US20020001291A1 - Page response on existing radio signaling channel - Google Patents

Page response on existing radio signaling channel Download PDF

Info

Publication number
US20020001291A1
US20020001291A1 US09/938,484 US93848401A US2002001291A1 US 20020001291 A1 US20020001291 A1 US 20020001291A1 US 93848401 A US93848401 A US 93848401A US 2002001291 A1 US2002001291 A1 US 2002001291A1
Authority
US
United States
Prior art keywords
channel
call
core network
radio access
page
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/938,484
Inventor
Per Hans Willars
Johan Lagneborg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to US09/938,484 priority Critical patent/US20020001291A1/en
Publication of US20020001291A1 publication Critical patent/US20020001291A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like

Definitions

  • This invention relates to telecommunications and more particularly to communication protocols in a mobile radio network.
  • Mobile radio networks are wide-spread today and provide a mobile radio user with a large variety of communication options, including voice communications, data communications, short message service communications, voice paging communications, etc.
  • voice communications data communications
  • short message service communications voice paging communications
  • voice paging communications etc.
  • efficiencies are always desired in the mobile radio communications environment to simplify and improve call connection procedures and call connection protocols between telephone networks and mobile radios accessing them.
  • a call request is made from a core telephone network to a mobile radio
  • the core network sends a page request through a radio access network to the mobile station.
  • This page request is sent via a common paging channel monitored by all of the mobile stations assigned to the radio access network.
  • the page request includes a unique identifier associated exclusively with the mobile radio to which the call is destined.
  • the mobile radio (which, as stated previously, is monitoring the page channel) receives the page request and identifies the unique mobile radio identifier associated with the page request as its own.
  • the mobile station then initiates a connection between itself and the caller.
  • the call connection is performed by the radio access network by assigning a channel for use between the mobile station and the core network through which the mobile station and the call originator can communicate.
  • radio access networks consist of a variety of basic building blocks such as base stations, base station controllers, mobile service switching centers, etc., which permit the mobile stations to communicate with a number of core networks as public telephone switched networks, etc.
  • the phrase “generic radio access network” will refer to the building blocks requested to perform the call connection procedures between a mobile terminal and a core network.
  • a mobile station can receive simultaneous messages from two different core networks while employing only a single channel between the generic radio access network and the mobile station. Because the number of channels available to the generic radio access network to be employed simultaneously is limited, the consolidation of multiple simultaneous calls into a single channel reserves capacity in the generic radio access network for other mobile station call connections. In the preferred embodiment of the present invention, the simultaneous call connection is accomplished using a unique page procedure between the core networks, generic radio access network, and mobile station to which the simultaneous calls are destined.
  • a call is established between the mobile station and a first core network through the generic radio access network.
  • another core network pages the mobile station to initiate a second call connection.
  • the page passes from the second core network through the generic radio access network to the mobile station via the dedicated page channel monitored continuously by the mobile station.
  • the mobile station then returns the page response to the second core network using the existing signaling channel between the generic radio access network and the mobile station associated with the established user data channel. This is contrary to traditional thinking which would not provide the page response from the mobile station to the radio access network via the same channel in active use by the mobile station for the previously established call.
  • the mobile station provides the page response to the second core network via the same channel being used for the established call (up to the generic radio access network) and via a newly established multiplexed channel (from the radio access network to the second core network).
  • the page response triggers a multiplexing in the radio access network of two user connections: one from the radio access network to the first core network and a second from the radio access network to the second core network.
  • the multiplexed connections are then fed from the mobile station to the radio access network via a single channel, preferably the previously established channel used by the first core network to communicate from the radio access network to the mobile station.
  • the same procedure is used when a call is established with a first core network and a second call comes through the same core network.
  • the core network can multiplex the calls without coordinating with existing connections.
  • the existing channel is reused.
  • the page message is kept uncoordinated (sent in parallel on the page channel).
  • the complexity of the generic radio access network e.g. in the case where a page request from the core network is sent to another node within the generic radio access network other than the one currently handling the connection to the mobile terminal.
  • the added complexity in the mobile terminal to monitor a page channel in parallel to communication on a dedicated radio channel is minor compared to requiring the mobile terminal to receive and especially transmit two radio channels independently.
  • FIG. 1 is a schematic diagram of a simplified mobile radio network
  • FIG. 2 is a schematic diagram of a page and page response in accordance with an example embodiment of the present invention.
  • FIG. 3 is an example embodiment of a generic radio access network 10 in simplified form in accordance with an example embodiment of the present invention.
  • FIG. 1 illustrates a schematic diagram of a simplified mobile radio services network in accordance with an example embodiment of the present invention.
  • core networks CN 1 , CN 2 , . . . CN n communicate with a generic radio access network 10 .
  • the principle function of the generic radio access network 10 is to establish channels for calls to connect between the various core networks CN 1 , CN 2 , . . . CN n and the various mobile stations MS 1 , MS 2 , MS 3 . . . MS n to which the generic radio access network 10 communicates.
  • the generic radio access network 10 comprises a number of basic building blocks including base stations, base station controllers, etc. The various functionalities of these building blocks are well-known in the art for establishing call connections between the core networks CN 1 , CN 2 , . . . CN n and the various mobile stations.
  • a user data channel (UDC) 13 is established between core network 1 and mobile station 1 through the generic radio access network 10 .
  • the UDC 13 consists of a signaling channel 14 and a traffic channel 15 .
  • the UDC 13 is the channel assigned by the generic radio access network 10 for an active call between the core network 1 and the mobile station 1 . That is, in the instant in time reflected in FIG. 1, mobile station 1 is engaged in active communication between itself and the core network 1 via the UDC 13 .
  • the mobile station 1 is continually monitoring the common page channel 12 of the generic radio access network 10 . Equally so, all of the mobile stations MS 2 , MS 3 , MSn are also monitoring the page channel 12 for page requests.
  • the pages received via the page channel contain information identfying the mobile station to which the page is intended to be delivered.
  • the mobile stations monitor the page channel 12 for pages, as shown in FIG. 1 (via the dotted lines).
  • the situation shown in FIG. 1 is handled by multiplexing call connections from the core networks CN 1 and CN n at the generic radio access network 10 such that the mobile station 1 receives both calls (from CN 1 and CN n ) simultaneously over a single UDC access channel portion 13 ′.
  • the page request sent from CNn to generic radio access network 10 (item 17 ) is received by the mobile station MS 1 via channel 16 .
  • MS 1 responds to the page request via UDC access channel portion 13 ′ (to the radio access network 10 ).
  • the mobile station receives the page request from core network CN n and then responds to the page request on the same channel being actively used for a communication session with a different core network CN 1 .
  • the page response from the mobile station MS 1 is sent to radio access network 10 via the same channel portion 13 ′ used by the core network CN 1 to engage in the active call with the mobile station MS 1 .
  • the receipt of the page response in the radio access network 10 triggers the situation illustrated in FIG. 3.
  • the UDC 13 from core network CN 1 is shown entering the generic radio access network 10 and continuing through a multiplexer 33 to access channel portion 13 ′ to the mobile station MS 1 .
  • UDC 30 is established from core network CN n to multiplexer 33 in the generic radio access network 10 .
  • the UDC 30 from CN n includes a traffic channel 32 and a signaling channel 31 .
  • the traffic channel 32 and signaling channel 31 connect communications between the core network CN n and the multiplexer 33 .
  • the MS 1 responds to a page request, it does so via channel 13 ′ to radio access network 10 (that is, the same channel being used previously to communicate from CN 1 to MS 1 ).
  • MUX 33 then splits the signal such that data and signaling relevant to the previously established call are routed to CN 1 , while data and signaling relevant to the page response are routed to CN 1 .
  • the established call data and signaling travels via UDC 13 (as before) and the page data/signaling travels via channel 30 (established between radio access network 10 and CN n ).
  • Methods for routing traffic information in a multiplexer 33 are well-known and vary widely depending on the kinds of efficiencies desired and the practical constraints of core networks.
  • One example method is to assign headers associated with the respective core networks (or, alternatively associated with the respective data types) to identify to the radio access network 10 (and specifically MUX 33 ) to which core network (and hence which caller) the data packets should be routed.
  • One of ordinary skill in the art will well understand other ways to generically combine traffic information (such as packet data) in multiplexer 33 , as depicted in FIG. 3.
  • the effect of multiplexing the traffic at MUX 33 is a single channel between the generic radio access network 10 and the mobile station MS 1 containing the traffic and signal information to/from both the core network CN 1 and the core network CN n .
  • the same UDC 13 ′ is employed from the generic radio access network 10 to the mobile station MS 1 to provide the multiplexed traffic information 33 and the multiplexed signaling information 34 to the mobile station MS 1 , thus requiring the radio access network to assign and tie up only one channel ( 13 ′) for the one mobile station MS 1 .
  • the mobile station MS 1 will continue to monitor the page channel 12 from the generic radio access network 10 .
  • the present invention allows a mobile station to receive simultaneous calls from two different core networks, without further burdening mobile station channel availability at the radio access network. This can be particularly advantageous when the mobile station is engaged in an active voice telephone call and receives a page request for, for example, a short message service message. While the user is engaged in the voice telephone call, the mobile station can receive the short message service message from another core network and then display the short message service message to the user when the user has completed the voice telephone call, all over the same channel 13 ′.
  • Other types of simultaneous call embodiments can also be envisioned in which the present invention allows multiplexed simultaneous calls to be received by a mobile station on a single channel.
  • the present invention also provides the advantage of eliminating any requirement of the generic radio access network to maintain a table of identities of mobile stations for paging coordination purposes.
  • the core network CN 1 is engaged in an active call via UDC 13 and then receives a second call request through the same core network (CN n ) to the same mobile station MS 1 .
  • the same procedure can be employed in that the core network CN 1 pages the mobile station MS 1 with the second call request and the mobile station MS 1 responds to the page indicating its ability to receive the calls simultaneously.

Abstract

When a mobile terminal in a mobile radio network has a user data connection established to a core network node, and receives a page message on a paging channel from a second core network node to which the terminal has no data connection established, the mobile terminal can send a page response message to the second core network node on the existing signaling channel between the mobile terminal and the radio access network associated with the established data connection to that core network node. The page response then triggers a multiplexing between the mobile terminal and radio access network, of the established connection with the first core network node and the desired call connection (precipitated by the page request) from the second core network node. This way, the mobile station can receive simultaneous calls from two different core network nodes over a common traffic and signaling connection.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application relates to U.S. Application Ser. No. ______ filed ______, (Atty. Docket No. 2380-18); entitled “Common Channel Changing” which is incorporated herein by reference.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to telecommunications and more particularly to communication protocols in a mobile radio network. [0002]
  • BACKGROUND OF THE INVENTION
  • Mobile radio networks are wide-spread today and provide a mobile radio user with a large variety of communication options, including voice communications, data communications, short message service communications, voice paging communications, etc. As mobile radios become increasingly prolific in society, the strain on mobile radio communication network to accommodate the volume of mobile radio communications increases. For this reason, efficiencies are always desired in the mobile radio communications environment to simplify and improve call connection procedures and call connection protocols between telephone networks and mobile radios accessing them. [0003]
  • Typically, when a call request is made from a core telephone network to a mobile radio, the core network sends a page request through a radio access network to the mobile station. This page request is sent via a common paging channel monitored by all of the mobile stations assigned to the radio access network. The page request includes a unique identifier associated exclusively with the mobile radio to which the call is destined. The mobile radio (which, as stated previously, is monitoring the page channel) receives the page request and identifies the unique mobile radio identifier associated with the page request as its own. The mobile station then initiates a connection between itself and the caller. The call connection is performed by the radio access network by assigning a channel for use between the mobile station and the core network through which the mobile station and the call originator can communicate. [0004]
  • One of ordinary skill in the art will understand that radio access networks consist of a variety of basic building blocks such as base stations, base station controllers, mobile service switching centers, etc., which permit the mobile stations to communicate with a number of core networks as public telephone switched networks, etc. In this regard, throughout this specification, the phrase “generic radio access network” will refer to the building blocks requested to perform the call connection procedures between a mobile terminal and a core network. [0005]
  • As the volume of traffic in the mobile radio environment increases, it becomes increasingly likely that mobile stations receive simultaneous requests for call connections (or receive a request for a call connection while engaged in an active call). In such situations, the mobile station usually acknowledges to the second requester that it is busy with another call on another channel and therefore cannot accept the second call. It is possible, however, with current technology, for the mobile stations to accept two calls simultaneously, provided the generic radio access network can employ an efficient procedure to connect them. Thus, for example, a mobile station can engage in an active voice telephone call with one core network and still receive on another channel a short message service message from another core network, which can be displayed to the user when the voice telephone call is completed. Unfortunately, however, the present systems usually require the mobile station to employ multiple channels to receive multiple simultaneous messages. [0006]
  • SUMMARY OF THE INVENTION
  • In the present invention, a mobile station can receive simultaneous messages from two different core networks while employing only a single channel between the generic radio access network and the mobile station. Because the number of channels available to the generic radio access network to be employed simultaneously is limited, the consolidation of multiple simultaneous calls into a single channel reserves capacity in the generic radio access network for other mobile station call connections. In the preferred embodiment of the present invention, the simultaneous call connection is accomplished using a unique page procedure between the core networks, generic radio access network, and mobile station to which the simultaneous calls are destined. [0007]
  • First, a call is established between the mobile station and a first core network through the generic radio access network. Then, another core network pages the mobile station to initiate a second call connection. The page passes from the second core network through the generic radio access network to the mobile station via the dedicated page channel monitored continuously by the mobile station. The mobile station then returns the page response to the second core network using the existing signaling channel between the generic radio access network and the mobile station associated with the established user data channel. This is contrary to traditional thinking which would not provide the page response from the mobile station to the radio access network via the same channel in active use by the mobile station for the previously established call. In the present invention, the mobile station provides the page response to the second core network via the same channel being used for the established call (up to the generic radio access network) and via a newly established multiplexed channel (from the radio access network to the second core network). Thus, the page response triggers a multiplexing in the radio access network of two user connections: one from the radio access network to the first core network and a second from the radio access network to the second core network. The multiplexed connections are then fed from the mobile station to the radio access network via a single channel, preferably the previously established channel used by the first core network to communicate from the radio access network to the mobile station. [0008]
  • In alternative embodiments, the same procedure is used when a call is established with a first core network and a second call comes through the same core network. In such a case, the core network can multiplex the calls without coordinating with existing connections. [0009]
  • In some embodiments, the existing channel is reused. However, in other embodiments, the page message is kept uncoordinated (sent in parallel on the page channel). Thus, by avoiding the need to coordinate the page message with a possibly existing radio channel significantly reduces the complexity of the generic radio access network, e.g. in the case where a page request from the core network is sent to another node within the generic radio access network other than the one currently handling the connection to the mobile terminal. In this case, the added complexity in the mobile terminal to monitor a page channel in parallel to communication on a dedicated radio channel is minor compared to requiring the mobile terminal to receive and especially transmit two radio channels independently.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other advantages and objects of the present invention will be described in detail with reference to the accompanying drawings, in which: [0011]
  • FIG. 1 is a schematic diagram of a simplified mobile radio network; [0012]
  • FIG. 2 is a schematic diagram of a page and page response in accordance with an example embodiment of the present invention; and [0013]
  • FIG. 3 is an example embodiment of a generic [0014] radio access network 10 in simplified form in accordance with an example embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
  • FIG. 1 illustrates a schematic diagram of a simplified mobile radio services network in accordance with an example embodiment of the present invention. In FIG. 1, core networks CN[0015] 1, CN2, . . . CNn communicate with a generic radio access network 10. The principle function of the generic radio access network 10 is to establish channels for calls to connect between the various core networks CN1, CN2, . . . CNn and the various mobile stations MS1, MS2, MS3 . . . MSn to which the generic radio access network 10 communicates. One of ordinary skill in the art will understand that the generic radio access network 10 comprises a number of basic building blocks including base stations, base station controllers, etc. The various functionalities of these building blocks are well-known in the art for establishing call connections between the core networks CN1, CN2, . . . CNn and the various mobile stations.
  • In FIG. 1, a user data channel (UDC) [0016] 13 is established between core network 1 and mobile station 1 through the generic radio access network 10. The UDC 13 consists of a signaling channel 14 and a traffic channel 15. The UDC 13 is the channel assigned by the generic radio access network 10 for an active call between the core network 1 and the mobile station 1. That is, in the instant in time reflected in FIG. 1, mobile station 1 is engaged in active communication between itself and the core network 1 via the UDC 13.
  • At the same time, the [0017] mobile station 1 is continually monitoring the common page channel 12 of the generic radio access network 10. Equally so, all of the mobile stations MS2, MS3, MSn are also monitoring the page channel 12 for page requests. The pages received via the page channel contain information identfying the mobile station to which the page is intended to be delivered. The mobile stations monitor the page channel 12 for pages, as shown in FIG. 1 (via the dotted lines).
  • In the moment in time shown in FIG. 1, although mobile station MS[0018] 1 is engaged in the active call between itself and CN1 via UDC 13, a page request comes from CNn at channel 17 to the generic radio access network 10, which passes the page request onto the common page channel 12 where it is received by the mobile station MS1 via page request channel 16. The mobile station MS1 is thus in a conflict since it is engaged in an active call from CN1 while receiving a page request on channel 16. Traditionally, the mobile station MS1 would have to respond to the page request (to CNN) by indicating its busy status or (if very sophisticated) by requesting a second UDC to be established between the CN1 and the mobile station MS1 via the generic radio access network 10.
  • In accordance with the present invention, however, the situation shown in FIG. 1 is handled by multiplexing call connections from the core networks CN[0019] 1 and CNn at the generic radio access network 10 such that the mobile station 1 receives both calls (from CN1 and CNn) simultaneously over a single UDC access channel portion 13′. In order to accomplish this, the page request sent from CNn to generic radio access network 10 (item 17) is received by the mobile station MS1 via channel 16. Then, MS1 responds to the page request via UDC access channel portion 13′ (to the radio access network 10). That is, the mobile station receives the page request from core network CNn and then responds to the page request on the same channel being actively used for a communication session with a different core network CN1. In particular, the page response from the mobile station MS1 is sent to radio access network 10 via the same channel portion 13′ used by the core network CN1 to engage in the active call with the mobile station MS1.
  • The receipt of the page response in the [0020] radio access network 10 triggers the situation illustrated in FIG. 3. In particular, the UDC 13 from core network CN1 is shown entering the generic radio access network 10 and continuing through a multiplexer 33 to access channel portion 13′ to the mobile station MS1. Also, UDC 30 is established from core network CNn to multiplexer 33 in the generic radio access network 10. Like UDC 13 from CN1, the UDC 30 from CNn includes a traffic channel 32 and a signaling channel 31. The traffic channel 32 and signaling channel 31 connect communications between the core network CNn and the multiplexer 33. Then, when the MS1 responds to a page request, it does so via channel 13′ to radio access network 10 (that is, the same channel being used previously to communicate from CN1 to MS1). MUX 33 then splits the signal such that data and signaling relevant to the previously established call are routed to CN1, while data and signaling relevant to the page response are routed to CN1. From radio access network 10, the established call data and signaling travels via UDC 13 (as before) and the page data/signaling travels via channel 30 (established between radio access network 10 and CNn).
  • Methods for routing traffic information in a [0021] multiplexer 33 are well-known and vary widely depending on the kinds of efficiencies desired and the practical constraints of core networks. One example method is to assign headers associated with the respective core networks (or, alternatively associated with the respective data types) to identify to the radio access network 10 (and specifically MUX 33) to which core network (and hence which caller) the data packets should be routed. One of ordinary skill in the art will well understand other ways to generically combine traffic information (such as packet data) in multiplexer 33, as depicted in FIG. 3. The effect of multiplexing the traffic at MUX 33 is a single channel between the generic radio access network 10 and the mobile station MS1 containing the traffic and signal information to/from both the core network CN1 and the core network CNn. As depicted in FIG. 3, the same UDC 13′ is employed from the generic radio access network 10 to the mobile station MS1 to provide the multiplexed traffic information 33 and the multiplexed signaling information 34 to the mobile station MS1, thus requiring the radio access network to assign and tie up only one channel (13′) for the one mobile station MS1.
  • As also depicted in FIG. 3, the mobile station MS[0022] 1 will continue to monitor the page channel 12 from the generic radio access network 10.
  • As one of ordinary skill in the art will readily understand, the present invention allows a mobile station to receive simultaneous calls from two different core networks, without further burdening mobile station channel availability at the radio access network. This can be particularly advantageous when the mobile station is engaged in an active voice telephone call and receives a page request for, for example, a short message service message. While the user is engaged in the voice telephone call, the mobile station can receive the short message service message from another core network and then display the short message service message to the user when the user has completed the voice telephone call, all over the [0023] same channel 13′. Other types of simultaneous call embodiments can also be envisioned in which the present invention allows multiplexed simultaneous calls to be received by a mobile station on a single channel.
  • By assigning two simultaneous calls to the same channel between a generic radio access network and a mobile station, channel capacity in the generic radio access network is reserved for other calls between the generic radio access network and other mobile stations. This thus preserves channel availability and reduces consumed radio resources. In addition, the generic radio access network in accordance with the present invention needs only to coordinate the connections when the paging is successful, which reduces the load on the generic [0024] radio access network 10.
  • The present invention also provides the advantage of eliminating any requirement of the generic radio access network to maintain a table of identities of mobile stations for paging coordination purposes. [0025]
  • In an alternative embodiment, the core network CN[0026] 1 is engaged in an active call via UDC 13 and then receives a second call request through the same core network (CNn) to the same mobile station MS1. In this embodiment, the same procedure can be employed in that the core network CN1 pages the mobile station MS1 with the second call request and the mobile station MS1 responds to the page indicating its ability to receive the calls simultaneously. In this embodiment, there is the added advantage of the core network node CN1 not needing to coordinate with existing connections to place the second call since the connection already exists between the core network CN1 and the mobile station MS1.
  • While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended [0027]

Claims (15)

What is claimed is:
1. A method of connecting calls through a radio access network to a mobile radio in active communication with a first core network on a first call, comprising the steps of:
receiving the first call on a first core network channel;
delivering the first call to the mobile radio on a call channel;
receiving a page request from a second core network;
delivering the page request to the mobile radio on a page channel while continuing to maintain the first call on the call channel;
receiving a page response from the mobile radio on the call channel;
establishing a second core network channel to the second core network; and
delivering the page response to the second core network on the second core network channel.
2. A method according to claim 1, further including the steps of:
receiving a second call from the second core network,
multiplexing the first call from the first core network with the second call from the second core network,
delivering the multiplexed first and second calls to the mobile radio on the call channel.
3. A method according to claim 1, wherein the first and second core networks are the same core network.
4. A method according to claim 1, wherein the step of receiving the page request occurs over a page channel monitored by the mobile radio while in said active communication on the first call.
5. A method according to claim 1, wherein the page response is delivered on a signaling line of the call channel.
6. A method according to claim 2, further including the step, after the step of delivering the multiplexed first and second calls, of:
simultaneously processing the first and second calls at the mobile radio.
7. A radio access network, comprising:
a plurality of network links to establish call traffic communications with a plurality of core networks,
a plurality of mobile station links to establish call traffic communications with a plurality of mobile stations,
a page channel monitored by the plurality of mobile stations and in communication with the core networks to receive page requests for the establishment of call connections to the mobile stations,
a multiplexer for combining call traffic communications from first and second core networks onto a single channel for communication of a plurality of calls to a single mobile station, said multiplexer being initiated by a page request on said page channel from said first core network and a page response on said single channel from said single mobile station.
8. A radio access network according to claim 7, wherein:
said page channel is in substantially continuous communication with said plurality of mobile stations.
9. A radio access network according to claim 7, wherein:
said plurality of network links establish a first call on a first core network channel from said first core network and a second call on a second core network channel from said second core network.
10. A radio access network according to claim 9, wherein:
said multiplexer combines said second call with said first call and delivers the combined signals onto said single channel.
11. A radio access network according to claim 7, wherein:
said plurality of network links and said plurality of mobile station links comprise traffic channels and signal channels, and
said multiplexer combines traffic channels from said first and second core networks and combines signal channels from said first and second core networks.
12. A radio access network according to claim 7, wherein:
said plurality of network links and said plurality of mobile station links comprise traffic channels and signal channels, and
said multiplexer routes traffic channels to corresponding first and second core networks and routes signal channels to corresponding first and second core networks.
13. A system for connecting a second call to a mobile radio engaged in an active first call, comprising:
a first core network,
a second core network,
a generic radio access network in communication with said first core network via a first core network channel and with a second core network via a second core network channel and containing a page channel in communication with said first and second core networks,
a plurality of mobile terminals in communication with said generic radio access network and monitoring said page channel, a first of said mobile terminals engaged in said active first call with said first core network via a mobile terminal call channel and the first core network channel,
wherein said generic radio access network includes a multiplexer to receive via the mobile terminal call channel a page response signal from said first mobile terminal and to route the page response signal to the second core network via the second core network channel while continuing to route said active first call from said mobile terminal call channel to said first core network via the first core network channel.
14. A system according to claim 13, wherein:
the first call is communicated between said generic radio access network and said first mobile terminal via first traffic and control channels of said mobile terminal call channel, and
after said page response, said multiplexer consolidates said first and second calls to first one mobile terminal via said first traffic and control channels.
15. A system according to claim 13, wherein:
the first call is communicated from said first core network to said generic radio access network via first traffic and control channels of said first core network channel,
the second call is communicated from said second core network to said generic radio access network via second traffic and control channels of said second core network channel,
the first and second calls are communicated from said generic radio access network to said first mobile terminal via third traffic and control channels of said mobile terminal call channel; and
the page request is received by said first mobile terminal via said page channel, the page response is sent by said first mobile radio to the generic radio access network via said third traffic and control channels, and the page response is sent by said generic radio access network to said second core network via said second traffic and control channels.
US09/938,484 1998-12-02 2001-08-27 Page response on existing radio signaling channel Abandoned US20020001291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/938,484 US20020001291A1 (en) 1998-12-02 2001-08-27 Page response on existing radio signaling channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/203,326 US6285667B1 (en) 1998-12-02 1998-12-02 Page response on existing radio signaling channel
US09/938,484 US20020001291A1 (en) 1998-12-02 2001-08-27 Page response on existing radio signaling channel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/203,326 Continuation US6285667B1 (en) 1998-12-02 1998-12-02 Page response on existing radio signaling channel

Publications (1)

Publication Number Publication Date
US20020001291A1 true US20020001291A1 (en) 2002-01-03

Family

ID=22753511

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/203,326 Expired - Fee Related US6285667B1 (en) 1998-12-02 1998-12-02 Page response on existing radio signaling channel
US09/938,484 Abandoned US20020001291A1 (en) 1998-12-02 2001-08-27 Page response on existing radio signaling channel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/203,326 Expired - Fee Related US6285667B1 (en) 1998-12-02 1998-12-02 Page response on existing radio signaling channel

Country Status (15)

Country Link
US (2) US6285667B1 (en)
EP (1) EP1135953B1 (en)
JP (1) JP2002532034A (en)
KR (1) KR20010080631A (en)
CN (1) CN1149890C (en)
AR (1) AR021865A1 (en)
AT (1) ATE341910T1 (en)
AU (1) AU2015100A (en)
BR (1) BR9915890A (en)
CA (1) CA2354067A1 (en)
DE (1) DE69933470T2 (en)
RU (1) RU2001117852A (en)
TW (1) TW443043B (en)
WO (1) WO2000033599A1 (en)
ZA (1) ZA200104366B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102200A1 (en) * 2001-02-05 2004-05-27 Virpi Palkisto Paging method and system for a radio access network
US20050250480A1 (en) * 2002-06-17 2005-11-10 Etienne Annic System and method of managing communication network-dedicated architecture on a terminal
US7061877B1 (en) * 1999-09-10 2006-06-13 Georgia Tech Reseach Corporation System and method for providing high speed wireless media access
US20080056214A1 (en) * 2006-08-31 2008-03-06 Via Telecom Co., Ltd. Systems and methods for wireless access terminal command processing
US20100238892A1 (en) * 2007-10-09 2010-09-23 Telefonaktiebolaget L M Ericsson Uplink power control method in a telecommunications network system that supports both common and separate tpc commands
US20110117946A1 (en) * 2009-11-16 2011-05-19 Nokia Siemens Networks Oy Load re-distribution with communications network control
US20120093086A1 (en) * 2009-06-26 2012-04-19 Huawei Technologies Co., Ltd. Method, Apparatus and System for Transmitting User Plane Data
US20120270545A1 (en) * 2011-04-25 2012-10-25 Apple Inc. Dual network mobile device radio resource management

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285667B1 (en) * 1998-12-02 2001-09-04 Telefonaktiebolaget Lm Ericsson Page response on existing radio signaling channel
FI109169B (en) * 1999-07-02 2002-05-31 Nokia Corp Providing control signaling in a telecommunications system
FI109863B (en) * 2000-01-26 2002-10-15 Nokia Corp Locating a subscriber terminal in a packet switched radio system
JP4649009B2 (en) * 2000-03-08 2011-03-09 株式会社東芝 Information processing apparatus having a card interface, card-type electronic equipment that can be mounted on the apparatus, and operation mode setting method in the apparatus
US6631259B2 (en) * 2000-03-31 2003-10-07 Motorola, Inc. Method for enabling receipt of a packet-switched page by a mobile station
US7451476B1 (en) * 2000-06-20 2008-11-11 Motorola, Inc. Method and apparatus for interfacing a network to an external element
KR100761185B1 (en) * 2000-08-31 2007-09-21 유티스타콤코리아 유한회사 Method for supporting multi-call when interworking utran with ansi-41 core network on enhanced mobile telecommunication system
SE519689C2 (en) * 2000-11-13 2003-04-01 Ericsson Telefon Ab L M Procedures and arrangements for improving interwoven voice and data traffic transmissions in a cellular telephone network.
US6842621B2 (en) * 2001-12-21 2005-01-11 Motorola, Inc. Method and apparatus for splitting control and media content from a cellular network connection
SE0200106D0 (en) * 2002-01-14 2002-01-14 Ericsson Telefon Ab L M A method and arrangement for paging in a mobile telecommunication system
US7623504B2 (en) * 2003-05-23 2009-11-24 Nokia Corporation Wireless data communications
US20040248616A1 (en) * 2003-06-05 2004-12-09 Pecen Mark Edward Method for enabling receipt of a packet-switched page by a mobile station
US20050117540A1 (en) * 2003-10-07 2005-06-02 Ravi Kuchibhotla Method and apparatus for routing messages in a network
CN100364255C (en) * 2004-03-15 2008-01-23 中国联合通信有限公司 Processing method of snchronously transmitting speech service in CDMA network pack data service
US8010092B2 (en) * 2004-06-23 2011-08-30 Genesys Telecommunications Laboratories, Inc. System for facilitating parallel data transfer from a wireless caller into a communications center
US7760704B2 (en) * 2004-06-29 2010-07-20 Interdigital Technology Corporation System and method for call routing and paging across different types of networks
CN100441041C (en) * 2005-04-06 2008-12-03 大唐移动通信设备有限公司 Rapid call building method
JP2007005943A (en) * 2005-06-21 2007-01-11 Kenwood Corp Simultaneous broadcast communication receiving system and method thereof
US8265660B1 (en) * 2007-09-28 2012-09-11 Sprint Spectrum L.P. Incoming call processing for mobile stations currently in an access state or paging state
CN101572875B (en) * 2008-04-30 2012-01-11 华为技术有限公司 Internetwork call holding method and device
WO2017207014A1 (en) * 2016-05-30 2017-12-07 Sony Mobile Communications Inc. Conditional data transmission based on the quality of the radio channel
KR20200087227A (en) * 2017-11-17 2020-07-20 라시크 아이엔씨. Methods, systems, and devices for storage and delivery of process gases from substrates
CN110557847B (en) * 2018-05-30 2024-01-05 华为技术有限公司 Communication method, device and storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533029A (en) * 1993-11-12 1996-07-02 Pacific Communication Sciences, Inc. Cellular digital packet data mobile data base station
US5535215A (en) * 1995-05-01 1996-07-09 Motorola, Inc. Method and apparatus for providing control channels and message channels in a radio communication system
US5745695A (en) * 1996-01-16 1998-04-28 Motorola Inc. Radio system with suspension of packet data service during non-data service connection
US6091953A (en) * 1997-08-06 2000-07-18 Nortel Networks Limited Distributed signaling message routing in a scalable wireless communication system
US6144647A (en) * 1996-11-04 2000-11-07 Telefonaktiebolaget Lm Ericsson Communication system, mobile services switching center and method for establishing a multi-dialogue communication between subscriber stations
US6163699A (en) * 1997-09-15 2000-12-19 Ramot University Authority For Applied Research And Industrial Development Ltd. Adaptive threshold scheme for tracking and paging mobile users
US6285667B1 (en) * 1998-12-02 2001-09-04 Telefonaktiebolaget Lm Ericsson Page response on existing radio signaling channel
US20020019241A1 (en) * 1998-10-06 2002-02-14 Jukka Vialen Paging control method and apparatus
US6505044B1 (en) * 1998-09-24 2003-01-07 Nokia Telecommunications Oy Indicator in the mobility management (MM) procedures to specify the procedure type executed in the core network (CN) entities

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69530193T2 (en) 1995-01-05 2004-01-29 Nippon Telegraph & Telephone DEVICE AND METHOD FOR COLLECTIVE CALL IN A MOBILE DATA TRANSMISSION SYSTEM

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533029A (en) * 1993-11-12 1996-07-02 Pacific Communication Sciences, Inc. Cellular digital packet data mobile data base station
US5535215A (en) * 1995-05-01 1996-07-09 Motorola, Inc. Method and apparatus for providing control channels and message channels in a radio communication system
US5745695A (en) * 1996-01-16 1998-04-28 Motorola Inc. Radio system with suspension of packet data service during non-data service connection
US6144647A (en) * 1996-11-04 2000-11-07 Telefonaktiebolaget Lm Ericsson Communication system, mobile services switching center and method for establishing a multi-dialogue communication between subscriber stations
US6091953A (en) * 1997-08-06 2000-07-18 Nortel Networks Limited Distributed signaling message routing in a scalable wireless communication system
US6163699A (en) * 1997-09-15 2000-12-19 Ramot University Authority For Applied Research And Industrial Development Ltd. Adaptive threshold scheme for tracking and paging mobile users
US6505044B1 (en) * 1998-09-24 2003-01-07 Nokia Telecommunications Oy Indicator in the mobility management (MM) procedures to specify the procedure type executed in the core network (CN) entities
US20020019241A1 (en) * 1998-10-06 2002-02-14 Jukka Vialen Paging control method and apparatus
US6285667B1 (en) * 1998-12-02 2001-09-04 Telefonaktiebolaget Lm Ericsson Page response on existing radio signaling channel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061877B1 (en) * 1999-09-10 2006-06-13 Georgia Tech Reseach Corporation System and method for providing high speed wireless media access
US7471957B2 (en) * 2001-02-05 2008-12-30 Nokia Corporation Paging method and system for a radio access network
US20040102200A1 (en) * 2001-02-05 2004-05-27 Virpi Palkisto Paging method and system for a radio access network
US20050250480A1 (en) * 2002-06-17 2005-11-10 Etienne Annic System and method of managing communication network-dedicated architecture on a terminal
US7860063B2 (en) * 2006-08-31 2010-12-28 Via Telecom Co., Ltd. Systems and methods for wireless access terminal command processing
US20080056214A1 (en) * 2006-08-31 2008-03-06 Via Telecom Co., Ltd. Systems and methods for wireless access terminal command processing
US20100238892A1 (en) * 2007-10-09 2010-09-23 Telefonaktiebolaget L M Ericsson Uplink power control method in a telecommunications network system that supports both common and separate tpc commands
US8594012B2 (en) 2007-10-09 2013-11-26 Telefonaktiebolaget L M Ericsson (Publ) Uplink power control method and user equipment supporting both common and separate TPC commands
US9532313B2 (en) 2007-10-09 2016-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Uplink power control method and user equipment supporting both common and separate TPC commands
US20120093086A1 (en) * 2009-06-26 2012-04-19 Huawei Technologies Co., Ltd. Method, Apparatus and System for Transmitting User Plane Data
US8817705B2 (en) * 2009-06-26 2014-08-26 Huawei Technologies Co., Ltd. Method, apparatus and system for transmitting user plane data
US20110117946A1 (en) * 2009-11-16 2011-05-19 Nokia Siemens Networks Oy Load re-distribution with communications network control
US20120270545A1 (en) * 2011-04-25 2012-10-25 Apple Inc. Dual network mobile device radio resource management
JP2014514873A (en) * 2011-04-25 2014-06-19 アップル インコーポレイテッド Radio resource management for dual network mobile devices
US8792888B2 (en) * 2011-04-25 2014-07-29 Apple Inc. Dual network mobile device radio resource management

Also Published As

Publication number Publication date
DE69933470D1 (en) 2006-11-16
BR9915890A (en) 2001-08-21
DE69933470T2 (en) 2007-08-16
RU2001117852A (en) 2003-06-27
JP2002532034A (en) 2002-09-24
EP1135953A1 (en) 2001-09-26
KR20010080631A (en) 2001-08-22
CA2354067A1 (en) 2000-06-08
CN1335033A (en) 2002-02-06
AU2015100A (en) 2000-06-19
AR021865A1 (en) 2002-08-07
WO2000033599A1 (en) 2000-06-08
EP1135953B1 (en) 2006-10-04
CN1149890C (en) 2004-05-12
ATE341910T1 (en) 2006-10-15
ZA200104366B (en) 2002-05-28
US6285667B1 (en) 2001-09-04
TW443043B (en) 2001-06-23

Similar Documents

Publication Publication Date Title
US6285667B1 (en) Page response on existing radio signaling channel
JP3243248B2 (en) Call processing method and system in communication switching system
US6778527B1 (en) Method and apparatus for data network call processing
EP0690640B1 (en) Intelligent wireless signaling overlay for a telecommunication network
KR100394284B1 (en) Method and apparatus for providing inter-switch handovers
JP2931227B2 (en) Exchange equipment
JPS62231546A (en) Interface circuit
JPH07221796A (en) Exchange device
US6526282B1 (en) Method and apparatus for controlling the restriction on traffic in mobile communication system
US6377572B1 (en) Virtual resource allocation method and apparatus for wireless data communication systems
US5758284A (en) Increasing the capacity of a personal communication service system by utilization of the bridged shared line appearance feature
JP3003714B2 (en) Mobile communication termination control method
JPH11355203A (en) Message transmission system
JPH11150753A (en) Mobile telephone system
JPH07222254A (en) Exchange device
US6717937B1 (en) Method and apparatus for voice over internet protocol resource management
JP2000209230A (en) Method and system for receiving group call in lan telephone system
MXPA01005409A (en) Page response on existing radio signaling channel
JP3496802B2 (en) Call connection method
JP2960349B2 (en) Mobile communication network
JPH10210101A (en) Wire telecomunication route selection system for mobile communicating radio base station
KR100372051B1 (en) Method for processing call in IMT-2000 system
JP2000115057A (en) Isdn service method of multidirectional multiple communication system
JPH04347936A (en) Mobile communication system and network information management method used in this system
JPH03242062A (en) Connectionless mode communication system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION