated with the previously mentioned repair methods, nerve allograft rejection becomes a major obstacle. Until long term tolerance to nerve allografts can be induced, this technique requires long term systemic immunosuppression and as a result has limited clinical applications.
  • Acellular nerve grafts produced by a variety of techniques, have emerged as a possible alternative to overcome the immunogenicity of allografts.
  • Previous attempts to create acellular nerve tissue have involved several methods, namely irradiation, fixation, heat treatment, or freezing, prior to grafting in an effort to kill or remove the cellular elements of the nerve allograft and reduce immunogenicity.
  • Peripheral nerve grafts that have been acellularized by such methods have been shown to support axonal regeneration across short distances and to elicit a reduced immune response compared with standard peripheral nerve allografts.
  • acellularization methods cause disruption of the cellular elements of the nerve and may concurrently disrupt the endoneurial tubes, thus reducing the potential for axonal elongation through the nerve graft.
  • cellular debris remaining after the mechanical disruption process may also elicit an immune response which can adversely affect Schwann cell migration and axonal elongation.
  • a method for chemically acellularizing a biological tissue sample such as a peripheral nerve.
  • the method includes disrupting the cell membranes of the biological tissue sample, and then denaturing intracellular proteins within the cells of the tissue sample and removing the denatured proteins from the cells while preserving the extracellular matrix to produce an acellularized tissue construct without using mechanical agents.
  • the tissue sample is harvested from a suitable donor, and then submersed in a balanced salt solution, such as Dulbecco's phosphate buffered saline.
  • a balanced salt solution such as Dulbecco's phosphate buffered saline.
  • the disrupting of cell membranes then includes submersing the biological tissue sample in a solution including glycerol, whereas denaturing and removing intracellular proteins includes submersing the biological tissue in at least one detergent solution.
  • the one or more detergent solutions can comprise ionic detergent solutions and nonionic detergent solutions.
  • the tissue sample is submersed in a succession of ionic and nonionic solutions, where the ionic detergent solutions can include sodium deoxycholate or sodium dodecyl sulfate, and the nonionic detergent solutions can include TRITON® X-100.
  • the biological tissue sample is preferably rinsed with distilled water between each solution change. The resulting acellularized tissue construct can then be stored in a physiologic saline solution, and later implanted in a suitable recipient.
  • FIGS. 1 a and 1 b are electron micrographs of a peripheral nerve prior to and following acellularization, respectively, according to the method of the present invention
  • FIG. 2 is a toluidine blue stain of a distal end of an acellular nerve graft according to the present invention
  • FIG. 4 is a light micrograph of an acellularized peripheral nerve construct according to the present invention following transplantation across a major histocompatibility barrier.
  • the acellularization method of the present invention is a chemical, rather than a mechanical, process that generally involves submersion of peripheral nerve tissue in a glycerol solution followed by a series of detergents and other reagents to disrupt and digest the cellular elements of the nerve.
  • the removal of cellular elements by this method does not disrupt the endoneurial matrix which is necessary to support and guide axonal regeneration. Therefore, the immunogenicity of the peripheral nerve construct of the present invention is eliminated by the removal of cellular elements, but the ability to support nerve regeneration is maintained.
  • peripheral nerve tissue from any mammal, including human beings, could be similarly acellularized and grafted using the method described herein.
  • 100 mm culture dishes are first prepared by mixing and pouring approximately 20 ml of SYLGARD® (Dow Coming, Midland, Mich.) into the dishes, wherein the SYLGARD® is allowed to air dry and harden for at least one week prior to use of the dishes.
  • SYLGARD® Low Coming, Midland, Mich.
  • rat peripheral nerve segments are then surgically removed, pinned at slack length (straight, but not taut) within the culture dishes using minutien pins, and immediately submersed in Dulbecco's Phosphate Buffered Saline (PBS) or another suitable balanced salt solution.
  • PBS Dulbecco's Phosphate Buffered Saline
  • the following acellularization method is carried out at room temperature ( ⁇ 21° C.) within covered culture dishes.
  • the acellularization method described herein is simple, inexpensive, uses commonly available chemicals of low toxicity, and does not require mechanical agents of any kind.
  • Solution 1 7.3 g EDTA 0.5 g NaN 3 800 ml Glycerol 200 ml 0.9% NaCl
  • Solution 2 25 g Sodium deoxycholate (ionic detergent) 0.26 g NaN 3 600 ml distilled H 2 O
  • Solution 3 10 g sodium dodecyl sulfate (SDS) (ionic detergent) 0.52 g NaN 3 1000 ml distilled H 2 O
  • Solution 4 15 ml TRITON ® X-100 (nonionic detergent) 0.25 g NaN 3 485 ml distilled H 2 O Solution 5: 0.5 g NaN 3 1000 ml 0.9% NaCl
  • the peripheral nerve segments are submersed with Solution 1 for approximately 72 hours in order to disrupt the cell membrane.
  • the nerve segments are submersed with Solution 2 for approximately 72 hours to begin intracellular protein dissociation. Between each solution change, the nerve segments were rinsed at least once with distilled water.
  • the nerve segments are again submersed with Solution 1 , this time for approximately 48 hours to complete the removal of lipid-soluble cell structures.
  • the nerve segments are then submersed with Solution 3 for approximately 48 hours for additional protein denaturing.
  • the nerve segments are submersed with Solution 4 for approximately 48 hours in order to remove denatured proteins from the extracellular matrix, leaving the extracellular matrix intact.
  • the nerve segments are next submersed with Solution 3 for approximately 48 hours to accomplish final protein denaturing and removal.
  • the nerve segments are submersed with Solution 5 where they can be stored for at least 4 weeks until use, wherein Solution 5 may be added as necessary to prevent evaporation.
  • ITS intermediate toe spread
  • Extensor digitorum longus (EDL) muscle contractile function was also analyzed in situ 15 weeks following the initial nerve graft surgery to determine the extent of muscle reinnervation following peripheral nerve injury and repair.
  • Each rat was anesthetized, the left EDL was isolated, and the distal tendons of the EDL were divided and folded to create a tendon loop which was secured at the musculotendinous junction with 3-0 silk suture.
  • the tibial and sural nerves, as well as the distal tendon of the tibialis anterior muscle were then divided to avoid motion artifact.
  • the rat was placed on a platform maintained at ⁇ 37° C. by a temperature-controlled water circulator, and the EDL tendon loop was secured to the force transducer. Throughout the evaluation, muscle temperature was monitored and maintained between approximately 35° and 37° C.
  • the EDL muscles were activated indirectly by delivering supramaximal electrical stimuli (square pulses, 0.2 msec pulse duration, 6-10 V) to the peroneal nerve proximal to the graft site.
  • Stimuli were generated by a Grass S88 Stimulator (Grass Instrument Co., Quincy, Mass.) and delivered with a shielded bipolar silver wire electrode (Harvard Apparatus, South Natick, Mass.).
  • Output from the force transducer was sampled by means of an analog-to-digital converter (Data Translation, Marlboro, Mass.) interfaced with a microcomputer. Custom software (Asyst Software Technologies, Inc., Rochester, N.Y.) was used to control data collection and to perform signal analysis.
  • maximum tetanic isometric force F 0 was evaluated by stimulating the EDL muscle for 250 msec at increasing frequencies (from 30 to 350 Hz) and determining the highest force generated. Following the force measurements, the muscles were excised, the tendons trimmed, and the muscles were weighed. The results showed that at 15 weeks postoperatively the EDL muscle mass was 72.8 ⁇ 22.6 mg and F 0 was 726.3 ⁇ 608. 1 mN. Although decreased compared with values for sham-operated control animals, the recovery of force generating capabilities of EDL muscles reinnervated using acellularized nerve grafts according to the present invention assures that the regenerating axons have made functional connections with the target muscle.
  • the nerve grafts were fixed in a formaldehyde/glutaraldehyde solution, then rinsed within 24 hours and transferred to storage buffer. The fixed nerves were then hydrated using graded ethanol baths prior to embedding in epoxy. Thin (10 ⁇ m) sections taken from the distal end of the nerve grafts were then mounted and stained with toluidine blue for quantitative analysis. Nerve sections also underwent electron microscopic analysis to assess nerve graft axon population as well as degree of myelination.
  • FIGS. 1 a and 1 b electron micrographs of representative peripheral nerves prior to and following, respectively, the chemical acellularization method of the present invention are shown.
  • FIG. 1 a depicts myelinated axons traversing the length of the nerve
  • FIG. 1 b shows a lack of cellular elements and preserved endoneurial sheaths and basal lamina within the nerve.
  • ECM extracellular matrix
  • the acellularization method of the present invention appears to remove the Schwann cells in order to reduce the immunogenicity of the construct, but preserves the basal lamina in order to maintain the appropriate molecular signals and adhesion molecules to enhance axonal regeneration.
  • the preserved basal lamina provides the appropriate adhesion molecules and molecular signals to promote Schwann cell migration, differentiation, and ultimately axonal elongation.
  • a toluidine blue stained section of the distal end of a representative acellular nerve graft is shown 15 weeks after the construct was used to reconstruct a gap in a rat peroneal nerve, wherein the section was taken approximately 2 cm distal to the nerve coaptation site.
  • Multiple large and small myelinated axons can be readily observed by one skilled in the art, thereby demonstrating the ability of the acellularized nerve grafts to support axonal regeneration and to allow end-organ reinnervation.
  • EDL muscles were covered with cryopreservative, frozen with isopentane cooled by liquid nitrogen ( ⁇ 160° C.), and stored at ⁇ 60° C. for subsequent processing.
  • Whole EDL muscle cross-sections (12 ⁇ m thick) were cut using a cryotome ( ⁇ 20° C.), then stained with hematoxylin & eosin and myosin ATPase using standard techniques for subsequent light microscopic fiber type analysis.
  • acellularized nerve constructs according to the present invention were transplanted into subcutaneous pockets across a major histocompatibility barrier, from ACI rat donors to Lewis rat recipients.
  • FIG. 4 a light micrograph of a section of a representative acellular nerve construct displays no evidence of an inflammatory response or any other acute or chronic rejection response.
  • This preliminary experiment demonstrates that the acellularization method of the present invention produces a nerve construct that is nonimmunogenic when transplanted across major histocompatibility antigen barriers, thus immunosuppressive drugs should not be required.
  • Such grafts also demonstrate axonal regeneration and successful reinnervation of the motor end organ via the nerve graft as described for the previous experiments.
  • the chemically acellularized nerve constructs described herein support axonal regeneration and functional reinnervation for the reconstruction of peripheral nerve gaps.
  • the chemical acellularization method according to the present invention provides a scaffold for axonal regeneration that is more suitable than that left by mechanical acellularization processes while removing all of the immunologically reactive cellular components. More particularly, the chemical acellularization method appears to preserve the delicate ultrastructure of peripheral nerves while removing the most antigenic components, namely the Schwann cells and myelin. Furthermore, the acellularization method of the present invention produces a nerve construct that induces no histologically evident acute or chronic rejection response when transplanted across major histocompatibility antigen barriers.
  • Schwann cells produce many neurotrophic factors that aid in axonal regeneration, including NGF, IGF, and CNTF.
  • NGF neurotrophic factor
  • IGF interleukin-12
  • CNTF nerve growth factor
  • Additional strategies to enhance the efficacy of the acellular grafts of the present invention might include reintroducing critical growth factors into the construct through tissue culture techniques or gene derived matrices.
  • the chemical acellularization method discussed herein could easily be adapted for use in clinical situations where nerve gaps are identified.
  • Applications for the nerve construct and acellularization method of the present invention include peripheral nerve reconstruction after traumatic injury, reconstruction of nerve defects resulting from the resection of malignant tumors, functional reconstruction for patients with congenital syndromes where peripheral nerves are absent (e.g., Mobius Syndrome), and for the amelioration of facial paralysis and other movement disorders in some circumstances of CNS injury including strokes and spinal cord injuries. Under these circumstances, sufficient amounts of autologous nerve graft may not be present, and a nonimmunogenic, acellularized human, cadaveric allograft could be utilized for this peripheral nerve reconstruction.
  • the acellularized nerve grafts could be created from donor nerves that match the recipient nerve to be reconstructed, thus the basic architecture of the nerve graft would be specific to the site of transplantation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Rheumatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A method for chemically acellularizing a biological tissue sample, such as a peripheral nerve, is provided. The method includes disrupting the cell membranes of the biological tissue sample, and then denaturing intracellular proteins within the cells of the tissue sample and removing the denatured proteins from the cells while preserving the extracellular matrix to produce an acellularized tissue construct.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. application Ser. No. 09/709, 890filed Nov. 9, 2000, which is a divisional of U.S. application Ser. No. 09/153, 721 filed Sep. 15, 1998, now U.S. Pat. No. 6,207,451.[0001]
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • [0002] The invention was made with Government support under Grant No. NS34380 from the National Institute of Neurologic Disease and Stroke and Grant No. T32 AG00114 from the National Institute of Health. The Government has certain rights in this invention.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0003]
  • This invention relates to the field of tissue engineering, and more particularly to a method for chemically acellularizing a biological tissue sample, such as a peripheral nerve. [0004]
  • 2. Background Art [0005]
  • Peripheral nerve injuries are exceedingly common, occurring clinically after injury or surgical resection. The resulting nerve gaps can produce significant disability and thus require surgical repair. Primary end-to-end nerve coaptation is the procedure of choice for peripheral nerve reconstruction, but in many circumstances the gap between the proximal and distal stump is too large to allow for a tension-free repair. Under these circumstances, surgeons must employ alternate repair techniques, such as nerve grafting. [0006]
  • Peripheral nerve autografts are the gold standard for nerve grafting procedures and provide the optimal degree of reinnervation when primary end-to-end neurorrhaphy is not an option. However, the functional deficits at the donor site following nerve graft harvest as well as the limited amounts of donor nerve tissue available restrict the use of autografts in many clinical situations. [0007]
  • To avoid the problems inherent in autografting, surgeons have investigated different methods of repair such as termino-lateral neurorrhaphy (TLN) and autogenous vein and plastic chamber conduits. TLN entails suturing the distal stump of a severed nerve to the side of an intact adjacent nerve which is not always available. Autogenous vein grafts and plastic chambers are a plentiful supply of nerve regeneration conduits, yet neither provides the trophic support (nerve growth factor, etc.) necessary for axonal regeneration across nerve gaps greater than 2 cm, leading to poor functional outcomes. [0008]
  • Peripheral nerve allografts provide another alternative for nerve repair. Although allografts overcome the problems associated with the previously mentioned repair methods, nerve allograft rejection becomes a major obstacle. Until long term tolerance to nerve allografts can be induced, this technique requires long term systemic immunosuppression and as a result has limited clinical applications. [0009]
  • Acellular nerve grafts, produced by a variety of techniques, have emerged as a possible alternative to overcome the immunogenicity of allografts. Previous attempts to create acellular nerve tissue have involved several methods, namely irradiation, fixation, heat treatment, or freezing, prior to grafting in an effort to kill or remove the cellular elements of the nerve allograft and reduce immunogenicity. Peripheral nerve grafts that have been acellularized by such methods have been shown to support axonal regeneration across short distances and to elicit a reduced immune response compared with standard peripheral nerve allografts. However, these acellularization methods cause disruption of the cellular elements of the nerve and may concurrently disrupt the endoneurial tubes, thus reducing the potential for axonal elongation through the nerve graft. In addition, cellular debris remaining after the mechanical disruption process may also elicit an immune response which can adversely affect Schwann cell migration and axonal elongation. [0010]
  • SUMMARY OF THE INVENTION
  • Therefore, it is an object according to the present invention to provide a method for chemically acellularizing a biological tissue sample which does not rely on mechanical cell disruption. [0011]
  • It is a further object according to the present invention to provide a method of acellularization which removes the cellular elements from peripheral nerve tissue while leaving the endoneurial architecture intact. [0012]
  • It is another object according to the present invention to provide an acellularization method which produces an acellularized peripheral nerve construct that will support axonal regeneration across nerve gaps. [0013]
  • It is still another object according to the present invention to provide an acellularization method which produces an acellularized peripheral nerve construct that is nonimmunogenic. [0014]
  • Accordingly, a method is provided for chemically acellularizing a biological tissue sample, such as a peripheral nerve. The method includes disrupting the cell membranes of the biological tissue sample, and then denaturing intracellular proteins within the cells of the tissue sample and removing the denatured proteins from the cells while preserving the extracellular matrix to produce an acellularized tissue construct without using mechanical agents. [0015]
  • In a preferred embodiment, the tissue sample is harvested from a suitable donor, and then submersed in a balanced salt solution, such as Dulbecco's phosphate buffered saline. The disrupting of cell membranes then includes submersing the biological tissue sample in a solution including glycerol, whereas denaturing and removing intracellular proteins includes submersing the biological tissue in at least one detergent solution. The one or more detergent solutions can comprise ionic detergent solutions and nonionic detergent solutions. Most preferably, the tissue sample is submersed in a succession of ionic and nonionic solutions, where the ionic detergent solutions can include sodium deoxycholate or sodium dodecyl sulfate, and the nonionic detergent solutions can include TRITON® X-100. In addition, the biological tissue sample is preferably rinsed with distilled water between each solution change. The resulting acellularized tissue construct can then be stored in a physiologic saline solution, and later implanted in a suitable recipient. [0016]
  • The above objects and other objects, features, and advantages of the present invention are readily apparent from the following detailed description of the best mode for carrying out the invention when taken in connection with the accompanying drawings.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1[0018] a and 1 b are electron micrographs of a peripheral nerve prior to and following acellularization, respectively, according to the method of the present invention;
  • FIG. 2 is a toluidine blue stain of a distal end of an acellular nerve graft according to the present invention; [0019]
  • FIG. 3 is a myosin ATPase stain (pH=4.3) of a rat extensor digitorum longus muscle following repair of a peroneal nerve gap with an acellularized nerve graft according to the present invention; and [0020]
  • FIG. 4 is a light micrograph of an acellularized peripheral nerve construct according to the present invention following transplantation across a major histocompatibility barrier.[0021]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • A method of acellularization and the acellularized peripheral nerve construct formed thereby are described herein. The acellularization method of the present invention is a chemical, rather than a mechanical, process that generally involves submersion of peripheral nerve tissue in a glycerol solution followed by a series of detergents and other reagents to disrupt and digest the cellular elements of the nerve. As shown and described herein, the removal of cellular elements by this method does not disrupt the endoneurial matrix which is necessary to support and guide axonal regeneration. Therefore, the immunogenicity of the peripheral nerve construct of the present invention is eliminated by the removal of cellular elements, but the ability to support nerve regeneration is maintained. [0022]
  • The following description and experimental results illustrate the efficacy of the chemical acellularization method of the present invention and the resulting peripheral nerve construct using nerve tissue harvested from and subsequently implanted in rats. Of course, it is fully contemplated that peripheral nerve tissue from any mammal, including human beings, could be similarly acellularized and grafted using the method described herein. [0023]
  • To produce the acellular nerve constructs according to the present invention, 100 mm culture dishes are first prepared by mixing and pouring approximately 20 ml of SYLGARD® (Dow Coming, Midland, Mich.) into the dishes, wherein the SYLGARD® is allowed to air dry and harden for at least one week prior to use of the dishes. Under general anesthesia and aseptic conditions, rat peripheral nerve segments are then surgically removed, pinned at slack length (straight, but not taut) within the culture dishes using minutien pins, and immediately submersed in Dulbecco's Phosphate Buffered Saline (PBS) or another suitable balanced salt solution. [0024]
  • The following acellularization method is carried out at room temperature (˜21° C.) within covered culture dishes. Advantageously, the acellularization method described herein is simple, inexpensive, uses commonly available chemicals of low toxicity, and does not require mechanical agents of any kind. Accordingly, in order to remove the cellular material, the following solutions are prepared and stored at room temperature, wherein NaN[0025] 3 is used in each solution as a preservative:
    Solution 1: 7.3 g EDTA
    0.5 g NaN3
    800 ml Glycerol
    200 ml 0.9% NaCl
    Solution 2: 25 g Sodium deoxycholate (ionic detergent)
    0.26 g NaN3
    600 ml distilled H2O
    Solution 3: 10 g sodium dodecyl sulfate (SDS) (ionic detergent)
    0.52 g NaN3
    1000 ml distilled H2O
    Solution 4: 15 ml TRITON ® X-100 (nonionic detergent)
    0.25 g NaN3
    485 ml distilled H2O
    Solution 5: 0.5 g NaN3
    1000 ml 0.9% NaCl
  • First, the peripheral nerve segments are submersed with [0026] Solution 1 for approximately 72 hours in order to disrupt the cell membrane. Second, the nerve segments are submersed with Solution 2 for approximately 72 hours to begin intracellular protein dissociation. Between each solution change, the nerve segments were rinsed at least once with distilled water. Next, the nerve segments are again submersed with Solution 1, this time for approximately 48 hours to complete the removal of lipid-soluble cell structures. The nerve segments are then submersed with Solution 3 for approximately 48 hours for additional protein denaturing. Subsequently, the nerve segments are submersed with Solution 4 for approximately 48 hours in order to remove denatured proteins from the extracellular matrix, leaving the extracellular matrix intact. The nerve segments are next submersed with Solution 3 for approximately 48 hours to accomplish final protein denaturing and removal. Lastly, the nerve segments are submersed with Solution 5 where they can be stored for at least 4 weeks until use, wherein Solution 5 may be added as necessary to prevent evaporation.
  • Due to the technical design of the acellularization method according to the present invention, there should be no limitations on the length or diameter of nerve grafts that can be created. Larger diameter nerve grafts can be acellularized by simply employing correspondingly longer immersion times for each solution. [0027]
  • Of course, it is understood that all reagent measurements and submersion times described above are approximate, and can be varied slightly without affecting the resulting acellularization. The chemical acellularization method according to the present invention was utilized in the context of acellularizing muscle tissue in commonly assigned U.S. Pat. No. 6,207,451 which is incorporated by reference herein. [0028]
  • To functionally and histologically evaluate the acellularized nerve construct produced by the chemical acellularization method of the present invention, several experiments were performed. By examining the corresponding muscle force generation following nerve graft repair as well as muscle and nerve histology, microscopic structure can be correlated with functional results. [0029]
  • Experiments were performed using adult male, specific-pathogen-free Fischer-344 rats (Charles River Laboratory, Kingston, N.Y.). For each animal, the left peroneal nerve was exposed and a 2 cm segment was excised to create a nerve gap and serve as a model for traumatic nerve injury. An identical length of acellularized nerve was used to repair the nerve gap. The proximal and distal ends of the peroneal nerve stumps were coapted to the proximal and distal ends of the graft in the standard end-to-end fashion using 10-0 nylon epineurial sutures. A 15 week recovery period was allowed following the initial surgery prior to measuring muscle contractile properties and analyzing muscle and nerve histology. [0030]
  • Walking tracks were used to evaluate integrated motor function preoperatively and at 15 weeks postoperatively using standard protocols. Individual walking track records were digitally scanned into high-resolution computer graphic files, and measurements were performed at 2X resolution using SigmaScan Pro (Version 4.10.003, 1997, SPSS Inc.) image analysis software. For each record, 3 or 4 footprints during a period of brisk walking were used for analysis. For each footprint, the intermediate toe spread (ITS) was measured from the tip of the second toe to the tip of the fourth toe bilaterally on both the nerve grafted leg (left) and unoperated leg (right). The functional ITS index was then calculated for each walking track record using the formula ITS index=(Left ITS−Right ITS)/Right ITS. The results showed that the average ITS index value at 15 weeks following acellular nerve grafting was decreased only approximately 20% compared with the preoperative baseline value, thereby confirming at least partial recovery of integrated function using the acellular nerve grafts of the present invention. [0031]
  • Extensor digitorum longus (EDL) muscle contractile function was also analyzed in situ 15 weeks following the initial nerve graft surgery to determine the extent of muscle reinnervation following peripheral nerve injury and repair. Each rat was anesthetized, the left EDL was isolated, and the distal tendons of the EDL were divided and folded to create a tendon loop which was secured at the musculotendinous junction with 3-0 silk suture. The tibial and sural nerves, as well as the distal tendon of the tibialis anterior muscle were then divided to avoid motion artifact. The rat was placed on a platform maintained at ˜37° C. by a temperature-controlled water circulator, and the EDL tendon loop was secured to the force transducer. Throughout the evaluation, muscle temperature was monitored and maintained between approximately 35° and 37° C. [0032]
  • The EDL muscles were activated indirectly by delivering supramaximal electrical stimuli (square pulses, 0.2 msec pulse duration, 6-10 V) to the peroneal nerve proximal to the graft site. Stimuli were generated by a Grass S88 Stimulator (Grass Instrument Co., Quincy, Mass.) and delivered with a shielded bipolar silver wire electrode (Harvard Apparatus, South Natick, Mass.). Output from the force transducer was sampled by means of an analog-to-digital converter (Data Translation, Marlboro, Mass.) interfaced with a microcomputer. Custom software (Asyst Software Technologies, Inc., Rochester, N.Y.) was used to control data collection and to perform signal analysis. At optimal muscle length (L[0033] 0), maximum tetanic isometric force (F0) was evaluated by stimulating the EDL muscle for 250 msec at increasing frequencies (from 30 to 350 Hz) and determining the highest force generated. Following the force measurements, the muscles were excised, the tendons trimmed, and the muscles were weighed. The results showed that at 15 weeks postoperatively the EDL muscle mass was 72.8±22.6 mg and F0 was 726.3±608. 1 mN. Although decreased compared with values for sham-operated control animals, the recovery of force generating capabilities of EDL muscles reinnervated using acellularized nerve grafts according to the present invention assures that the regenerating axons have made functional connections with the target muscle.
  • Subsequent to the above procedures, the nerve grafts were fixed in a formaldehyde/glutaraldehyde solution, then rinsed within 24 hours and transferred to storage buffer. The fixed nerves were then hydrated using graded ethanol baths prior to embedding in epoxy. Thin (10 μm) sections taken from the distal end of the nerve grafts were then mounted and stained with toluidine blue for quantitative analysis. Nerve sections also underwent electron microscopic analysis to assess nerve graft axon population as well as degree of myelination. [0034]
  • Referring now to FIGS. 1[0035] a and 1 b, electron micrographs of representative peripheral nerves prior to and following, respectively, the chemical acellularization method of the present invention are shown. As one skilled in the art will readily observe, FIG. 1a depicts myelinated axons traversing the length of the nerve, while FIG. 1b shows a lack of cellular elements and preserved endoneurial sheaths and basal lamina within the nerve. This analysis indicates that the majority of the intracellular and cell membrane components are removed by the chemical acellularization method utilized herein. The remaining material is principally extracellular matrix (ECM) which provides the structural support for nerve regeneration. Therefore, the acellularization method of the present invention appears to remove the Schwann cells in order to reduce the immunogenicity of the construct, but preserves the basal lamina in order to maintain the appropriate molecular signals and adhesion molecules to enhance axonal regeneration. Presumably, the preserved basal lamina provides the appropriate adhesion molecules and molecular signals to promote Schwann cell migration, differentiation, and ultimately axonal elongation.
  • With reference to FIG. 2, a toluidine blue stained section of the distal end of a representative acellular nerve graft is shown 15 weeks after the construct was used to reconstruct a gap in a rat peroneal nerve, wherein the section was taken approximately 2 cm distal to the nerve coaptation site. Multiple large and small myelinated axons can be readily observed by one skilled in the art, thereby demonstrating the ability of the acellularized nerve grafts to support axonal regeneration and to allow end-organ reinnervation. [0036]
  • Following the force measurements, the EDL muscles were covered with cryopreservative, frozen with isopentane cooled by liquid nitrogen (−160° C.), and stored at −60° C. for subsequent processing. Whole EDL muscle cross-sections (12 μm thick) were cut using a cryotome (−20° C.), then stained with hematoxylin & eosin and myosin ATPase using standard techniques for subsequent light microscopic fiber type analysis. With reference to FIG. 3, a myosin ATPase stained section (pH=4.3) of a representative EDL muscle is shown, wherein areas of large polygonal muscle fibers loosely grouped according to muscle fiber type are readily evident to those skilled in the art. Such a spatial distribution of fiber types is characteristic of reinnervated muscle. [0037]
  • Therefore, the functional and histological data described above clearly demonstrate that the chemically acellularized nerve grafts of the present invention support axonal regeneration across at least a 2 cm nerve gap and that functional muscle reinnervation can be achieved. [0038]
  • To evaluate immunogenicity, acellularized nerve constructs according to the present invention were transplanted into subcutaneous pockets across a major histocompatibility barrier, from ACI rat donors to Lewis rat recipients. Referring now to FIG. 4, a light micrograph of a section of a representative acellular nerve construct displays no evidence of an inflammatory response or any other acute or chronic rejection response. This preliminary experiment demonstrates that the acellularization method of the present invention produces a nerve construct that is nonimmunogenic when transplanted across major histocompatibility antigen barriers, thus immunosuppressive drugs should not be required. Such grafts also demonstrate axonal regeneration and successful reinnervation of the motor end organ via the nerve graft as described for the previous experiments. [0039]
  • Therefore, the chemically acellularized nerve constructs described herein support axonal regeneration and functional reinnervation for the reconstruction of peripheral nerve gaps. The chemical acellularization method according to the present invention provides a scaffold for axonal regeneration that is more suitable than that left by mechanical acellularization processes while removing all of the immunologically reactive cellular components. More particularly, the chemical acellularization method appears to preserve the delicate ultrastructure of peripheral nerves while removing the most antigenic components, namely the Schwann cells and myelin. Furthermore, the acellularization method of the present invention produces a nerve construct that induces no histologically evident acute or chronic rejection response when transplanted across major histocompatibility antigen barriers. [0040]
  • Schwann cells produce many neurotrophic factors that aid in axonal regeneration, including NGF, IGF, and CNTF. By reintroducing Schwann cells into the acellularized peripheral nerve grafts of the present invention, axonal regeneration and muscle reinnervation may be further enhanced. Additional strategies to enhance the efficacy of the acellular grafts of the present invention might include reintroducing critical growth factors into the construct through tissue culture techniques or gene derived matrices. [0041]
  • The chemical acellularization method discussed herein could easily be adapted for use in clinical situations where nerve gaps are identified. Applications for the nerve construct and acellularization method of the present invention include peripheral nerve reconstruction after traumatic injury, reconstruction of nerve defects resulting from the resection of malignant tumors, functional reconstruction for patients with congenital syndromes where peripheral nerves are absent (e.g., Mobius Syndrome), and for the amelioration of facial paralysis and other movement disorders in some circumstances of CNS injury including strokes and spinal cord injuries. Under these circumstances, sufficient amounts of autologous nerve graft may not be present, and a nonimmunogenic, acellularized human, cadaveric allograft could be utilized for this peripheral nerve reconstruction. In addition, the acellularized nerve grafts could be created from donor nerves that match the recipient nerve to be reconstructed, thus the basic architecture of the nerve graft would be specific to the site of transplantation. [0042]
  • While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. [0043]

Claims (22)

What is claimed is:
1. A method for chemically acellularizing a biological tissue sample, the method comprising:
disrupting the cell membranes of the biological tissue sample; and
denaturing intracellular proteins within the cells of the tissue sample and removing the denatured proteins from the cells while preserving the extracellular matrix to produce an acellularized tissue construct.
2. The method according to
claim 1
, wherein disrupting the cell membrane includes submersing the biological tissue sample in a solution including glycerol.
3. The method according to
claim 1
, wherein denaturing and removing intracellular proteins includes submersing the biological tissue in at least one detergent solution.
4. The method according to
claim 3
, wherein the at least one detergent solution includes sodium deoxycholate.
5. The method according to
claim 3
, wherein the at least one detergent includes sodium dodecyl sulfate.
6. The method according to
claim 3
, wherein the at least one detergent solution includes TRITON® X-100.
7. The method according to
claim 1
, further including harvesting the tissue sample from a suitable donor.
8. The method according to
claim 1
, further including submersing the tissue sample in a balanced salt solution prior to disrupting the cell membranes.
9. The method according to
claim 8
, wherein the balanced salt solution includes Dulbecco's phosphate buffered saline.
10. The method according to
claim 1
, further including storing the acellularized tissue construct in a physiologic saline solution.
11. The method according to
claim 1
, further including implanting the acellularized tissue construct in a suitable recipient.
12. A method for producing a chemically acellularized tissue construct, the method comprising:
harvesting a biological tissue sample from a donor;
submersing the biological tissue sample in a glycerol solution for disrupting the cell membranes of the tissue; and
submersing the biological tissue sample in at least one detergent solution for denaturing the intracellular proteins of the cells of the tissue and removing the denatured proteins while leaving the extracellular matrix intact to produce the acellularized tissue construct without using mechanical agents.
13. The method according to
claim 12
, wherein the at least one detergent solution includes a nonionic detergent.
14. The method according to
claim 13
, wherein the nonionic detergent includes TRITON® 100.
15. The method according to
claim 12
, wherein the at least one detergent solution includes an ionic detergent.
16. The method according to
claim 15
, wherein the ionic detergent includes sodium deoxycholate.
17. The method according to
claim 15
, wherein the ionic detergent includes sodium dodecyl sulfate.
18. The method according to
claim 12
, wherein submersing the biological tissue sample in at least one detergent solution includes submersing the sample in a succession of solutions including at least one ionic detergent solution and at least one nonionic detergent solution.
19. The method according to
claim 18
, wherein the succession of solutions includes a sodium deoxycholate solution, a sodium dodecyl sulfate solution, and a TRITON® X-100 solution.
20. The method according to
claim 12
, further including rinsing the biological tissue sample with distilled water between each solution change.
21. A method for producing a chemically acellularized peripheral nerve construct, comprising:
harvesting a peripheral nerve segment from a donor;
disrupting the cell membranes of the peripheral nerve segment;
denaturing intracellular proteins within the cells of the peripheral nerve segment; and
removing the denatured proteins from the cells while leaving the extracellular matrix intact to produce the acellularized peripheral nerve construct without using mechanical agents.
22. The method according to
claim 21
, further comprising grafting the peripheral nerve construct within a recipient nerve.
US09/896,651 1998-09-15 2001-06-29 Method for chemically acellularizing a biological tissue sample Expired - Lifetime US6448076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/896,651 US6448076B2 (en) 1998-09-15 2001-06-29 Method for chemically acellularizing a biological tissue sample

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/153,721 US6207451B1 (en) 1998-09-15 1998-09-15 Mammalian muscle construct and method for producing same
US09/709,890 US6777234B1 (en) 1998-09-15 2000-11-09 Mammalian muscle construct and method for producing same
US09/896,651 US6448076B2 (en) 1998-09-15 2001-06-29 Method for chemically acellularizing a biological tissue sample

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/709,890 Continuation-In-Part US6777234B1 (en) 1998-09-15 2000-11-09 Mammalian muscle construct and method for producing same

Publications (2)

Publication Number Publication Date
US20010049138A1 true US20010049138A1 (en) 2001-12-06
US6448076B2 US6448076B2 (en) 2002-09-10

Family

ID=46257811

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/896,651 Expired - Lifetime US6448076B2 (en) 1998-09-15 2001-06-29 Method for chemically acellularizing a biological tissue sample

Country Status (1)

Country Link
US (1) US6448076B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067582A1 (en) * 2000-09-12 2004-04-08 Lloyd Wolfinbarger Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
US20040076657A1 (en) * 1999-06-07 2004-04-22 Lifenet. Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced
US6743574B1 (en) 2000-09-12 2004-06-01 Lifenet Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
US20040132184A1 (en) * 1998-09-15 2004-07-08 The Regents Of The University Of Michigan System and method for forming a cardiac muscle construct
EP1928519A1 (en) * 2005-08-26 2008-06-11 Regents of the University of Minnesota Decellularization and recellularization of organs and tissues
US20080241209A1 (en) * 2007-02-02 2008-10-02 The Regents Of The University Of Michigan System and Method for Forming Bone, Ligament, and Bone-Ligament Constructs
US20100093066A1 (en) * 2005-08-26 2010-04-15 Regents Of The University Of Minnesota Decellularization and recellularization apparatuses and systems containing the same
US9125971B2 (en) 1998-06-30 2015-09-08 Lifenet Health Plasticized bone and soft tissue grafts and methods of making and using same
US9150318B1 (en) 2009-01-02 2015-10-06 Lifecell Corporation Method for sterilizing an acellular tissue matrix
US9290738B2 (en) 2012-06-13 2016-03-22 Miromatrix Medical Inc. Methods of decellularizing bone
CN106139250A (en) * 2016-07-29 2016-11-23 烟台正海生物科技股份有限公司 A kind of de-cell Heterograft nerve thing and preparation method thereof
KR20170034599A (en) 2015-09-21 2017-03-29 이화여자대학교 산학협력단 A method to make acellular nerve conduit for allograft
US9744043B2 (en) 2007-07-16 2017-08-29 Lifenet Health Crafting of cartilage
US10233420B2 (en) 2010-09-01 2019-03-19 Regents Of The University Of Minnesota Methods of recellularizing a tissue or organ for improved transplantability
US11278643B2 (en) 2016-09-06 2022-03-22 Mayo Foundation For Medical Education And Research Use of resected liver serum for whole liver-engineering
US11452797B2 (en) 2013-03-15 2022-09-27 Miromatrix Medical Inc. Use of perfusion decellularized liver for islet cell recellularization

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030217415A1 (en) * 1998-06-30 2003-11-27 Katrina Crouch Plasticized bone grafts and methods of making and using same
US7063726B2 (en) * 1998-06-30 2006-06-20 Lifenet Plasticized bone grafts and methods of making and using same
US7422900B1 (en) * 1998-09-15 2008-09-09 The Regents Of The University Of Michigan System and method for forming a connective tissue construct
US6214054B1 (en) 1998-09-21 2001-04-10 Edwards Lifesciences Corporation Method for fixation of biological tissues having mitigated propensity for post-implantation calcification and thrombosis and bioprosthetic devices prepared thereby
MXPA04001334A (en) * 2001-08-13 2004-05-05 Univ Florida Materials and methods to promote repair of nerve tissue.
US6878168B2 (en) 2002-01-03 2005-04-12 Edwards Lifesciences Corporation Treatment of bioprosthetic tissues to mitigate post implantation calcification
US7402319B2 (en) * 2002-09-27 2008-07-22 Board Of Regents, The University Of Texas System Cell-free tissue replacement for tissue engineering
US20050125049A1 (en) * 2003-10-21 2005-06-09 The Regents Of The University Of Michigan Tissue engineered vascular construct and method for producing same
US20060141620A1 (en) * 2004-11-15 2006-06-29 The Regents Of The University Of Michigan System and method for forming a cardiac tissue construct
DE102005023599A1 (en) * 2005-05-18 2006-11-23 Corlife Gbr (Vertretungsberechtigte Gesellschafter: Prof. Dr. Alex Haverich Bioartificial heart tissue graft and process for its preparation
WO2007056547A2 (en) * 2005-11-08 2007-05-18 Georgia Tech Research Corporation Acellularized biomaterial from embryonic stem cells
WO2008073582A2 (en) 2006-10-27 2008-06-19 Edwards Lifesciences Corporation Biological tissue for surgical implantation
US8361503B2 (en) 2007-03-02 2013-01-29 University of Pittsburgh—of the Commonwealth System of Higher Education Extracellular matrix-derived gels and related methods
US20080306610A1 (en) * 2007-06-07 2008-12-11 Zimmer Orthobiologics, Inc. Tissue processing for nonimmunogenic implants
US9101691B2 (en) 2007-06-11 2015-08-11 Edwards Lifesciences Corporation Methods for pre-stressing and capping bioprosthetic tissue
US8357387B2 (en) 2007-12-21 2013-01-22 Edwards Lifesciences Corporation Capping bioprosthetic tissue to reduce calcification
US20090292325A1 (en) 2008-05-02 2009-11-26 Cederna Paul S Hybrid bioelectrical interface device
US20100112696A1 (en) * 2008-11-03 2010-05-06 Baxter International Inc. Apparatus And Methods For Processing Tissue To Release Cells
US8309343B2 (en) 2008-12-01 2012-11-13 Baxter International Inc. Apparatus and method for processing biological material
US8685634B2 (en) 2009-03-06 2014-04-01 University of Pittsburgh—of the Commonwealth System of Higher Education Neural scaffolds
BR112012023769B1 (en) 2010-03-23 2020-11-10 Edwards Lifesciences Corporation method for preparing bioprosthetic tissue membrane material
US8906601B2 (en) 2010-06-17 2014-12-09 Edwardss Lifesciences Corporation Methods for stabilizing a bioprosthetic tissue by chemical modification of antigenic carbohydrates
US8435305B2 (en) 2010-08-31 2013-05-07 Zimmer, Inc. Osteochondral graft delivery device and uses thereof
US8758374B2 (en) 2010-09-15 2014-06-24 University Of Utah Research Foundation Method for connecting nerves via a side-to-side epineurial window using artificial conduits
US9351829B2 (en) 2010-11-17 2016-05-31 Edwards Lifesciences Corporation Double cross-linkage process to enhance post-implantation bioprosthetic tissue durability
US9808616B2 (en) 2011-01-14 2017-11-07 The Regents Of The University Of Michigan Regenerative peripheral nerve interface
WO2013066619A1 (en) 2011-10-17 2013-05-10 University Of Utah Research Foundation Methods and devices for connecting nerves
US10842494B2 (en) 2011-10-17 2020-11-24 University Of Utah Research Foundation Methods and devices for connecting nerves
US10238771B2 (en) 2012-11-08 2019-03-26 Edwards Lifesciences Corporation Methods for treating bioprosthetic tissue using a nucleophile/electrophile in a catalytic system
US9615922B2 (en) 2013-09-30 2017-04-11 Edwards Lifesciences Corporation Method and apparatus for preparing a contoured biological tissue
US10959839B2 (en) 2013-10-08 2021-03-30 Edwards Lifesciences Corporation Method for directing cellular migration patterns on a biological tissue
JP6681872B2 (en) 2014-03-21 2020-04-15 ユニバーシティ オブ ピッツバーグ −オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション Method for preparing final sterile hydrogel derived from extracellular matrix
US10314725B2 (en) 2014-11-13 2019-06-11 The Regents Of The University Of Michigan Method for amplifying signals from individual nerve fascicles
EP4252842A3 (en) 2017-03-02 2023-10-25 University of Pittsburgh- Of the Commonwealth System of Higher Education Ecm hydrogel for treating esophageal inflammation
EP3589294B1 (en) 2017-03-02 2022-10-26 University of Pittsburgh - Of the Commonwealth System of Higher Education Extracellular matrix (ecm) hydrogel and soluble fraction thereof for use in the treatment of cancer
EP3852683A1 (en) 2018-11-01 2021-07-28 Edwards Lifesciences Corporation Transcatheter pulmonic regenerative valve

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960151A (en) 1973-11-09 1976-06-01 Hemotec, Inc. Method and means for the repair of peripheral nerves
US4642292A (en) * 1979-10-29 1987-02-10 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Method for isolation of connective tissue biomatrix
US4605623A (en) 1982-11-08 1986-08-12 Malette William Graham Method of altering growth and development and suppressing contamination microorganisms in cell or tissue culture
US4801299A (en) * 1983-06-10 1989-01-31 University Patents, Inc. Body implants of extracellular matrix and means and methods of making and using such implants
US4759764A (en) 1985-05-24 1988-07-26 Clayton Foundation For Research Peripheral nerve regeneration
US5266480A (en) 1986-04-18 1993-11-30 Advanced Tissue Sciences, Inc. Three-dimensional skin culture system
GB8618374D0 (en) 1986-07-28 1986-09-03 Hsc Res Dev Corp Biological vascular prostheses
US5019087A (en) 1986-10-06 1991-05-28 American Biomaterials Corporation Nerve regeneration conduit
US5147399A (en) 1988-02-01 1992-09-15 Dellon Arnold L Method of treating nerve defects through use of a bioabsorbable surgical device
US4870966A (en) 1988-02-01 1989-10-03 American Cyanamid Company Bioabsorbable surgical device for treating nerve defects
US4940853A (en) 1988-07-22 1990-07-10 Vandenburgh Herman H Method for growing tissue specimens in vitro
US5153136A (en) 1988-07-22 1992-10-06 Vandenburgh Herman H Apparatus for growing tissue specimens in vitro
US4963146A (en) 1989-04-20 1990-10-16 Colla-Tec Incorporated Multi-layered, semi-permeable conduit for nerve regeneration
US5026381A (en) 1989-04-20 1991-06-25 Colla-Tec, Incorporated Multi-layered, semi-permeable conduit for nerve regeneration comprised of type 1 collagen, its method of manufacture and a method of nerve regeneration using said conduit
US5521087A (en) 1989-05-10 1996-05-28 Massachusetts Institute Of Technology Method for producing oriented connective tissue cells in a ligament configuration
US5336616A (en) 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
US5840689A (en) 1993-10-29 1998-11-24 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Method for stimulating the regrowth of neurons
US5618718A (en) 1994-12-30 1997-04-08 Universite Laval Production of a contractile smooth muscle
US6033660A (en) 1995-05-10 2000-03-07 Genentech, Inc. Method of treating a nervous system injury with cultured schwann cells
US6095148A (en) 1995-11-03 2000-08-01 Children's Medical Center Corporation Neuronal stimulation using electrically conducting polymers
AU731768B2 (en) 1996-09-16 2001-04-05 Purdue Research Foundation Composition and method for repairing neurological tissue
US5925053A (en) 1997-09-02 1999-07-20 Children's Medical Center Corporation Multi-lumen polymeric guidance channel, method for promoting nerve regeneration, and method of manufacturing a multi-lumen nerve guidance channel

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9125971B2 (en) 1998-06-30 2015-09-08 Lifenet Health Plasticized bone and soft tissue grafts and methods of making and using same
US9579420B2 (en) 1998-06-30 2017-02-28 Lifenet Health Plasticized bone and soft tissue grafts and methods of making and using same
US9585986B2 (en) 1998-06-30 2017-03-07 Lifenet Health Plasticized bone and soft tissue grafts and methods of making and using same
US7338798B2 (en) * 1998-09-15 2008-03-04 The Regents Of The University Of Michigan System and method for forming a cardiac muscle construct
US20040132184A1 (en) * 1998-09-15 2004-07-08 The Regents Of The University Of Michigan System and method for forming a cardiac muscle construct
US20090041729A1 (en) * 1999-06-07 2009-02-12 Lifenet Health Process for Decellularizing Soft-Tissue Engineered Medical Implants, and Decellularized Soft-Tissue Medical Implants Produced
US7338757B2 (en) 1999-06-07 2008-03-04 Lifenet Health Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced
US6734018B2 (en) 1999-06-07 2004-05-11 Lifenet Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced
US20040076657A1 (en) * 1999-06-07 2004-04-22 Lifenet. Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced
US20110143438A1 (en) * 1999-06-07 2011-06-16 Wolfinbarger Jr Lloyd Process for Decellularizing Soft-Tissue Engineered Medical Implants, and Decellularized Soft-Tissue Medical Implants Produced
US8574826B2 (en) 1999-06-07 2013-11-05 Lifenet Health Process for decellularizing soft-tissue engineered medical implants, and decellularized soft-tissue medical implants produced
US9936688B2 (en) 2000-09-12 2018-04-10 Lifenet Health Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
US6743574B1 (en) 2000-09-12 2004-06-01 Lifenet Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
US8563232B2 (en) 2000-09-12 2013-10-22 Lifenet Health Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
US20040067582A1 (en) * 2000-09-12 2004-04-08 Lloyd Wolfinbarger Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
EP1928519A4 (en) * 2005-08-26 2009-07-08 Univ Minnesota Decellularization and recellularization of organs and tissues
US10441609B2 (en) 2005-08-26 2019-10-15 Miromatrix Medical Inc. Decellularization and recellularization of solid organs
CN102861359A (en) * 2005-08-26 2013-01-09 明尼苏达大学董事会 Decellularization and recellularization of organs and tissues
CN101272815B (en) * 2005-08-26 2012-09-26 明尼苏达大学董事会 Decellularization and recellularization of organs and tissues
US10220056B2 (en) 2005-08-26 2019-03-05 Miromatrix Medical, Inc. Decellularization and recellularization of solid organs
CN102861359B (en) * 2005-08-26 2015-04-01 明尼苏达大学董事会 Decellularization and recellularization of organs and tissues
US20100093066A1 (en) * 2005-08-26 2010-04-15 Regents Of The University Of Minnesota Decellularization and recellularization apparatuses and systems containing the same
US8470520B2 (en) 2005-08-26 2013-06-25 Regents Of The University Of Minnesota Decellularization and recellularization of organs and tissues
US20090202977A1 (en) * 2005-08-26 2009-08-13 Regents Of The University Of Minnesota Decellularization and recellularization of organs and tissues
EP1928519A1 (en) * 2005-08-26 2008-06-11 Regents of the University of Minnesota Decellularization and recellularization of organs and tissues
US9259510B2 (en) 2007-02-02 2016-02-16 The Regents Of The University Of Michigan System and method for forming bone, ligament, and bone-ligament constructs
US20080241209A1 (en) * 2007-02-02 2008-10-02 The Regents Of The University Of Michigan System and Method for Forming Bone, Ligament, and Bone-Ligament Constructs
US8764828B2 (en) 2007-02-02 2014-07-01 The Regents Of The University Of Michigan System and method for forming bone, ligament, and bone-ligament constructs
US11147674B2 (en) 2007-07-16 2021-10-19 Lifenet Health Crafting of cartilage
US9744043B2 (en) 2007-07-16 2017-08-29 Lifenet Health Crafting of cartilage
US9150318B1 (en) 2009-01-02 2015-10-06 Lifecell Corporation Method for sterilizing an acellular tissue matrix
US10322835B1 (en) 2009-01-02 2019-06-18 Lifecell Corporation Method for preparing collagen-based materials
US10906679B1 (en) 2009-01-02 2021-02-02 Lifecell Corporation Method for preparing collagen-based materials
US10233420B2 (en) 2010-09-01 2019-03-19 Regents Of The University Of Minnesota Methods of recellularizing a tissue or organ for improved transplantability
US11414644B2 (en) 2010-09-01 2022-08-16 Regents Of The University Of Minnesota Methods of recellularizing a tissue or organ for improved transplantability
US9290738B2 (en) 2012-06-13 2016-03-22 Miromatrix Medical Inc. Methods of decellularizing bone
US11452797B2 (en) 2013-03-15 2022-09-27 Miromatrix Medical Inc. Use of perfusion decellularized liver for islet cell recellularization
KR20170034599A (en) 2015-09-21 2017-03-29 이화여자대학교 산학협력단 A method to make acellular nerve conduit for allograft
CN106139250A (en) * 2016-07-29 2016-11-23 烟台正海生物科技股份有限公司 A kind of de-cell Heterograft nerve thing and preparation method thereof
US11278643B2 (en) 2016-09-06 2022-03-22 Mayo Foundation For Medical Education And Research Use of resected liver serum for whole liver-engineering

Also Published As

Publication number Publication date
US6448076B2 (en) 2002-09-10

Similar Documents

Publication Publication Date Title
US6448076B2 (en) Method for chemically acellularizing a biological tissue sample
KR102167247B1 (en) Method for decellularization of tissue grafts
Neubauer et al. Chondroitinase treatment increases the effective length of acellular nerve grafts
Belkas et al. Peripheral nerve regeneration through a synthetic hydrogel nerve tube
Cheng et al. Urologic tissue engineering with small-intestinal submucosa: potential clinical applications
Tos et al. Tissue specificity in rat peripheral nerve regeneration through combined skeletal muscle and vein conduit grafts
US20030040112A1 (en) Materials and methods for nerve grafting, selection of nerve grafts, and in vitro nerve tissue culture
Meder et al. Nerve-specific extracellular matrix hydrogel promotes functional regeneration following nerve gap injury
US20070299517A1 (en) Articular cartilage implant
AU3018284A (en) Body implants of extracellular matrix and means and methods of making and using such implants
Yan et al. Use new PLGL-RGD-NGF nerve conduits for promoting peripheral nerve regeneration
Glasby et al. The repair of large peripheral nerves using skeletal muscle autografts: a comparison with cable grafts in the sheep femoral nerve
Dornseifer et al. Peripheral nerve reconstruction with collagen tubes filled with denatured autologous muscle tissue in the rat model
Ozer et al. Regenerative potential of chitosan-coated poly-3-hydroxybutyrate conduits seeded with mesenchymal stem cells in a rat sciatic nerve injury model
Yokoi et al. Bioabsorbable nerve conduits coated with induced pluripotent stem cell‐derived neurospheres enhance axonal regeneration in sciatic nerve defects in aged mice
US20190216977A1 (en) Nerve treatment devices and methods
Potenza et al. Evaluation of freeze-dried flexor tendon grafts in the dog
KOÇMAN et al. Can a small intestine segment be an alternative biological conduit for peripheral nerve regeneration?
Boriani et al. Auto-allo graft parallel juxtaposition for improved neuroregeneration in peripheral nerve reconstruction based on acellular nerve allografts
Deumens et al. Limitations in transplantation of astroglia-biomatrix bridges to stimulate corticospinal axon regrowth across large spinal lesion gaps
Marcol et al. Regeneration of sciatic nerves of adult rats induced by extracts from distal stumps of pre‐degenerated peripheral nerves
Kassar-Duchossoy et al. Reinnervation of a denervated skeletal muscle by spinal axons regenerating through a collagen channel directly implanted into the rat spinal cord
Liu et al. Experimental study of the osteogenic capacity of periosteal allografts: a preliminary report
Bendella et al. Effect of surgically guided axonal regrowth into a 3-way-conduit (isogeneic trifurcated aorta) on functional recovery after facial-nerve reconstruction: Experimental study in rats
Kim et al. Effectiveness and biocompatibility of decellularized nerve graft using an In vivo rat sciatic nerve model

Legal Events

Date Code Title Description
AS Assignment

Owner name: REGENTS OF THE UNIVERSITY OF MICHIGAN, THE, MICHIG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DENNIS, ROBERT G.;KUZON, WILLIAM M., JR.;CEDERNA, PAUL S.;REEL/FRAME:011956/0346;SIGNING DATES FROM 20010628 TO 20010629

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF MICHIGAN;REEL/FRAME:026000/0694

Effective date: 20110322

FPAY Fee payment

Year of fee payment: 12