Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20020016530 A1
Publication typeApplication
Application numberUS 09/799,852
Publication dateFeb 7, 2002
Filing dateMar 5, 2001
Priority dateMar 22, 1999
Also published asUS6196970, US8527206, US20040193377
Publication number09799852, 799852, US 2002/0016530 A1, US 2002/016530 A1, US 20020016530 A1, US 20020016530A1, US 2002016530 A1, US 2002016530A1, US-A1-20020016530, US-A1-2002016530, US2002/0016530A1, US2002/016530A1, US20020016530 A1, US20020016530A1, US2002016530 A1, US2002016530A1
InventorsStephen Brown
Original AssigneeBrown Stephen J.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Research data collection and analysis
US 20020016530 A1
Abstract
The invention provides a method and system by which research data can be collected and analyzed during the course of the research testing, and the research testing itself possibly modified to account for conclusions drawn from the research data. In a first aspect of the invention, a research subject can respond to a protocol stored on a server by manipulating input keys on a remotely located client device onto which a research protocol has been installed. The protocol can include questions concerning the subject's physical or mental well being such as whether their symptoms are relieved or not, or even exacerbated. The protocol can also include calling for data obtained by coupling the client device with another medical device such as a glucose monitor. In a preferred embodiment, the subject is presented with narrowly structured questions and suggested answers provided by the protocol. The set of possible answers is restricted. In the event that a suggested answer is ambiguous, inapplicable or raises new questions, a protocol can present a new question to the subject. This elimination of fuzzy answers imposes a logical structure upon the subjects' assessments. In a second aspect of the invention, data entered by the subject is relayed using a communication link to a server device. This incoming data can be aggregated with other incoming data from subjects and their associated client devices. In a preferred embodiment, the data is statistically analyzed according to parameters set by the protocol. In a third aspect of the invention, a remote expert research clinician can review incoming data from either the aggregated population or from individuals as it is being analyzed. Such rapid collection and analysis allows a researcher to change the protocol in response to the trend of the data, correlate different parameters of the data so as to better identify subjects that are responding to treatment and schedule appropriate interventions as needed. The researcher can also identify specific subgroups among the population of subjects, initiate new lines of inquiry and test new sub-hypotheses that may be raised by the incoming data. This includes correlating different drug responses experienced by phenotypically similar subjects with gene expression, and other variables.
Images(4)
Previous page
Next page
Claims(21)
1. A method including steps for
collecting data for a plurality of subjects, using at least a portion of a protocol for collecting data, wherein said protocol includes steps for receiving data from an input device;
sending data collected from said input device to a server device relatively remote from said input device;
performing a data manipulation technique on data associated with more than one of said subjects;
presenting a result of said data manipulation technique at a presentation device relatively remote from said input device;
wherein said steps for presenting occur in conjunction with repeated performance of said steps for collecting.
2. A method as in claim 1, including steps for modifying at least a portion of said protocol in response to said result, wherein said steps for collecting are altered for at least some performances thereof.
3. A method as in claim 1, wherein each said subject is associated with an individual input device.
4. A method as in claim 1, wherein said data manipulation technique includes aggregating said data, combining said data, or performing a statistical operation with regard to said data.
5. A method as in claim 1, wherein said data manipulation technique includes
storing said data at a device relatively remote from said input device;
receiving a data manipulation inquiry from said presentation device;
performing said data manipulation inquiry; and
presenting a result of said data manipulation inquiry at said presentation device.
6. A method as in claim 1, wherein said data manipulation technique is specified by at least a portion of said protocol.
7. A method as in claim 1, wherein said steps for sending data are performed in response to a time period, an event associated with said presentation device, or an event associated with said subject.
8. A method as in claim 1, wherein at least a portion of said protocol includes presenting instructions to one said subject and receiving data from said input device in response thereto.
9. A method as in claim 8, wherein said input device includes a keyboard, a microphone, a motion sensor, a pointing device, a set of buttons, or a switch.
10. A method as in claim 8, wherein said input device includes a medical device.
11. A method as in claim 1, wherein at least a portion of said protocol includes presenting questions to one said subject and receiving answers from said subject in response thereto.
12. A method as in claim 11, wherein said operation of presenting questions includes presenting structured answers and said operation of receiving answers includes receiving a selection from a set of restricted possible answers.
13. A method as in claim 1, wherein at least a portion of said protocol is performed at a client device located relatively proximate to said input device.
14. A method as in claim, 13, wherein said portion is altered at said client device in response to said presentation device.
15. A method as in claim 13, wherein said portion is received by said client device in response to said server device.
16. A method as in claim 1, including steps for
providing a second protocol;
selecting a portion of said plurality of subjects in response to said data manipulation technique; and
altering said steps for collecting data to perform said one protocol for unselected ones of said subjects, and to perform said second protocol for selected ones of said subjects;
wherein said steps for collecting are altered for at least some performances thereof.
17. A method as in claim 16, wherein said steps for selecting are performed in response to a genotype, a gene expression, or a phenotype of one or more of said subjects.
18. Apparatus including
an input device disposed for coupling to a subject, said input device including a processor for performing at least a portion of a protocol for receiving data from said subject;
a server device relatively remote from said input device;
a communication link between said input device and said server device;
a processor including software for performing a data manipulation technique on data associated with more than one of said subjects;
a presentation device relatively remote from said input device, coupled to said processor, said presentation device disposed for presenting a result of said data manipulation technique;
wherein said steps for presenting occur in conjunction with repeated performance of said steps for collecting.
19. Apparatus as in claim 18, including a message modifying at least a portion of said protocol in response to said result, wherein said steps for collecting are altered for at least some performances thereof.
20. Apparatus as in claim 18, wherein said input device includes a keyboard, a microphone, a motion sensor, a pointing device, a set of buttons, or a switch.
21. Apparatus as in claim 18, wherein said input device includes a medical device.
Description
    RELATED APPLICATIONS
  • [0001]
    Inventions described herein can be used in combination or conjunction with inventions described in the following patent application(s):
  • [0002]
    Application Ser. No. ______, Express Mail Mailing No. EE143637591US, filed Nov. 30, 1998, in the name of Stephen J. Brown, titled “Leveraging Interaction with A Community of Individuals,” assigned to the same assignee, attorney docket number HHN-007, and all pending cases claiming priority thereof.
  • [0003]
    Application Ser. No. ______, Express Mail Mailing No. EJ384008769US, filed ______, in the name of Steven J. Brown, titled “Patient Initiated Contact,” assigned to the same assignee, attorney docket number HHN-021, and all pending cases claiming priority thereof.
  • [0004]
    These applications are each hereby incorporated by reference as if fully set forth herein. These applications are collectively referred to herein as “incorporated disclosures.”
  • BACKGROUND OF THE INVENTION
  • [0005]
    1. Field of the Invention
  • [0006]
    This invention relates to research data collection and analysis.
  • [0007]
    2. Related Art
  • [0008]
    Human beings are sometimes used as subjects in different types of medical, psychological, and other research. Generally, such research fits into one of several broad categories: academic or industrial research, FDA clinical trials, and marketing and sales research. Human beings are also used as research subjects in experiments designed to correlate genotype and phenotype with drug reactions. For example, a researcher may seek to learn whether patients with the genotype for sickle cell disorder experience greater light sensitivity when taking a specific antibiotic.
  • [0009]
    Academic and industrial investigators often employ human subjects to learn how humans respond to some pre-determined stimuli such as a drug or a psychological event. For a first example, an academic researcher may use post-menopausal women as subjects in experiments designed to widen our understanding of the neuroendocrine response to ethanol. Many different types of data can be obtained in such experiments. In this first example, a researcher could correlate the data on different hormone levels with blood alcohol levels, the frequency of selected patient behaviors, number of cigarettes smoked and many other possible factors. These data can be aggregated with similar data from other researchers and conclusions can be drawn based upon their observations.
  • [0010]
    A second area in which human subjects are sometimes used as a research tool involves government approval of new drugs for human patients. The Food and Drug Administration (FDA) approves new drugs that are to be marketed for human consumption. Presently, FDA approval is contingent upon the drug successfully passing three phases of testing during which the drug is blindly administered to human subjects. Taken together, these three phases of testing are called clinical trials. Only those drugs that successfully complete all three phases of clinical trials can be marketed.
  • [0011]
    In the general course of events, the sponsor of a drug will submit an application and protocol to the FDA for clinical testing. After the application is reviewed and approved, Phase I of clinical testing begins. Experienced clinical investigators administer the drug to a small number of healthy volunteers. Although drug dosage and metabolism may be studied, the main focus of this initial testing phase is drug safety. Since safety concerns are paramount, testing is performed on a relatively small population (between 20 to 100 subjects) for a short period of time. Drugs that induce toxic reactions or other adverse effects do not advance to Phase II. This initial screening eliminates approximately 30% of all applicants.
  • [0012]
    The main focus of Phase II testing is to determine whether the drug is an effective treatment. Since the focus is on the effectiveness of the drug and the threat of adverse reactions has been largely ruled out, Phase II clinical trials involve a larger number of subjects (up to several hundred) who suffer from a problem the drug is designed to treat. Phase II trials may involve the blind testing of up to several hundred subjects. Only 33% of all drugs advance to phase III testing.
  • [0013]
    Phase III testing may involve up to several thousand subjects. This phase lasts longer (between one to four years) than either Phase I or Phase II. Here, the safety, dosage and effectiveness of the new drug are all rigorously screened. Between 25-30% of all drugs pass phase III trials and receive the required approval necessary for marketing.
  • [0014]
    An additional level of testing is also employed. After a new drug has passed all three phases of clinical trials, researchers may also want to learn if any adverse effects occur after the drug is marketed. Thus, additional investigation may involve post-marketing surveillance of patients who have been administered the drug after it is approved by the FDA. Such post marketing surveillance is a useful tool that helps researchers learn more about how patients respond to a specific drug.
  • [0015]
    Known marketing and sales research includes attempting to elicit responses from human participants regarding whether those participants would be more or less likely to purchase selected goods or services. It is known to attempt to correlate responses with demographic data about the participants (such as age, gender, household income, or residence locale), as well as psychological and other information about participants (such as whether participants are considered “early adopters”).
  • [0016]
    Known methods for collecting and analyzing data from human subjects in research suffer from several drawbacks. While these methods generally achieve their respective goals of learning more about the human response to various stimuli, screening out ineffective and unnecessarily toxic drugs, and providing useful information for marketing or sales, known methods suffer from several drawbacks and limitations that can make them time-consuming or inefficient.
  • [0017]
    A first problem in the known art is that collection of data from subjects or participants in research or clinical trials often involves obtaining and analyzing fizzy assessments from subjects who are not necessarily under the continual observation of a clinician or other personnel. Indeed, many subjects (such as the controls in clinical trials) are not under the care of a physician at all, but merely report to an expert researcher periodically for testing and analysis. Such testing and analysis frequently involves self-reporting a number of parameters. A subject's answer to an inquiry often involves the making of a fuzzy assessment of physical state, mood or quality of life. Accordingly, there is a need for a method to evaluate and standardize such fuzzy self-assessments.
  • [0018]
    A second problem in the known art is that researchers are unable to respond to incoming data in real time. In known methods, data from research or clinical trials is collected and stored for analysis at a later time. Frequently, researchers or lab technicians enter their observations in a paper copy of a log book or lab notebook. Often these results are entered near the end of an experiment. This practice makes it impossible for an investigator to evaluate the data or change the experimental design. While researchers may have an approximate idea as to the general trend of incoming data, they are frequently unable to respond to that trend until the data is analyzed, well after any opportunity for altering the method of collection or the nature of the data collected. Accordingly, researchers are unable to modify a clinical protocol while in process. This inability to evaluate and respond to incoming data during data collection can create conditions that are dangerous for the subjects of the research. It is believed that morbidity and mortality associated with evaluation of new drugs would be substantially reduced if researchers could respond during the research, such as to halt the clinical trial or adjust the drug dosage. Accordingly, there is a need to evaluate and respond to subjects in real time.
  • [0019]
    A third problem in the known art is that collection of data from research and clinical trials often calls for the aggregation of data from many different geographical testing sites. It is believed that drug testing and other research would be quicker if there were a way to aggregate data and respond to it in real time, during the time of the trials or research. Accordingly, there is a need to aggregate and analyze data from many remote sites.
  • [0020]
    A fourth problem in the known art is that identification of subjects in clinical trials who respond to a drug is not always readily apparent because it frequently requires evaluation of many different parameters. Part of this problem involves the nature of disease. In some cases, an acute condition will spontaneously heal, regardless of treatment. Chronic diseases often follow an unpredictable course as symptoms abate for a time and then worsen. Under these conditions, it is often difficult to determine whether the change in the subject's condition may be attributed to the drug or some other factor. Identifying subjects who respond to a drug is particularly problematic in Phase II trials where the issue is the efficacy of the drug. Accordingly, there is a need to be able to distinguish responders from non-responders on the basis of many different factors.
  • [0021]
    A fifth problem in the known art involves the nature of research with human subjects. Most experiments involving administration of drugs are either blinded or double blinded. In blinded studies, the subject does not know whether they are receiving the active drug or a placebo. In essence, although the investigator knows what the subject is receiving, the subject does not know whether or not they are being used as a control. In double-blinded subjects, neither the researcher nor the research subject is aware of the subject's status. Blinded studies are problematic because researcher may impose his own bias on the incoming data. Double-blinded studies are problematic because the researcher may not be sensitive to phenomena that the subject is experiencing. Another problem raised in double-blinded studies is that the investigator very often becomes unblinded when observing the effect of a drug on a research subject. According, there is a need for an impartial, unbiased observer that remains responsive to the research subjects.
  • [0022]
    Accordingly, it would be advantageous to provide a technique by which research data can be collected and analyzed during the course of the research testing, and the research testing itself possibly modified to account for conclusions drawn from the research data. For example, it would be advantageous to provide a device that can be carried by a research subject or participant that can be coupled and uncoupled to a communication system that is also accessible to researchers and other remote experts. Such a device would allow researchers to (1) collect, analyze and respond to input from the research subjects or participants in real time, (2) evaluate fuzzy assessments made by a subject or participant by making progressively narrower inquiries designed to obtain specific data, (3) aggregate and analyze data from a large number of remote sites quickly, (4) change the research protocol in response to input from subjects in real time and (5) rapidly identify responders and non-responders by correlating the data with a number of disparate parameters that are not necessarily apparent when the study begins. These advantages are achieved in embodiments of the invention in which a research subject enters data using a client device that is coupled to a server via a communication link.
  • SUMMARY OF THE INVENTION
  • [0023]
    The invention provides a method and system by which research data can be collected and analyzed during the course of the research testing, and the research testing itself possibly modified to account for conclusions drawn from the research data. In a first aspect of the invention, a research subject can respond to a protocol stored on a server by manipulating input keys on a remotely located client device onto which a research protocol has been installed. The protocol can include questions concerning the subject's physical or mental well being such as whether their symptoms are relieved or not, or even exacerbated. The protocol can also include calling for data obtained by coupling the client device with another medical device such as a glucose monitor. In a preferred embodiment, the subject is presented with narrowly structured questions and suggested answers provided by the protocol. The set of possible answers is restricted. In the event that a suggested answer is ambiguous, inapplicable or raises new questions, a protocol can present a new question to the subject. This elimination of fuzzy answers imposes a logical structure upon the subjects' assessments.
  • [0024]
    In a second aspect of the invention, data entered by the subject is relayed using a communication link to a server device. This incoming data can be aggregated with other incoming data from subjects and their associated client devices. In a preferred embodiment, the data is statistically analyzed according to parameters set by the protocol.
  • [0025]
    In a third aspect of the invention, a remote expert research clinician can review incoming data from either the aggregated population or from individuals as it is being analyzed. Such rapid collection and analysis allows a researcher to change the protocol in response to the trend of the data, correlate different parameters of the data so as to better identify subjects that are responding to treatment and schedule appropriate interventions as needed. The researcher can also identify specific subgroups among the population of subjects, initiate new lines of inquiry and test new sub-hypotheses that may be raised by the incoming data. This includes correlating different drug responses experienced by phenotypically similar subjects with gene expression, and other variables.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0026]
    In the following descriptions, a preferred embodiment of the invention is described with regard to preferred process steps and data structures. Embodiments of the invention can be implemented using general-purpose processors or special purpose processors operating under program control, or other circuits, adapted to particular process steps and data structures described herein. Implementation of the process steps and data structures described herein would not require undue experimentation or further invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0027]
    [0027]FIG. 1 shows a block diagram of a system 100 to collect and analyze data from human research subjects.
  • [0028]
    [0028]FIG. 2 shows a process flow diagram of a method for operating a system for interaction with a community of individuals, including research subjects and investigators.
  • [0029]
    System Elements
  • [0030]
    [0030]FIG. 1 shows a block diagram of a system 100 to collect and analyze data from human subjects engaged in medical research using a protocol or other intelligent message, which acts in place of a researcher, investigator, clinician or other medical expert.
  • [0031]
    A system 100 includes a set of subject devices 110, a set of medical research expert devices 120 and a server device 130. The subject device 110, the medical research expert device 120 and the service device 130 are coupled using a communication network 140.
  • [0032]
    The set of research subject devices 110 is used by a set of research subjects 111. Each research subject device includes an output element 112, an input element 113 and a port 114. The subject 111 manipulates the subject device 110 to send feedback from the subject 111 to the server 130 and to receive information from the protocol 131. Port 114 can be coupled to a variety of medical appliances to send additional data to the server 130.
  • [0033]
    The set of medical research expert devices 120 is used by a set of medical research experts 121. Each medical expert device includes an output element 122 and an input element 123.
  • [0034]
    The server device 130 includes a protocol 131 and a database 132.
  • [0035]
    For further information regarding a data structure and simplified research subject interface, and preferred embodiments of the subject device 110, medical research expert device 120 and the server device 130 including data base 132, see related application Ser. No. ______, Express Mailing No. EE143637591US, filed Nov. 30, 1998 in the name of Stephen J. Brown, titled “Leveraging Interaction with a Community of Individuals,” assigned to the same assignee, attorney docket number HHN-007, and other related applications incorporated by reference therein.
  • [0036]
    For further information regarding the protocol or other intelligent message used by the system, see related application Ser. No. ______, Express Mailing No. EE143637565US, filed Dec. 1, 1998, in the name of Stephen, J. Brown, titled “Remote User Data Collection Protocols Including Data Structures and User Interface,” assigned to the same assignee, attorney docket number HHN-002 and other related applications incorporated by references therein.
  • [0037]
    For information regarding a medicine dispenser which can be used by the system, see related application Ser. No. 09/203,880, Express Mail Mailing No. EE143637557US, filed Dec. 1, 1998, in the name of Stephen J. Brown, et al., titled “Using a Computer Communication System with Feedback to Dispense Medicine,” assigned to the same assignee, attorney docket number HHN-005, and other related applications incorporated by reference therein.
  • [0038]
    For information regarding genotype and phenotype correlation, see related application Ser. No. 08/850,840, Express Mail Mailing No. EI113824573US, filed May 3, 1998 in the name of Stephen J. Brown, et al. titled “System and Method for Preventing, Diagnosing and Treating Genetic and Pathogen-Caused Disease”, assigned to the same assignee, attorney docket number RYA-128 application Ser. No 09/041,809, Express Mail Mailing No. EE262620680US, filed Mar. 13, 1998 in the name of Stephen J Brown, et al. titled Phenoscope and Phenobase” assigned to the same assignee, attorney docket number RYA 136.
  • [0039]
    Method of Operation
  • [0040]
    [0040]FIG. 2 shows a process flow diagram of a method for collecting data from human research subjects to be performed by the system and for analyzing and reporting that data to research experts.
  • [0041]
    A method 200 is performed by a system 100, as follows:
  • [0042]
    At a flow point 201, the system 100 is ready to proceed.
  • [0043]
    At a step 202, a medical research expert 121 enters information concerning the type of data to be collected from a set of subjects 111 and a protocol 131 on a medical research expert device 120.
  • [0044]
    At a step 203, the research information and protocol 131 entered onto the medical research expert device 120 is sent to a server device 130 using the communication network 140.
  • [0045]
    At a step 204, the server device 130 records the research information and protocol 131 submitted by the medical research expert 121 in the database 132.
  • [0046]
    At a step 205 in a preferred embodiment, the server device 130 sends the research information and protocol 131 to a set of research subject devices 110 using the communication network 140. In alternative embodiments, the server device 130 may send the research and protocol 131 information to other medical research experts 121 for review.
  • [0047]
    At a step 206 the set of research subjects 111 view some portion of the protocol 131 that was sent to the set of research subject devices 110 by looking at a presentation screen or other output element 112 contained in the research subject device 110.
  • [0048]
    At a step 207, the set of subjects 111 respond to the protocol 131 sent to the set of research subject devices 110 by manipulating a keypad or other input 113 included in the research subject device 110. Alternatively, the set of subjects 111 respond to the protocol 131 sent to them by coupling the subject device 110, using a port 114 included in the research subject device 110, to a medical appliance such as one or more of, or some combination of, the following: a blood glucose meter, an oxymeter, a peak flow meter, a blood pressure gauge, a weight scale, a pulse sensor, a home infusion system, a CPAP sleep apnea device, a location sensing device, a digital video camera or a drug dispensing apparatus.
  • [0049]
    At a step 208, the research subject 111 has completed responding to the protocol 131.
  • [0050]
    At a step 209, the subject device 110 is coupled to a communication network 140 which sends the information entered by the subject 111 in response to the protocol 131 to the server device 130.
  • [0051]
    At a step 210 the information received by the server device 130 is recorded in the database 132.
  • [0052]
    At a step 211, the information received from the research subject devices 110 is aggregated and statistically analyzed.
  • [0053]
    At a step 212, in a preferred embodiment, the server device 130 sends the information received from the research subject devices 110 to the various medical research experts 121. In an alternative embodiment, the server device 130 does not send the information. The information remains available on the server device 130 where it can be looked up by interested parties.
  • [0054]
    At a step 213, the information received by the server device 130 from the research subject device 110 is evaluated by the protocol 131.
  • [0055]
    At a step 214, the protocol 131 updates the research information and either leaves it unchanged or modifies it in accordance with the protocol logic.
  • [0056]
    At a step 215, in a preferred embodiment, the server device 130 sends the updated research information and protocol 131 to the set of research expert devices 121 using the communication network 140. In an alternative embodiment, the server device 130 does not send the updated research information to the medical research expert device 120.
  • [0057]
    At a step 216, the medical research expert 121 review the updated information and protocol 131 and the other information input by the set of research subjects 111 and either leave the updated research information and protocol unchanged or modify it as necessary. In an alternative embodiment, step 216 does not take place.
  • [0058]
    At a step 217, in a preferred embodiment, the research information and protocol 131 as unchanged or modified by the medical research expert(s) 121 is sent to the server device 130 using the communications network 140. In an alternative embodiment, step 217 does not take place.
  • [0059]
    At a step 218, the server device 130 records the modified research and protocol 131 information sent by the medical research expert 121 in the database 132. In an alternative embodiment, step 218 does not take place.
  • [0060]
    At a step 219 in a preferred embodiment, the server device 130 sends the research and protocol 131 information as unchanged or as modified by the medical research expert 121 to the research subject device 110 using the communication network 130. In an alternative embodiment, step 219 does not take place.
  • [0061]
    At a step 220, the research subject 111 views the unchanged or modified protocol, as they did in step 206.
  • [0062]
    At a step 221, the method repeats steps 207 through 216 until all desired information is obtained from the subject and the protocol 131 has been completed. After sending the information to the medical research expert(s) for final review (step 216), the information resides in the database and the method is complete.
  • [0063]
    At a step 222, the method has completely performed a system 100.
  • [0064]
    Alternative Embodiments
  • [0065]
    Although preferred embodiments are disclosed herein, many variations are possible which remain within the concept, scope and spirit of the invention, and these variations would become clear to those skilled in the art after perusal of this application.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7444293 *Oct 10, 2001Oct 28, 2008Fasttrack Systems, Inc.Protocol disambiguation using a model-based methodology
US7685262 *Jan 24, 2003Mar 23, 2010General Electric CompanyMethod and system for transfer of imaging protocols and procedures
US7766829Nov 4, 2005Aug 3, 2010Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US7811231Oct 12, 2010Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US7860544Mar 7, 2007Dec 28, 2010Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7869853Jan 11, 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7885699Feb 8, 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7920907Jun 7, 2007Apr 5, 2011Abbott Diabetes Care Inc.Analyte monitoring system and method
US7928850Apr 19, 2011Abbott Diabetes Care Inc.Analyte monitoring system and methods
US7976778Jul 12, 2011Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US8066639Jun 4, 2004Nov 29, 2011Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8103456Jan 24, 2012Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US8112240Apr 29, 2005Feb 7, 2012Abbott Diabetes Care Inc.Method and apparatus for providing leak detection in data monitoring and management systems
US8123686Mar 1, 2007Feb 28, 2012Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US8149117Aug 29, 2009Apr 3, 2012Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8162829Mar 30, 2009Apr 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8175673Nov 9, 2009May 8, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8177716Dec 21, 2009May 15, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8187183Oct 11, 2010May 29, 2012Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8224413Oct 10, 2008Jul 17, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226555Mar 18, 2009Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226557Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226558Sep 27, 2010Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226891Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US8231532Apr 30, 2007Jul 31, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8235896Dec 21, 2009Aug 7, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8236242Feb 12, 2010Aug 7, 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US8251904Aug 28, 2012Roche Diagnostics Operations, Inc.Device and method for insulin dosing
US8255031Mar 17, 2009Aug 28, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8260392Sep 4, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8265726Sep 11, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8268243Dec 28, 2009Sep 18, 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US8273022Sep 25, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8275439Nov 9, 2009Sep 25, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8287454Oct 16, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8306598Nov 9, 2009Nov 6, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8346336Mar 18, 2009Jan 1, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8346337Jun 30, 2009Jan 1, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8353829Dec 21, 2009Jan 15, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8357091Jan 22, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8362904Jan 29, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8366614Mar 30, 2009Feb 5, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8372005Dec 21, 2009Feb 12, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8380273Feb 19, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8391945Mar 17, 2009Mar 5, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8409131Mar 7, 2007Apr 2, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8437966May 7, 2013Abbott Diabetes Care Inc.Method and system for transferring analyte test data
US8456301May 8, 2008Jun 4, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8461985May 8, 2008Jun 11, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8465425Jun 18, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8473021Jul 31, 2009Jun 25, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8473220Jan 23, 2012Jun 25, 2013Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US8480580Apr 19, 2007Jul 9, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8483974Nov 20, 2009Jul 9, 2013Abbott Diabetes Care Inc.Method and system for transferring analyte test data
US8504380Jun 5, 2003Aug 6, 2013Medidata Solutions, Inc.Assistance for clinical trial protocols
US8512239Apr 20, 2009Aug 20, 2013Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8533008Jul 20, 2009Sep 10, 2013Medidata Solutions, Inc.Clinical trials management system and method
US8560250Aug 18, 2010Oct 15, 2013Abbott LaboratoriesMethod and system for transferring analyte test data
US8585591Jul 10, 2010Nov 19, 2013Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US8593109Nov 3, 2009Nov 26, 2013Abbott Diabetes Care Inc.Method and system for powering an electronic device
US8593287Jul 20, 2012Nov 26, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8597189Mar 3, 2009Dec 3, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8597575Jul 23, 2012Dec 3, 2013Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US8612159Feb 16, 2004Dec 17, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8617071Jun 21, 2007Dec 31, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8620677Apr 9, 2002Dec 31, 2013Pcrs, Inc.Online, interactive evaluation of research performance
US8622903May 25, 2012Jan 7, 2014Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8622906Dec 21, 2009Jan 7, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8641619Dec 21, 2009Feb 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8647269Apr 20, 2009Feb 11, 2014Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8649841Apr 3, 2007Feb 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8652043Jul 20, 2012Feb 18, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8660627Mar 17, 2009Feb 25, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8661453Oct 24, 2011Feb 25, 2014Medicity, Inc.Managing healthcare information in a distributed system
US8665091Jun 30, 2009Mar 4, 2014Abbott Diabetes Care Inc.Method and device for determining elapsed sensor life
US8666469Nov 16, 2007Mar 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8668645Jan 3, 2003Mar 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8670815Apr 30, 2007Mar 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8672844Feb 27, 2004Mar 18, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8676513Jun 21, 2013Mar 18, 2014Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US8682598Aug 27, 2009Mar 25, 2014Abbott LaboratoriesMethod and system for transferring analyte test data
US8688188Jun 30, 2009Apr 1, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8732188Feb 15, 2008May 20, 2014Abbott Diabetes Care Inc.Method and system for providing contextual based medication dosage determination
US8734346Apr 30, 2007May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8734348Mar 17, 2009May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8738109Mar 3, 2009May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8744545Mar 3, 2009Jun 3, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8765059Oct 27, 2010Jul 1, 2014Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US8771183Feb 16, 2005Jul 8, 2014Abbott Diabetes Care Inc.Method and system for providing data communication in continuous glucose monitoring and management system
US8774887Mar 24, 2007Jul 8, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8840553Feb 26, 2009Sep 23, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8880137Apr 18, 2003Nov 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8915850Mar 28, 2014Dec 23, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8920319Dec 28, 2012Dec 30, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8930203Feb 3, 2010Jan 6, 2015Abbott Diabetes Care Inc.Multi-function analyte test device and methods therefor
US8933664Nov 25, 2013Jan 13, 2015Abbott Diabetes Care Inc.Method and system for powering an electronic device
US8974386Nov 1, 2005Mar 10, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8990834Feb 3, 2014Mar 24, 2015Medicity, Inc.Managing healthcare information in a distributed system
US8993331Aug 31, 2010Mar 31, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods for managing power and noise
US9000929Nov 22, 2013Apr 7, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9011331Dec 29, 2004Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9011332Oct 30, 2007Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9014773Mar 7, 2007Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9035767May 30, 2013May 19, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9039975Dec 2, 2013May 26, 2015Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US9042953Mar 2, 2007May 26, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066694Apr 3, 2007Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066695Apr 12, 2007Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066697Oct 27, 2011Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066709Mar 17, 2014Jun 30, 2015Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US9072477Jun 21, 2007Jul 7, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9078607Jun 17, 2013Jul 14, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9095290Feb 27, 2012Aug 4, 2015Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US9177456Jun 10, 2013Nov 3, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9226701Apr 28, 2010Jan 5, 2016Abbott Diabetes Care Inc.Error detection in critical repeating data in a wireless sensor system
US9314195Aug 31, 2010Apr 19, 2016Abbott Diabetes Care Inc.Analyte signal processing device and methods
US9314198Apr 3, 2015Apr 19, 2016Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9320461Sep 29, 2010Apr 26, 2016Abbott Diabetes Care Inc.Method and apparatus for providing notification function in analyte monitoring systems
US9323898Nov 15, 2013Apr 26, 2016Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US9326714Jun 29, 2010May 3, 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9326716Dec 5, 2014May 3, 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9380971Dec 5, 2014Jul 5, 2016Abbott Diabetes Care Inc.Method and system for powering an electronic device
US20030139946 *Jan 21, 2003Jul 24, 2003Van Mierlo Trevor David VernonMethod of collecting data on anxiety disorders and related research
US20040148403 *Jan 24, 2003Jul 29, 2004Choubey Suresh K.Method and system for transfer of imaging protocols and procedures
US20040172284 *Feb 13, 2003Sep 2, 2004Roche Diagnostics CorporationInformation management system
US20040249664 *Jun 5, 2003Dec 9, 2004Fasttrack Systems, Inc.Design assistance for clinical trial protocols
US20050003470 *Jun 4, 2004Jan 6, 2005Therasense, Inc.Glucose measuring device for use in personal area network
US20050149363 *Jan 7, 2004Jul 7, 2005Jonathan LoitermanData collection and process control system
US20070078818 *Jun 7, 2006Apr 5, 2007Roche Diagnostics Operations, Inc.Device and method for insulin dosing
US20070255595 *Jun 21, 2007Nov 1, 2007Nickell Robert PPharmaceutical compound business methodology and software
US20090063428 *Aug 18, 2008Mar 5, 2009Alden MeierAutomated protocol screening to qualify patients to participate in a clinical trial
US20090313048 *Jul 20, 2009Dec 17, 2009Medidata Ft, Inc.Clinical trials management system and method
US20100076288 *Mar 25, 2010Brian Edmond ConnollyMethod and System for Transferring Analyte Test Data
US20100121168 *Nov 20, 2009May 13, 2010Abbott Diabetes Care Inc.Method and System for Transferring Analyte Test Data
US20110029895 *Mar 30, 2009Feb 3, 2011Adrian TernouthSystem and method for conducting on-line research
US20120101843 *Oct 24, 2011Apr 26, 2012Medicity, Inc.System and method for anonymizing patient data
Classifications
U.S. Classification600/300, 705/2, 128/920
International ClassificationG06F19/00, G06F19/28, A61B5/00, A61B5/0205, A61B5/087
Cooperative ClassificationY10S128/92, A61B5/0002, G06F19/363, G06Q50/22, A61B5/1455, A61B5/14532, A61B5/7264, A61B5/0871, A61B5/0205, G06F19/28
European ClassificationG06F19/36A, G06Q50/22, A61B5/00B