US20020018991A1 - Method for concurrently processing multiple biological chip assays - Google Patents

Method for concurrently processing multiple biological chip assays Download PDF

Info

Publication number
US20020018991A1
US20020018991A1 US09/247,430 US24743099A US2002018991A1 US 20020018991 A1 US20020018991 A1 US 20020018991A1 US 24743099 A US24743099 A US 24743099A US 2002018991 A1 US2002018991 A1 US 2002018991A1
Authority
US
United States
Prior art keywords
biological chip
probes
biological
chip plate
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/247,430
Inventor
Richard P. Rava
Stephen P. A. Fodor
Mark Trulson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affymetrix Inc
Original Assignee
Affymetrix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23893507&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20020018991(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US09/247,430 priority Critical patent/US20020018991A1/en
Application filed by Affymetrix Inc filed Critical Affymetrix Inc
Assigned to AFFYMETRIX, INC., A DELAWARE CORPORATION reassignment AFFYMETRIX, INC., A DELAWARE CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: AFFYMETRIX, INC., A CALIFORNIA CORPORATION
Assigned to AFFYMAX TECHNOLOGIES N.V. reassignment AFFYMAX TECHNOLOGIES N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NORVIEL, VERNON A.
Assigned to AFFYMETRIX INC. reassignment AFFYMETRIX INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AFFYMAX TECHNOLOGIES N.V.
Publication of US20020018991A1 publication Critical patent/US20020018991A1/en
Priority to US10/157,252 priority patent/US6720149B1/en
Priority to US10/795,086 priority patent/US20050042628A1/en
Priority to US10/997,492 priority patent/US20050123907A1/en
Priority to US11/044,834 priority patent/US20050181403A1/en
Priority to US11/173,366 priority patent/US20050282156A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/00432Photolithographic masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00617Delimitation of the attachment areas by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • B01J2219/00662Two-dimensional arrays within two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00707Processes involving means for analysing and characterising the products separated from the reactor apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • This invention relates to methods for concurrently performing multiple biological chip assays.
  • the invention therefore relates to diverse fields impacted by the nature of molecular interaction, including chemistry, biology, medicine and diagnostics.
  • VLSIPSTM New technology, called VLSIPSTM, has enabled the production of chips smaller than a thumbnail that contain hundreds of thousands or more of different molecular probes. These biological chips or arrays have probes arranged in arrays, each probe assigned a specific location. Biological chips have been produced in which each location has a scale of, for example, ten microns. The chips can be used to determine whether target molecules interact with any of the probes on the chip. After exposing the array to target molecules under selected test conditions, scanning devices can examine each location in the array and determine whether a target molecule has interacted with the probe at that location.
  • Bio chips or arrays are useful in a variety of screening techniques for obtaining information about either the probes or the target molecules.
  • a library of peptides can be used as probes to screen for drugs.
  • the peptides can be exposed to a receptor, and those probes that bind to the receptor can be identified.
  • Arrays of nucleic acid probes can be used to extract sequence information from, for example, nucleic acid samples. The samples are exposed to the probes under conditions that allow hybridization. The arrays are then scanned to determine to which probes the sample molecules have hybridized. One can obtain sequence information by careful probe selection and using algorithms to compare patterns of hybridization and non-hybridization. This method is useful for sequencing nucleic acids, as well as sequence checking. For example, the method is useful in diagnostic screening for genetic diseases or for the presence and/or identity of a particular pathogen or a strain of pathogen. For example, there are various strains of HIV, the virus that causes AIDS. Some of them have become resistant to current AIDS therapies. Diagnosticians can use DNA arrays to examine a nucleic acid sample from the virus to determine what strain it belongs to.
  • a biological chip plate comprising a plurality of test wells. Each test well defines a space for the introduction of a sample and contains a biological array. The array is formed on a surface of the substrate, with the probes exposed to the space.
  • a fluid handling device manipulates the plates to perform steps to carry out reactions between the target molecules in samples and the probes in a plurality of test wells.
  • the biological chip plate is then interrogated by a biological chip plate reader to detect any reactions between target molecules and probes in a plurality of the test wells, thereby generating results of the assay.
  • the method also includes processing the results of the assay with a computer. Such analysis is useful when sequencing a gene by a method that uses an algorithm to process the results of many hybridization assays to provide the nucleotide sequence of the gene.
  • the methods of the invention can involve the binding of tagged target molecules to the probes.
  • the tags can be, for example, fluorescent markers, chemiluminescent markers, light scattering markers or radioactive markers.
  • the probes are nucleic acids, such as DNA or RNA molecules.
  • the methods can be used to detect or identify a pathogenic organism, such as HIV, or to detect a human gene variant, such a the gene for a genetic disease such as cystic fibrosis, diabetes, muscular dystrophy or predisposition to certain cancers.
  • This invention also provides systems for performing the methods of this invention.
  • the systems include a biological chip plate; a fluid handling device that automatically performs steps to carry out assays on samples introduced into a plurality of the test wells; a biological chip plate reader that determines in a plurality of the test wells the results of the assay and, optionally, a computer comprising a program for processing the results.
  • the fluid handling device and plate reader can have a heater/cooler controlled by a thermostat for controlling the temperature of the samples in the test wells and robotically controlled pipets for adding or removing fluids from the test wells at predetermined times.
  • the probes are attached by light-directed probe synthesis.
  • the biological chip plates can have 96 wells arranged in 8 rows and 12 columns, such as a standard microtiter plate.
  • the probe arrays can each have at least about 100, 1000, 100,000 or 1,000,000 addressable features (e.g., probes).
  • a variety of probes can be used on the plates, including, for example, various polymers such as peptides or nucleic acids.
  • the plates can have wells in which the probe array in each test well is the same. Alternatively, when each of several samples are to be subjected to several tests, each row can have the same probe array and each column can have a different array. Alternatively, all the wells can have different arrays.
  • a wafer and a body are provided.
  • the wafer includes a substrate and a surface to which is attached a plurality of arrays of probes.
  • the body has a plurality of channels.
  • the body is attached to the surface of the wafer whereby the channels each cover an array of probes and the wafer closes one end of a plurality of the channels, thereby forming test wells defining spaces for receiving samples.
  • a body having a plurality of wells defining spaces is provided and biological chips are provided. The chips are attached to the wells so that the probe arrays are exposed to the space.
  • Another embodiment involves providing a wafer having a plurality of probe arrays; and applying a material resistant to the flow of a liquid sample so as to surround the probe arrays, thereby creating test wells.
  • This invention also provides a wafer for making a biological chip plate.
  • the wafer has a substrate and a surface to which are attached a plurality of probe arrays.
  • the probe arrays are arranged on the wafer surface in rows and columns, wherein the probe arrays in each row are the same and the probe arrays in each column are different.
  • FIG. 1 depicts a system of this invention having a biological chip plate, fluid handling device, biological chip plate reader and computer;
  • FIG. 2 depicts the scanning of a biological chip plate by a biological chip plate reader
  • FIG. 3 depicts a biological plate of this invention
  • FIG. 4 depicts the mating of a wafer containing many biological arrays with a body having channels to create a biological chip plate
  • FIG. 5 depicts a biological chip plate in cross section having a body attached to a wafer to create closed test wells in which a probe array is exposed to the space in the test well;
  • FIG. 6 depicts a biological plate in cross section having a body which has individual biological chips attached to the bottom of the wells;
  • FIG. 7 is a top-down view of a test well containing a biological array.
  • FIG. 8 depicts a method of producing an array of oligonucleotide probes on the surface of a substrate by using a mask to expose certain parts of the surface to light, thereby removing photoremovable protective groups, and attaching nucleotides to the exposed reactive groups.
  • A. Complementary refers to the topological compatibility or matching together of interacting surfaces of a probe molecule and its target.
  • the target and its probe can be described as complementary, and furthermore, the contact surface characteristics are complementary to each other.
  • a probe is a surface-immobilized molecule that can be recognized by a particular target.
  • probes that can be investigated by this invention include, but are not restricted to, agonists and antagonists for cell membrane receptors, toxins and venoms, viral epitopes, hormones (e.g., opioid peptides, steroids, etc.), hormone receptors, peptides, enzymes, enzyme substrates, cofactors, drugs, lectins, sugars, oligonucleotides, nucleic acids, oligosaccharides, proteins, and monoclonal antibodies.
  • hormones e.g., opioid peptides, steroids, etc.
  • hormone receptors e.g., enzymes, enzyme substrates, cofactors, drugs, lectins, sugars, oligonucleotides, nucleic acids, oligosaccharides, proteins, and monoclonal antibodies.
  • Target A molecule that has an affinity for a given probe.
  • Targets may be naturally-occurring or man-made molecules. Also, they can be employed in their unaltered state or as aggregates with other species. Targets may be attached, covalently or noncovalently, to a binding member, either directly or via a specific binding substance.
  • targets which can be employed by this invention include, but are not restricted to, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells or other materials), drugs, oligonucleotides, nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles. Targets are sometimes referred to in the art as anti-probes. As the term targets is used herein, no difference in meaning is intended.
  • a “Probe Target Pair” is formed when two macromolecules have combined through molecular recognition to form a complex.
  • D. Array A collection of probes, at least two of which are different, arranged in a spacially defined and physically addressable manner.
  • E. Biological Chip A substrate having a surface to which one or more arrays of probes is attached.
  • the substrate can be, merely by way of example, silicon or glass and can have the thickness of a glass microscope slide or a glass cover slip.
  • Substrates that are transparent to light are useful when the method of performing an assay on the chip involves optical detection.
  • the term also refers to a probe array and the substrate to which it is attached that form part of a wafer.
  • Wafer A substrate having a surface to which a plurality of probe arrays are attached. On a wafer, the arrays are physically separated by a distance of at least about a millimeter, so that individual chips can be made by dicing a wafer or otherwise physically separating the array into units having a probe array.
  • G. Biological Chip Plate A device having an array of biological chips in which the probe array of each chip is separated from the probe array of other chips by a physical barrier resistant to the passage of liquids and forming an area or space, referred to as a “test well,” capable of containing liquids in contact with the probe array.
  • This invention provides automated methods for concurrently processing multiple biological chip assays.
  • Currently available methods utilize each biological chip assay individually.
  • the methods of this invention allow many tests to be set up and processed together. Because they allow much higher throughput of test samples, these methods greatly improve the efficiency of performing assays on biological chips.
  • a biological chip plate having a plurality of test wells.
  • Each test well includes a biological chip.
  • Test samples which may contain target molecules, are introduced into the test wells.
  • a fluid handling device exposes the test wells to a chosen set of reaction conditions by, for example, adding or removing fluid from the wells, maintaining the liquid in the wells at predetermined temperatures, and agitating the wells as required, thereby performing the test.
  • a biological chip reader interrogates the probe arrays in the test wells, thereby obtaining the results of the tests.
  • a computer having an appropriate program can further analyze the results from the tests.
  • one embodiment of the invention is a system for concurrently processing biological chip assays.
  • the system includes a biological chip plate reader 100 , a fluid handling device 110 , a biological chip plate 120 and, optionally, a computer 130 .
  • samples are placed in wells on the chip plate 120 with fluid handling device 110 .
  • the plate optionally can be moved with a stage translation device 140 .
  • Reader 100 is used to identify where targets in the wells have bound to complementary probes.
  • the system operates under control of computer 130 which may optionally interpret the results of the assay.
  • detectably labeled target molecules bind to probe molecules. Reading the results of an assay involves detecting a signal produced by the detectable label. Reading assays on a biological chip plate requires a biological chip reader. Accordingly, locations at which target(s) bind with complementary probes can be identified by detecting the location of the label. Through knowledge of the characteristics/sequence of the probe versus location, characteristics of the target can be determined. The nature of the biological chip reader depends upon the particular type of label attached to the target molecules.
  • targets and probes can be characterized in terms of kinetics and thermodynamics. As such, it may be necessary to interrogate the array while in contact with a solution of labeled targets. In such systems, the detection system must be extremely selective, with the capacity to discriminate between surface-bound and solution-born targets. Also, in order to perform a quantitative analysis, the high-density of the probe sequences requires the system to have the capacity to distinguish between each feature site. The system also should have sensitivity to low signal and a large dynamic range.
  • the chip plate reader includes a confocal detection device having a monochromatic or polychromatic light source, a focusing system for directing an excitation light from the light source to the substrate, a temperature controller for controlling the substrate temperature during a reaction, and a detector for detecting fluorescence emitted by the targets in response to the excitation light.
  • the detector for detecting the fluorescent emissions from the substrate includes a photomultiplier tube.
  • the location to which light is directed may be controlled by, for example, an x-y-z translation table. Translation of the x-y-z table, temperature control, and data collection are managed and recorded by an appropriately programmed digital computer.
  • FIG. 2 illustrates the reader according to one specific embodiment.
  • the chip plate reader comprises a body 200 for immobilizing the biological chip plate. Excitation radiation, from an excitation source 210 having a first wavelength, passes through excitation optics 220 from below the array. The light passes through the chip plate since it is transparent to at least this wavelength of light. The excitation radiation excites a region of a probe array on the biological chip plate 230 . In response, labeled material on the sample emits radiation which has a wavelength that is different from the excitation wavelength. Collection optics 240 , also below the array, then collect the emission from the sample and image it onto a detector 250 , which can house a CCD array, as described below. The detector generates a signal proportional to the amount of radiation sensed thereon. The signals can be assembled to represent an image associated with the plurality of regions from which the emission originated.
  • a multi-axis translation stage 260 moves the biological chip plate to position different wells to be scanned, and to allow different probe portions of a probe array to be interrogated. As a result, a 2-dimensional image of the probe arrays in each well is obtained.
  • the biological chip reader can include auto-focusing feature to maintain the sample in the focal plane of the excitation light throughout the scanning process. Further, a temperature controller may be employed to maintain the sample at a specific temperature while it is being scanned.
  • the multi-axis translation stage, temperature controller, auto-focusing feature, and electronics associated with imaging and data collection are managed by an appropriately programmed digital computer 270 .
  • a beam is focused onto a spot of about 2 ⁇ m in diameter on the surface of the plate using, for example, the objective lens of a microscope or other optical means to control beam diameter.
  • the objective lens of a microscope or other optical means See, e.g., U.S. patent application Ser. No. 08/195,889, supra.
  • fluorescent probes are employed in combination with CCD imaging systems. Details of this method are described in U.S. application Ser. No. 08/301,051, incorporated herein by reference in its entirely.
  • the light source is placed above a well, and a photodiode detector is below the well.
  • the light source can be replaced with a higher power lamp or laser.
  • the standard absorption geometry is used, but the photodiode detector is replaced with a CCD camera and imaging optics to allow rapid imaging of the well.
  • a series of Raman holographic or notch filters can be used in the optical path to eliminate the excitation light while allowing the emission to pass to the detector.
  • a fiber optic imaging bundle is utilized to bring the light to the CCD detector.
  • the laser is placed below the biological chip plate and light directed through the transparent wafer or base that forms the bottom of the biological chip plate.
  • the CCD array is built into the wafer of the biological chip plate.
  • CCD array The choice of the CCD array will depend on the number of probes in each biological array. If 2500 probes nominally arranged in a square (50 ⁇ 50) are examined, and 6 lines in each feature are sampled to obtain a good image, then a CCD array of 300 ⁇ 300 pixels is desirable in this area. However, if an individual well has 48,400 probes (220 ⁇ 220) then a CCD array with 1320 ⁇ 1320 pixels is desirable.
  • CCD detectors are commercially available from, e.g., Princeton Instruments, which can meet either of these requirements.
  • the detection device comprises a line scanner, as described in U.S. patent application Ser. No. 08/301,051, filed Sep. 2, 1994, incorporated herein by reference.
  • Excitation optics focuses excitation light to a line at a sample, simultaneously scanning or imaging a strip of the sample. Surface bound labeled targets from the sample fluoresce in response to the light.
  • Collection optics image the emission onto a linear array of light detectors. By employing confocal techniques, substantially only emission from the light's focal plane is imaged.
  • a multi-axis translation stage moves the device at a constant velocity to continuously integrate and process data.
  • galvometric scanners or rotating polyhedral mirrors may be employed to scan the excitation light across the sample. As a result, a 2-dimensional image of the sample is obtained.
  • collection optics direct the emission to a spectrograph which images an emission spectrum onto a 2-dimensional array of light detectors. By using a spectrograph, a full spectrally resolved image of the sample is obtained.
  • the read time for a full microtiter plate will depend on the photophysics of the fluorophore (i.e. fluorescence quantum yield and photodestruction yield) as well as the sensitivity of the detector.
  • fluorescein sufficient signal-to-noise to read a chip image with a CCD detector can be obtained in about 30 seconds using 3 mW/cm 2 and 488 nm excitation from an Ar ion laser or lamp.
  • dyes such as CY3 or CY5 which have lower photodestruction yields and whose emission more closely matches the sensitivity maximum of the CCD detector, one easily is able to read each well in less than 5 seconds.
  • an entire plate could be examined quantitatively in less than 10 minutes, even if the whole plate has over 4.5 million probes.
  • a computer can transform the data into another format for presentation.
  • Data analysis can include the steps of determining, e.g., fluorescent intensity as a function of substrate position from the data collected, removing “outliers” (data deviating from a predetermined statistical distribution), and calculating the relative binding affinity of the targets from the remaining data.
  • the resulting data can be displayed as an image with color in each region varying according to the light emission or binding affinity between targets and probes therein.
  • One application of this system when coupled with the CCD imaging system that speeds performance of the tests is to obtain results of the assay by examining the on- or off-rates of the hybridization.
  • the amount of binding at each address is determined at several time points after the probes are contacted with the sample.
  • the amount of total hybridization can be determined as a function of the kinetics of binding based on the amount of binding at each time point. Thus, it is not necessary to wait for equilibrium to be reached.
  • the dependence of the hybridization rate for different oligonucleotides on temperature, sample agitation, washing conditions e.g. pH, solvent characteristics, temperature
  • Alternative methods are described in Fodor et al., U.S. Pat. No. 5,324,633, incorporated herein by reference.
  • Assays on biological arrays generally include contacting a probe array with a sample under the selected reaction conditions, optionally washing the well to remove unreacted molecules, and analyzing the biological array for evidence of reaction between target molecules the probes. These steps involve handling fluids.
  • the methods of this invention automate these steps so as to allow multiple assays to be performed concurrently. Accordingly, this invention employs automated fluid handling systems for concurrently performing the assay steps in each of the test wells. Fluid handling allows uniform treatment of samples in the wells. Microtiter robotic and fluid-handling devices are available commercially, for example, from Tecan AG.
  • the plate is introduced into a holder in the fluid-handling device.
  • This robotic device is programmed to set appropriate reaction conditions, such as temperature, add samples to the test wells, incubate the test samples for an appropriate time, remove unreacted samples, wash the wells, add substrates as appropriate and perform detection assays.
  • the particulars of the reaction conditions depends upon the purpose of the assay. For example, in a sequencing assay involving DNA hybridization, standard hybridization conditions are chosen. However, the assay may involve testing whether a sample contains target molecules that react to a probe under a specified set of reaction conditions. In this case, the reaction conditions are chosen accordingly.
  • FIG. 3 depicts an example of a biological chip plate 300 used in the methods of this invention based on the standard 96-well microtiter plate in which the chips are located at the bottom of the wells.
  • Biological chip plates include a plurality of test wells 310 , each test well defining an area or space for the introduction of a sample, and each test well comprising a biological chip 320 , i.e., a substrate and a surface to which an array of probes is attached, the probes being exposed to the space.
  • FIG. 7 shows a top-down view of a well of a biological chip plate of this invention containing a biological chip on the bottom surface of the well.
  • the biological chip plate includes two parts. One part is a wafer 410 that includes a plurality of biological arrays 420 . The other part is the body of the plate 430 that contains channels 440 that form the walls of the well, but that are open at the bottom. The body is attached to the surface of the wafer so as to close one end of the channels, thereby creating wells. The walls of the channels are placed on the wafer so that each surrounds and encloses the probe array of a biological array.
  • FIG. 5 depicts a cross-section of this embodiment, showing the wafer 510 having a substrate 520 (preferably transparent to light) and a surface 530 to which is attached an array of probes 540 .
  • a channel wall 550 covers a probe array on the wafer, thereby creating well spaces 560 .
  • The-wafer can be attached to the body by any attachment means known in the art, for example, gluing (e.g., by ultraviolet-curing epoxy or various sticking tapes), acoustic welding, sealing such as vacuum or suction sealing, or even by relying on the weight of the body on the wafer to resist the flow of fluids between test wells.
  • the plates include a body 610 having pre-formed wells 620 , usually flat-bottomed. Individual biological chips 630 are attached to the bottom of the wells so that the surface containing the array of probes 640 is exposed to the well space where the sample is to be placed.
  • the biological chip plate has a wafer having a plurality of probe arrays and a material resistant to the flow of a liquid sample that surrounds each probe array.
  • the wafer can be scored with waxes, tapes or other hydrophobic materials in the spaces between the arrays, forming cells that act as test wells.
  • the cells thus contain liquid applied to an array by resisting spillage over the barrier and into another cell. If the sample contains a non-aqueous solvent, such as an alcohol, the material is selected to be resistant to corrosion by the solvent.
  • the microplates of this invention have a plurality of test wells that can be arrayed in a variety of ways.
  • the plates have the general size and shape of standard-sized microtiter plates having 96 wells arranged in an 8 ⁇ 12 format.
  • This format is that instrumentation already exists for handling and reading assays on microtiter plates. Therefore, using such plates in biological chip assays does not involve extensive re-engineering of commercially available fluid handling devices.
  • the plates can have other formats as well.
  • the material from which the body of the biological chip plate is made depends upon the use to which it is to be put.
  • this invention contemplates a variety of polymers already used for microtiter plates including, for example, (poly)tetrafluoroethylene, (poly)vinylidenedi-fluoride, polypropylene, polystyrene, polycarbonate, or combinations thereof.
  • the assay is to be performed by sending an excitation beam through the bottom of the plate collecting data through the bottom of the plate, the body of the plate and the substrate of the chip should be transparent to the wavelengths of light being used.
  • the arrangement of probe arrays in the wells of a microplate depends on the particular application contemplated. For example, for diagnostic uses involving performing the same test on many samples, every well can have the same array of probes. If several different tests are to be performed on each sample, each row of the plate can have the same array of probes and each column can contain a different array. Samples from a single patient are introduced into the wells of a particular column. Samples from a different patient are introduced into the wells of a different column. In still another embodiment, multiple patient samples are introduced into a single well. If a well indicates a “positive” result for a particular characteristic, the samples from each patient are then rerun, each in a different well, to determine which patient sample gave a positive result.
  • the biological chip plates used in the methods of this invention include biological chips.
  • the array of probe sequences can be fabricated on the biological chip according to the pioneering techniques disclosed in U.S. Pat. No. 5,143,854, PCT WO 92/10092, PCT WO 90/15070, or U.S. application Ser. Nos. 08/249,188, 07/624,120, and 08/082,937, incorporated herein by reference for all purposes.
  • the combination of photolithographic and fabrication techniques may, for example, enable each probe sequence (“feature”) to occupy a very small area (“site” or “location”) on the support. In some embodiments, this feature site may be as small as a few microns or even a single molecule.
  • a probe array of 0.25 mm 2 (about the size that would fit in a well of a typical 96-well microtiter plate) could have at least 10, 100, 1000, 10 4 , 10 5 or 10 6 features.
  • such synthesis is performed according to the mechanical techniques disclosed in U.S. Pat. No. 5,384,261, incorporated herein by reference.
  • linker molecules —O—X
  • the substrate is preferably flat but may take on a variety of alternative surface configurations.
  • the substrate may contain raised or depressed regions on which the probes are located.
  • the substrate and its surface preferably form a rigid support on which the sample can be formed.
  • the substrate and its surface are also chosen to provide appropriate light-absorbing characteristics.
  • the substrate may be functionalized glass, Si, Ge, GaAs, GaP, SiO 2 , SiN 4 , modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof.
  • gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof.
  • Other substrate materials will be readily apparent to those of skill in the art upon review of this disclosure.
  • the substrate is flat glass or silica.
  • Surfaces on the solid substrate usually, though not always, are composed of the same material as the substrate.
  • the surface may be composed of any of a wide variety of materials, for example, polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, or any of the above-listed substrate materials.
  • the surface will be optically transparent and will have surface Si—OH functionalities, such as those found on silica surfaces.
  • a terminal end of the linker molecules is provided with a reactive functional group protected with a photoremovable protective group, 0 -X.
  • the photoremovable protective group is exposed to light, hv, through a mask, M 1 , that exposes a selected portion of the surface, and removed from the linker molecules in first selected regions.
  • the substrate is then washed or otherwise contacted with a first monomer that reacts with exposed functional groups on the linker molecules ( ⁇ T-X).
  • the monomer can be a phosphoramidite activated nucleoside protected at the 5′-hydroxyl with a photolabile protecting group.
  • a second set of selected regions, thereafter, exposed to light through a mask, M 2 , and photoremovable protective group on the linker molecule/protected amino acid or nucleotide is removed at the second set of regions.
  • the substrate is then contacted with a second monomer containing a photoremovable protective group for reaction with exposed functional groups. This process is repeated to selectively apply monomers until polymers of a desired length and desired chemical sequence are obtained. Photolabile groups are then optionally removed and the sequence is, thereafter, optionally capped. Side chain protective groups, if present, are also removed.
  • the probes can be made of any molecules whose synthesis involves sequential addition of units. This includes polymers composed of a series of attached units and molecules bearing a common skeleton to which various functional groups are added.
  • Polymers useful as probes in this invention include, for example, both linear and cyclic polymers of nucleic acids, polysaccharides, phospholipids, and peptides having either ⁇ -, ⁇ -, or ⁇ -amino acids, heteropolymers in which a known drug is covalently bound to any of the above, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, polyacetates, or other polymers which will be apparent upon review of this disclosure.
  • Molecules bearing a common skeleton include benzodiazepines and other small molecules, such as described in U.S. Pat. No. 5,288,514, incorporated herein by reference.
  • probes are arrayed on a chip in addressable rows and columns in which the dimensions of the chip conform to the dimension of the plate test well. Technologies already have been developed to read information from such arrays.
  • the amount of information that can be stored on each plate of chips depends on the lithographic density which is used to synthesize the wafer. For example, if each feature size is about 100 microns on a side, each array can have about 10,000 probe addresses in a 1 cm 2 area. A plate having 96 wells would contain about 192,000 probes. However, if the arrays have a feature size of 20 microns on a side, each array can have close to 50,000 probes and the plate would have over 4,800,000 probes.
  • the chips are used to sequence or re-sequence nucleic acid molecules, or compare their sequence to a referent molecule.
  • Re-sequencing nucleic acid molecules involves determining whether a particular molecule has any deviations from the sequence of reference molecule.
  • the plates are used to identify in a particular type of HIV in a set of patient samples. Tiling strategies for sequence checking of nucleic acids are described in U.S. patent application Ser. No. 08/284,064 (PCT/US94/12305), incorporated herein by reference.
  • a solution containing one or more targets to be identified contacts the probe array.
  • the targets will bind or hybridize with complementary probe sequences.
  • the probes will be selected to have sequences directed to (i.e., having at least some complementarity with) the target sequences to be detected, e.g., human or pathogen sequences.
  • the targets are tagged with a detectable label.
  • the detectable label can be, for example, a luminescent label, a light scattering label or a radioactive label.
  • locations at which targets hybridize with complimentary probes can be identified by locating the markers. Based on the locations where hybridization occurs, information regarding the target sequences can be extracted. The existence of a mutation may be determined by comparing the target sequence with the wild type.
  • the detectable label is a luminescent label.
  • luminescent labels include fluorescent labels, chemi-luminescent labels, bio-luminescent labels, and calorimetric labels, among others.
  • the label is a fluorescent label such as fluorescein, rhodamine, cyanine and so forth.
  • Fluorescent labels include, inter alia, the commercially available fluorescein phosphoramidites such as Fluoreprime (Pharmacia), Fluoredite (Millipore) and FAM (ABI).
  • Fluorescein phosphoramidites such as Fluoreprime (Pharmacia), Fluoredite (Millipore) and FAM (ABI).
  • the entire surface of the substrate is exposed to the activated fluorescent phosphoramidite, which reacts with all of the deprotected 5′-hydroxyl groups.
  • an alkaline solution eg. 50% ethylenediamine in ethanol for 1-2 hours at room temperature. This is necessary to remove the protecting groups from the flu
  • the fluorescent tag monomer should be diluted with a non-fluorescent analog of equivalent reactivity.
  • a non-fluorescent phosphoramidite such as the standard 5′-DMT-nucleoside phosphoramidites. Correction for background non-specific binding of the fluorescent reagent and other such effects can be determined by routine testing.
  • Useful light scattering labels include large colloids, and especially the metal colloids such as those from gold, selenium and titanium oxide.
  • Radioactive labels include, for example, 32 p. This label can be detected by a phosphoimager. Detection of course, depends on the resolution of the imager. Phosophoimagers are available having resolution of 50 microns. Accordingly, this label is currently useful with chips having features of that size.
  • the clinical setting requires performing the same test on many patient samples.
  • the automated methods of this invention lend themselves to these uses when the test is one appropriately performed on a biological chip.
  • a DNA array can determine the particular strain of a pathogenic organism based on characteristic DNA sequences of the strain.
  • the advanced techniques based on these assays now can be introduced into the clinic. Fluid samples from several patients are introduced into the test wells of a biological chip plate and the assays are performed concurrently.
  • rows (or columns) of the microtiter plate will contain probe arrays for diagnosis of a particular disease or trait.
  • one row might contain probe arrays designed for a particular cancer, while other rows contain probe arrays for another cancer.
  • Patient samples are then introduced into respective columns (or rows) of the microtiter plate.
  • one column may be used to introduce samples from patient “one,” another column for patient “two” etc.
  • multiple diagnostic tests may be performed on multiple patients in parallel.
  • multiple patient samples are introduced into a single well. In a particular well indicator the presence of a genetic disease or other characteristic, each patient sample is then individually processed to identify which patient exhibits that disease or trait. For relatively rarely occurring characteristics, further order-of-magnitude efficiency may be obtained according to this embodiment.
  • the assay is the detection of a human gene variant that indicates existence of or predisposition to a genetic disease, either from acquired or inherited mutations in an individual DNA.
  • genetic diseases such as cystic fibrosis, diabetes, and muscular dystrophy, as well as diseases such as cancer (the P 53 gene is relevant to some cancers), as disclosed in U.S. patent application Ser. No. 08/143,312, already incorporated by reference.
  • the present invention provides a substantially novel method for performing assays on biological arrays. While specific examples have been provided, the above description is illustrative and not restrictive. Many variations of the invention will become apparent to those of skill in the art upon review of this specification. The scope of the invention should, therefore,.be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

Abstract

Methods for concurrently processing multiple biological chip assays by providing a biological chip plate comprising a plurality of test wells, each test well having a biological chip having a molecular probe array; introducing samples into the test wells; subjecting the biological chip plate to manipulation by a fluid handling device that automatically performs steps to carry out reactions between target molecules in the samples and probes; and subjecting the biological chip plate to a biological chip plate reader that interrogates the probe arrays to detect any reactions between target molecules and probes.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to methods for concurrently performing multiple biological chip assays. The invention therefore relates to diverse fields impacted by the nature of molecular interaction, including chemistry, biology, medicine and diagnostics. [0001]
  • New technology, called VLSIPS™, has enabled the production of chips smaller than a thumbnail that contain hundreds of thousands or more of different molecular probes. These biological chips or arrays have probes arranged in arrays, each probe assigned a specific location. Biological chips have been produced in which each location has a scale of, for example, ten microns. The chips can be used to determine whether target molecules interact with any of the probes on the chip. After exposing the array to target molecules under selected test conditions, scanning devices can examine each location in the array and determine whether a target molecule has interacted with the probe at that location. [0002]
  • Biological chips or arrays are useful in a variety of screening techniques for obtaining information about either the probes or the target molecules. For example, a library of peptides can be used as probes to screen for drugs. The peptides can be exposed to a receptor, and those probes that bind to the receptor can be identified. [0003]
  • Arrays of nucleic acid probes can be used to extract sequence information from, for example, nucleic acid samples. The samples are exposed to the probes under conditions that allow hybridization. The arrays are then scanned to determine to which probes the sample molecules have hybridized. One can obtain sequence information by careful probe selection and using algorithms to compare patterns of hybridization and non-hybridization. This method is useful for sequencing nucleic acids, as well as sequence checking. For example, the method is useful in diagnostic screening for genetic diseases or for the presence and/or identity of a particular pathogen or a strain of pathogen. For example, there are various strains of HIV, the virus that causes AIDS. Some of them have become resistant to current AIDS therapies. Diagnosticians can use DNA arrays to examine a nucleic acid sample from the virus to determine what strain it belongs to. [0004]
  • Currently, chips are treated individually, from the step of exposure to the target-molecules to scanning. These methods yield exquisitely detailed information. However, they are not adapted for handling multiple samples simultaneously. The ability to do so would be advantageous in settings in which large amounts of information are required quickly, such as in clinical diagnostic laboratories or in large-scale undertakings such as the Human Genome Project. [0005]
  • SUMMARY OF THE INVENTION
  • This invention provides methods for concurrently processing multiple biological chip assays. According to the methods, a biological chip plate comprising a plurality of test wells is provided. Each test well defines a space for the introduction of a sample and contains a biological array. The array is formed on a surface of the substrate, with the probes exposed to the space. A fluid handling device manipulates the plates to perform steps to carry out reactions between the target molecules in samples and the probes in a plurality of test wells. The biological chip plate is then interrogated by a biological chip plate reader to detect any reactions between target molecules and probes in a plurality of the test wells, thereby generating results of the assay. In a further embodiment of the invention, the method also includes processing the results of the assay with a computer. Such analysis is useful when sequencing a gene by a method that uses an algorithm to process the results of many hybridization assays to provide the nucleotide sequence of the gene. [0006]
  • The methods of the invention can involve the binding of tagged target molecules to the probes. The tags can be, for example, fluorescent markers, chemiluminescent markers, light scattering markers or radioactive markers. In certain embodiments, the probes are nucleic acids, such as DNA or RNA molecules. The methods can be used to detect or identify a pathogenic organism, such as HIV, or to detect a human gene variant, such a the gene for a genetic disease such as cystic fibrosis, diabetes, muscular dystrophy or predisposition to certain cancers. [0007]
  • This invention also provides systems for performing the methods of this invention. The systems include a biological chip plate; a fluid handling device that automatically performs steps to carry out assays on samples introduced into a plurality of the test wells; a biological chip plate reader that determines in a plurality of the test wells the results of the assay and, optionally, a computer comprising a program for processing the results. The fluid handling device and plate reader can have a heater/cooler controlled by a thermostat for controlling the temperature of the samples in the test wells and robotically controlled pipets for adding or removing fluids from the test wells at predetermined times. [0008]
  • In certain embodiments, the probes are attached by light-directed probe synthesis. The biological chip plates can have 96 wells arranged in 8 rows and 12 columns, such as a standard microtiter plate. The probe arrays can each have at least about 100, 1000, 100,000 or 1,000,000 addressable features (e.g., probes). A variety of probes can be used on the plates, including, for example, various polymers such as peptides or nucleic acids. [0009]
  • The plates can have wells in which the probe array in each test well is the same. Alternatively, when each of several samples are to be subjected to several tests, each row can have the same probe array and each column can have a different array. Alternatively, all the wells can have different arrays. [0010]
  • Several methods of making biological chip plates are contemplated. In one method, a wafer and a body are provided. The wafer includes a substrate and a surface to which is attached a plurality of arrays of probes. The body has a plurality of channels. The body is attached to the surface of the wafer whereby the channels each cover an array of probes and the wafer closes one end of a plurality of the channels, thereby forming test wells defining spaces for receiving samples. In a second method, a body having a plurality of wells defining spaces is provided and biological chips are provided. The chips are attached to the wells so that the probe arrays are exposed to the space. Another embodiment involves providing a wafer having a plurality of probe arrays; and applying a material resistant to the flow of a liquid sample so as to surround the probe arrays, thereby creating test wells. [0011]
  • This invention also provides a wafer for making a biological chip plate. The wafer has a substrate and a surface to which are attached a plurality of probe arrays. The probe arrays are arranged on the wafer surface in rows and columns, wherein the probe arrays in each row are the same and the probe arrays in each column are different.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a system of this invention having a biological chip plate, fluid handling device, biological chip plate reader and computer; [0013]
  • FIG. 2 depicts the scanning of a biological chip plate by a biological chip plate reader; [0014]
  • FIG. 3 depicts a biological plate of this invention; [0015]
  • FIG. 4 depicts the mating of a wafer containing many biological arrays with a body having channels to create a biological chip plate; [0016]
  • FIG. 5 depicts a biological chip plate in cross section having a body attached to a wafer to create closed test wells in which a probe array is exposed to the space in the test well; [0017]
  • FIG. 6 depicts a biological plate in cross section having a body which has individual biological chips attached to the bottom of the wells; [0018]
  • FIG. 7 is a top-down view of a test well containing a biological array; and [0019]
  • FIG. 8 depicts a method of producing an array of oligonucleotide probes on the surface of a substrate by using a mask to expose certain parts of the surface to light, thereby removing photoremovable protective groups, and attaching nucleotides to the exposed reactive groups.[0020]
  • DETAILED DESCRIPTION OF THE INVENTION
  • I. Definitions [0021]
  • The following terms are intended to have the following general meanings as they are used herein: [0022]
  • A. Complementary: Refers to the topological compatibility or matching together of interacting surfaces of a probe molecule and its target. Thus, the target and its probe can be described as complementary, and furthermore, the contact surface characteristics are complementary to each other. [0023]
  • B. Probe: A probe is a surface-immobilized molecule that can be recognized by a particular target. Examples of probes that can be investigated by this invention include, but are not restricted to, agonists and antagonists for cell membrane receptors, toxins and venoms, viral epitopes, hormones (e.g., opioid peptides, steroids, etc.), hormone receptors, peptides, enzymes, enzyme substrates, cofactors, drugs, lectins, sugars, oligonucleotides, nucleic acids, oligosaccharides, proteins, and monoclonal antibodies. [0024]
  • C. Target: A molecule that has an affinity for a given probe. Targets may be naturally-occurring or man-made molecules. Also, they can be employed in their unaltered state or as aggregates with other species. Targets may be attached, covalently or noncovalently, to a binding member, either directly or via a specific binding substance. Examples of targets which can be employed by this invention include, but are not restricted to, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells or other materials), drugs, oligonucleotides, nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles. Targets are sometimes referred to in the art as anti-probes. As the term targets is used herein, no difference in meaning is intended. A “Probe Target Pair” is formed when two macromolecules have combined through molecular recognition to form a complex. [0025]
  • D. Array: A collection of probes, at least two of which are different, arranged in a spacially defined and physically addressable manner. [0026]
  • E. Biological Chip: A substrate having a surface to which one or more arrays of probes is attached. The substrate can be, merely by way of example, silicon or glass and can have the thickness of a glass microscope slide or a glass cover slip. Substrates that are transparent to light are useful when the method of performing an assay on the chip involves optical detection. As used herein, the term also refers to a probe array and the substrate to which it is attached that form part of a wafer. [0027]
  • F. Wafer: A substrate having a surface to which a plurality of probe arrays are attached. On a wafer, the arrays are physically separated by a distance of at least about a millimeter, so that individual chips can be made by dicing a wafer or otherwise physically separating the array into units having a probe array. [0028]
  • G. Biological Chip Plate: A device having an array of biological chips in which the probe array of each chip is separated from the probe array of other chips by a physical barrier resistant to the passage of liquids and forming an area or space, referred to as a “test well,” capable of containing liquids in contact with the probe array. [0029]
  • II. General [0030]
  • This invention provides automated methods for concurrently processing multiple biological chip assays. Currently available methods utilize each biological chip assay individually. The methods of this invention allow many tests to be set up and processed together. Because they allow much higher throughput of test samples, these methods greatly improve the efficiency of performing assays on biological chips. [0031]
  • In the methods of this invention, a biological chip plate is provided having a plurality of test wells. Each test well includes a biological chip. Test samples, which may contain target molecules, are introduced into the test wells. A fluid handling device exposes the test wells to a chosen set of reaction conditions by, for example, adding or removing fluid from the wells, maintaining the liquid in the wells at predetermined temperatures, and agitating the wells as required, thereby performing the test. Then, a biological chip reader interrogates the probe arrays in the test wells, thereby obtaining the results of the tests. A computer having an appropriate program can further analyze the results from the tests. [0032]
  • Referring to FIG. 1, one embodiment of the invention is a system for concurrently processing biological chip assays. The system includes a biological [0033] chip plate reader 100, a fluid handling device 110, a biological chip plate 120 and, optionally, a computer 130. In operation, samples are placed in wells on the chip plate 120 with fluid handling device 110. The plate optionally can be moved with a stage translation device 140. Reader 100 is used to identify where targets in the wells have bound to complementary probes. The system operates under control of computer 130 which may optionally interpret the results of the assay.
  • A. Biological Chip Plate Reader [0034]
  • In assays performed on biological chips, detectably labeled target molecules bind to probe molecules. Reading the results of an assay involves detecting a signal produced by the detectable label. Reading assays on a biological chip plate requires a biological chip reader. Accordingly, locations at which target(s) bind with complementary probes can be identified by detecting the location of the label. Through knowledge of the characteristics/sequence of the probe versus location, characteristics of the target can be determined. The nature of the biological chip reader depends upon the particular type of label attached to the target molecules. [0035]
  • The interaction between targets and probes can be characterized in terms of kinetics and thermodynamics. As such, it may be necessary to interrogate the array while in contact with a solution of labeled targets. In such systems, the detection system must be extremely selective, with the capacity to discriminate between surface-bound and solution-born targets. Also, in order to perform a quantitative analysis, the high-density of the probe sequences requires the system to have the capacity to distinguish between each feature site. The system also should have sensitivity to low signal and a large dynamic range. [0036]
  • In one embodiment, the chip plate reader includes a confocal detection device having a monochromatic or polychromatic light source, a focusing system for directing an excitation light from the light source to the substrate, a temperature controller for controlling the substrate temperature during a reaction, and a detector for detecting fluorescence emitted by the targets in response to the excitation light. The detector for detecting the fluorescent emissions from the substrate, in some embodiments, includes a photomultiplier tube. The location to which light is directed may be controlled by, for example, an x-y-z translation table. Translation of the x-y-z table, temperature control, and data collection are managed and recorded by an appropriately programmed digital computer. [0037]
  • Further details for methods of detecting fluorescently labelled materials on biological chips are provided in U.S. patent application Ser. No. 08/195,889, filed Feb. 10, 1994 and incorporated herein by reference. [0038]
  • FIG. 2 illustrates the reader according to one specific embodiment. The chip plate reader comprises a [0039] body 200 for immobilizing the biological chip plate. Excitation radiation, from an excitation source 210 having a first wavelength, passes through excitation optics 220 from below the array. The light passes through the chip plate since it is transparent to at least this wavelength of light. The excitation radiation excites a region of a probe array on the biological chip plate 230. In response, labeled material on the sample emits radiation which has a wavelength that is different from the excitation wavelength. Collection optics 240, also below the array, then collect the emission from the sample and image it onto a detector 250, which can house a CCD array, as described below. The detector generates a signal proportional to the amount of radiation sensed thereon. The signals can be assembled to represent an image associated with the plurality of regions from which the emission originated.
  • According to one embodiment, a [0040] multi-axis translation stage 260 moves the biological chip plate to position different wells to be scanned, and to allow different probe portions of a probe array to be interrogated. As a result, a 2-dimensional image of the probe arrays in each well is obtained.
  • The biological chip reader can include auto-focusing feature to maintain the sample in the focal plane of the excitation light throughout the scanning process. Further, a temperature controller may be employed to maintain the sample at a specific temperature while it is being scanned. The multi-axis translation stage, temperature controller, auto-focusing feature, and electronics associated with imaging and data collection are managed by an appropriately programmed [0041] digital computer 270.
  • In one embodiment, a beam is focused onto a spot of about 2 μm in diameter on the surface of the plate using, for example, the objective lens of a microscope or other optical means to control beam diameter. (See, e.g., U.S. patent application Ser. No. 08/195,889, supra.) [0042]
  • In another embodiment, fluorescent probes are employed in combination with CCD imaging systems. Details of this method are described in U.S. application Ser. No. 08/301,051, incorporated herein by reference in its entirely. In many commercially available microplate readers, typically the light source is placed above a well, and a photodiode detector is below the well. In the present invention, the light source can be replaced with a higher power lamp or laser. In one embodiment, the standard absorption geometry is used, but the photodiode detector is replaced with a CCD camera and imaging optics to allow rapid imaging of the well. A series of Raman holographic or notch filters can be used in the optical path to eliminate the excitation light while allowing the emission to pass to the detector. In a variation of this method, a fiber optic imaging bundle is utilized to bring the light to the CCD detector. In another embodiment, the laser is placed below the biological chip plate and light directed through the transparent wafer or base that forms the bottom of the biological chip plate. In another embodiment, the CCD array is built into the wafer of the biological chip plate. [0043]
  • The choice of the CCD array will depend on the number of probes in each biological array. If 2500 probes nominally arranged in a square (50×50) are examined, and 6 lines in each feature are sampled to obtain a good image, then a CCD array of 300×300 pixels is desirable in this area. However, if an individual well has 48,400 probes (220×220) then a CCD array with 1320×1320 pixels is desirable. CCD detectors are commercially available from, e.g., Princeton Instruments, which can meet either of these requirements. [0044]
  • In another embodiment, the detection device comprises a line scanner, as described in U.S. patent application Ser. No. 08/301,051, filed Sep. 2, 1994, incorporated herein by reference. Excitation optics focuses excitation light to a line at a sample, simultaneously scanning or imaging a strip of the sample. Surface bound labeled targets from the sample fluoresce in response to the light. Collection optics image the emission onto a linear array of light detectors. By employing confocal techniques, substantially only emission from the light's focal plane is imaged. Once a strip has been scanned, the data representing the 1-dimensional image are stored in the memory of a computer. According to one embodiment, a multi-axis translation stage moves the device at a constant velocity to continuously integrate and process data. Alternatively, galvometric scanners or rotating polyhedral mirrors may be employed to scan the excitation light across the sample. As a result, a 2-dimensional image of the sample is obtained. [0045]
  • In another embodiment, collection optics direct the emission to a spectrograph which images an emission spectrum onto a 2-dimensional array of light detectors. By using a spectrograph, a full spectrally resolved image of the sample is obtained. [0046]
  • The read time for a full microtiter plate will depend on the photophysics of the fluorophore (i.e. fluorescence quantum yield and photodestruction yield) as well as the sensitivity of the detector. For fluorescein, sufficient signal-to-noise to read a chip image with a CCD detector can be obtained in about 30 seconds using 3 mW/cm[0047] 2 and 488 nm excitation from an Ar ion laser or lamp. By increasing the laser power, and switching to dyes such as CY3 or CY5 which have lower photodestruction yields and whose emission more closely matches the sensitivity maximum of the CCD detector, one easily is able to read each well in less than 5 seconds. Thus, an entire plate could be examined quantitatively in less than 10 minutes, even if the whole plate has over 4.5 million probes.
  • A computer can transform the data into another format for presentation. Data analysis can include the steps of determining, e.g., fluorescent intensity as a function of substrate position from the data collected, removing “outliers” (data deviating from a predetermined statistical distribution), and calculating the relative binding affinity of the targets from the remaining data. The resulting data can be displayed as an image with color in each region varying according to the light emission or binding affinity between targets and probes therein. [0048]
  • One application of this system when coupled with the CCD imaging system that speeds performance of the tests is to obtain results of the assay by examining the on- or off-rates of the hybridization. In one embodiment of this method, the amount of binding at each address is determined at several time points after the probes are contacted with the sample. The amount of total hybridization can be determined as a function of the kinetics of binding based on the amount of binding at each time point. Thus, it is not necessary to wait for equilibrium to be reached. The dependence of the hybridization rate for different oligonucleotides on temperature, sample agitation, washing conditions (e.g. pH, solvent characteristics, temperature) can easily be determined in order to maximize the conditions for rate and signal-to-noise. Alternative methods are described in Fodor et al., U.S. Pat. No. 5,324,633, incorporated herein by reference. [0049]
  • B. Fluid Handling Instruments and Assay Automation [0050]
  • Assays on biological arrays generally include contacting a probe array with a sample under the selected reaction conditions, optionally washing the well to remove unreacted molecules, and analyzing the biological array for evidence of reaction between target molecules the probes. These steps involve handling fluids. The methods of this invention automate these steps so as to allow multiple assays to be performed concurrently. Accordingly, this invention employs automated fluid handling systems for concurrently performing the assay steps in each of the test wells. Fluid handling allows uniform treatment of samples in the wells. Microtiter robotic and fluid-handling devices are available commercially, for example, from Tecan AG. [0051]
  • The plate is introduced into a holder in the fluid-handling device. This robotic device is programmed to set appropriate reaction conditions, such as temperature, add samples to the test wells, incubate the test samples for an appropriate time, remove unreacted samples, wash the wells, add substrates as appropriate and perform detection assays. The particulars of the reaction conditions depends upon the purpose of the assay. For example, in a sequencing assay involving DNA hybridization, standard hybridization conditions are chosen. However, the assay may involve testing whether a sample contains target molecules that react to a probe under a specified set of reaction conditions. In this case, the reaction conditions are chosen accordingly. [0052]
  • C. Biological Chip Plates [0053]
  • FIG. 3 depicts an example of a [0054] biological chip plate 300 used in the methods of this invention based on the standard 96-well microtiter plate in which the chips are located at the bottom of the wells. Biological chip plates include a plurality of test wells 310, each test well defining an area or space for the introduction of a sample, and each test well comprising a biological chip 320, i.e., a substrate and a surface to which an array of probes is attached, the probes being exposed to the space. FIG. 7 shows a top-down view of a well of a biological chip plate of this invention containing a biological chip on the bottom surface of the well.
  • This invention contemplates a number of embodiments of the biological chip plate. In a preferred embodiment, depicted in FIG. 4, the biological chip plate includes two parts. One part is a [0055] wafer 410 that includes a plurality of biological arrays 420. The other part is the body of the plate 430 that contains channels 440 that form the walls of the well, but that are open at the bottom. The body is attached to the surface of the wafer so as to close one end of the channels, thereby creating wells. The walls of the channels are placed on the wafer so that each surrounds and encloses the probe array of a biological array. FIG. 5 depicts a cross-section of this embodiment, showing the wafer 510 having a substrate 520 (preferably transparent to light) and a surface 530 to which is attached an array of probes 540. A channel wall 550 covers a probe array on the wafer, thereby creating well spaces 560. The-wafer can be attached to the body by any attachment means known in the art, for example, gluing (e.g., by ultraviolet-curing epoxy or various sticking tapes), acoustic welding, sealing such as vacuum or suction sealing, or even by relying on the weight of the body on the wafer to resist the flow of fluids between test wells.
  • In another preferred embodiment, depicted in cross section in FIG. 6, the plates include a [0056] body 610 having pre-formed wells 620, usually flat-bottomed. Individual biological chips 630 are attached to the bottom of the wells so that the surface containing the array of probes 640 is exposed to the well space where the sample is to be placed.
  • In another embodiment, the biological chip plate has a wafer having a plurality of probe arrays and a material resistant to the flow of a liquid sample that surrounds each probe array. For example, in an embodiment useful for testing aqueous-based samples, the wafer can be scored with waxes, tapes or other hydrophobic materials in the spaces between the arrays, forming cells that act as test wells. The cells thus contain liquid applied to an array by resisting spillage over the barrier and into another cell. If the sample contains a non-aqueous solvent, such as an alcohol, the material is selected to be resistant to corrosion by the solvent. [0057]
  • The microplates of this invention have a plurality of test wells that can be arrayed in a variety of ways. In one embodiment, the plates have the general size and shape of standard-sized microtiter plates having 96 wells arranged in an 8×12 format. One advantage of this format is that instrumentation already exists for handling and reading assays on microtiter plates. Therefore, using such plates in biological chip assays does not involve extensive re-engineering of commercially available fluid handling devices. However, the plates can have other formats as well. [0058]
  • The material from which the body of the biological chip plate is made depends upon the use to which it is to be put. In particular, this invention contemplates a variety of polymers already used for microtiter plates including, for example, (poly)tetrafluoroethylene, (poly)vinylidenedi-fluoride, polypropylene, polystyrene, polycarbonate, or combinations thereof. When the assay is to be performed by sending an excitation beam through the bottom of the plate collecting data through the bottom of the plate, the body of the plate and the substrate of the chip should be transparent to the wavelengths of light being used. [0059]
  • The arrangement of probe arrays in the wells of a microplate depends on the particular application contemplated. For example, for diagnostic uses involving performing the same test on many samples, every well can have the same array of probes. If several different tests are to be performed on each sample, each row of the plate can have the same array of probes and each column can contain a different array. Samples from a single patient are introduced into the wells of a particular column. Samples from a different patient are introduced into the wells of a different column. In still another embodiment, multiple patient samples are introduced into a single well. If a well indicates a “positive” result for a particular characteristic, the samples from each patient are then rerun, each in a different well, to determine which patient sample gave a positive result. [0060]
  • D. Biological Chips [0061]
  • The biological chip plates used in the methods of this invention include biological chips. The array of probe sequences can be fabricated on the biological chip according to the pioneering techniques disclosed in U.S. Pat. No. 5,143,854, PCT WO 92/10092, PCT WO 90/15070, or U.S. application Ser. Nos. 08/249,188, 07/624,120, and 08/082,937, incorporated herein by reference for all purposes. The combination of photolithographic and fabrication techniques may, for example, enable each probe sequence (“feature”) to occupy a very small area (“site” or “location”) on the support. In some embodiments, this feature site may be as small as a few microns or even a single molecule. For example, a probe array of 0.25 mm[0062] 2 (about the size that would fit in a well of a typical 96-well microtiter plate) could have at least 10, 100, 1000, 104, 10 5 or 106 features. In an alternative embodiment, such synthesis is performed according to the mechanical techniques disclosed in U.S. Pat. No. 5,384,261, incorporated herein by reference.
  • Referring to FIG. 8, in general, linker molecules, —O—X, are provided on a substrate. The substrate is preferably flat but may take on a variety of alternative surface configurations. For example, the substrate may contain raised or depressed regions on which the probes are located. The substrate and its surface preferably form a rigid support on which the sample can be formed. The substrate and its surface are also chosen to provide appropriate light-absorbing characteristics. For instance, the substrate may be functionalized glass, Si, Ge, GaAs, GaP, SiO[0063] 2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof. Other substrate materials will be readily apparent to those of skill in the art upon review of this disclosure. In a preferred embodiment the substrate is flat glass or silica.
  • Surfaces on the solid substrate usually, though not always, are composed of the same material as the substrate. Thus, the surface may be composed of any of a wide variety of materials, for example, polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, or any of the above-listed substrate materials. In one embodiment, the surface will be optically transparent and will have surface Si—OH functionalities, such as those found on silica surfaces. [0064]
  • A terminal end of the linker molecules is provided with a reactive functional group protected with a photoremovable protective group, [0065] 0-X. Using lithographic methods, the photoremovable protective group is exposed to light, hv, through a mask, M1, that exposes a selected portion of the surface, and removed from the linker molecules in first selected regions. The substrate is then washed or otherwise contacted with a first monomer that reacts with exposed functional groups on the linker molecules (T-X). In the case of nucleic acids, the monomer can be a phosphoramidite activated nucleoside protected at the 5′-hydroxyl with a photolabile protecting group.
  • A second set of selected regions, thereafter, exposed to light through a mask, M[0066] 2, and photoremovable protective group on the linker molecule/protected amino acid or nucleotide is removed at the second set of regions. The substrate is then contacted with a second monomer containing a photoremovable protective group for reaction with exposed functional groups. This process is repeated to selectively apply monomers until polymers of a desired length and desired chemical sequence are obtained. Photolabile groups are then optionally removed and the sequence is, thereafter, optionally capped. Side chain protective groups, if present, are also removed.
  • The general process of synthesizing probes by removing protective groups by exposure to light, coupling monomer units to the exposed active sites, and capping unreacted sites is referred to herein as “light-directed probe synthesis.” If the probe is an oligonucleotide, the process is referred to as “light-directed oligonucleotide synthesis” and so forth. [0067]
  • The probes can be made of any molecules whose synthesis involves sequential addition of units. This includes polymers composed of a series of attached units and molecules bearing a common skeleton to which various functional groups are added. Polymers useful as probes in this invention include, for example, both linear and cyclic polymers of nucleic acids, polysaccharides, phospholipids, and peptides having either α-, β-, or ω-amino acids, heteropolymers in which a known drug is covalently bound to any of the above, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, polyacetates, or other polymers which will be apparent upon review of this disclosure. Molecules bearing a common skeleton include benzodiazepines and other small molecules, such as described in U.S. Pat. No. 5,288,514, incorporated herein by reference. [0068]
  • Preferably, probes are arrayed on a chip in addressable rows and columns in which the dimensions of the chip conform to the dimension of the plate test well. Technologies already have been developed to read information from such arrays. The amount of information that can be stored on each plate of chips depends on the lithographic density which is used to synthesize the wafer. For example, if each feature size is about 100 microns on a side, each array can have about 10,000 probe addresses in a 1 cm[0069] 2 area. A plate having 96 wells would contain about 192,000 probes. However, if the arrays have a feature size of 20 microns on a side, each array can have close to 50,000 probes and the plate would have over 4,800,000 probes.
  • The selection of probes and their organization in an array depends upon the use to which the biological chip will be put. In one embodiment, the chips are used to sequence or re-sequence nucleic acid molecules, or compare their sequence to a referent molecule. Re-sequencing nucleic acid molecules involves determining whether a particular molecule has any deviations from the sequence of reference molecule. For example, in one embodiment, the plates are used to identify in a particular type of HIV in a set of patient samples. Tiling strategies for sequence checking of nucleic acids are described in U.S. patent application Ser. No. 08/284,064 (PCT/US94/12305), incorporated herein by reference. [0070]
  • In typical diagnostic applications, a solution containing one or more targets to be identified (i.e., samples from patients) contacts the probe array. The targets will bind or hybridize with complementary probe sequences. Accordingly, the probes will be selected to have sequences directed to (i.e., having at least some complementarity with) the target sequences to be detected, e.g., human or pathogen sequences. Generally, the targets are tagged with a detectable label. The detectable label can be, for example, a luminescent label, a light scattering label or a radioactive label. Accordingly, locations at which targets hybridize with complimentary probes can be identified by locating the markers. Based on the locations where hybridization occurs, information regarding the target sequences can be extracted. The existence of a mutation may be determined by comparing the target sequence with the wild type. [0071]
  • In a preferred embodiment, the detectable label is a luminescent label. Useful luminescent labels include fluorescent labels, chemi-luminescent labels, bio-luminescent labels, and calorimetric labels, among others. Most preferably, the label is a fluorescent label such as fluorescein, rhodamine, cyanine and so forth. Fluorescent labels include, inter alia, the commercially available fluorescein phosphoramidites such as Fluoreprime (Pharmacia), Fluoredite (Millipore) and FAM (ABI). For example, the entire surface of the substrate is exposed to the activated fluorescent phosphoramidite, which reacts with all of the deprotected 5′-hydroxyl groups. Then the entire substrate is exposed to an alkaline solution (eg., 50% ethylenediamine in ethanol for 1-2 hours at room temperature). This is necessary to remove the protecting groups from the fluorescein tag. [0072]
  • To avoid self-quenching interactions between fluorophores on the surface of a biological chip, the fluorescent tag monomer should be diluted with a non-fluorescent analog of equivalent reactivity. For example, in the case of the fluorescein phosphoramidites noted above, a 1:20 dilution of the reagent with a non-fluorescent phosphoramidite such as the standard 5′-DMT-nucleoside phosphoramidites, has been found to be suitable. Correction for background non-specific binding of the fluorescent reagent and other such effects can be determined by routine testing. [0073]
  • Useful light scattering labels include large colloids, and especially the metal colloids such as those from gold, selenium and titanium oxide. [0074]
  • Radioactive labels include, for example, [0075] 32p. This label can be detected by a phosphoimager. Detection of course, depends on the resolution of the imager. Phosophoimagers are available having resolution of 50 microns. Accordingly, this label is currently useful with chips having features of that size.
  • E. Uses [0076]
  • The methods of this invention will find particular use wherever high through-put of samples is required. In particular, this invention is useful in clinical settings and for sequencing large quantities of DNA, for example in connection with the Human Genome project. [0077]
  • The clinical setting requires performing the same test on many patient samples. The automated methods of this invention lend themselves to these uses when the test is one appropriately performed on a biological chip. For example, a DNA array can determine the particular strain of a pathogenic organism based on characteristic DNA sequences of the strain. The advanced techniques based on these assays now can be introduced into the clinic. Fluid samples from several patients are introduced into the test wells of a biological chip plate and the assays are performed concurrently. [0078]
  • In some embodiments, it may be desirable to perform multiple tests on multiple patient samples concurrently. According to such embodiments, rows (or columns) of the microtiter plate will contain probe arrays for diagnosis of a particular disease or trait. For example, one row might contain probe arrays designed for a particular cancer, while other rows contain probe arrays for another cancer. Patient samples are then introduced into respective columns (or rows) of the microtiter plate. For example, one column may be used to introduce samples from patient “one,” another column for patient “two” etc. Accordingly, multiple diagnostic tests may be performed on multiple patients in parallel. In still further embodiments, multiple patient samples are introduced into a single well. In a particular well indicator the presence of a genetic disease or other characteristic, each patient sample is then individually processed to identify which patient exhibits that disease or trait. For relatively rarely occurring characteristics, further order-of-magnitude efficiency may be obtained according to this embodiment. [0079]
  • Particular assays that will find use in automation include those designed specifically to detect or identify particular variants of a pathogenic organism, such as HIV. Assays to detect or identify a human or animal gene are also contemplated. In one embodiment, the assay is the detection of a human gene variant that indicates existence of or predisposition to a genetic disease, either from acquired or inherited mutations in an individual DNA. These include genetic diseases such as cystic fibrosis, diabetes, and muscular dystrophy, as well as diseases such as cancer (the P[0080] 53 gene is relevant to some cancers), as disclosed in U.S. patent application Ser. No. 08/143,312, already incorporated by reference.
  • The present invention provides a substantially novel method for performing assays on biological arrays. While specific examples have been provided, the above description is illustrative and not restrictive. Many variations of the invention will become apparent to those of skill in the art upon review of this specification. The scope of the invention should, therefore,.be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents. [0081]
  • All publications and patent documents cited in this application are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication or patent document were so individually denoted. [0082]

Claims (73)

What is claimed is:
1. A method for concurrently processing multiple biological chip assays comprising the steps of:
(a) providing a biological chip plate comprising a plurality of test wells, each test well defining a space for the introduction of a sample, and comprising a biological array comprising a substrate and a surface to which an array of probes is attached, produced by light-directed probe synthesis said probes exposed to the space;
(b) manipulating the biological chip plate with a fluid handling device that automatically performs steps to carry out reactions between target molecules in a test sample and probes in a plurality of the test wells; and
(c) interrogating the probe arrays of the biological chip plate with a biological chip plate reader to detect reactions between target molecules and probes in a plurality of the test wells to generate assay results.
2. The method of claim 1 further comprising the step of processing the results with a computer.
3. The method of claim 2 wherein the results are processed into an image with the intensity in each region of the image varying according to the binding affinity between targets and probes.
4. The method of claim 1 wherein the probes are DNA or RNA molecules.
5. The method of claim 4 wherein
(a) the reactions are hybridization of target molecules to probes; and
(b) the results provide information regarding the nucleotide sequence of the target molecule.
6. The method of claim 5 wherein the assay is the detection or identification of a pathogenic organism.
7. The method of claim 6 wherein the pathogenic organism is HIV.
8. The method of claim 5 wherein the assay is the detection or identification of a human nucleic acid.
9. The method of claim 8 wherein the assay is the detection of a human gene variant.
10. The method of claim 8 wherein the human gene variant indicates the existence of, or predisposition to cystic fibrosis, diabetes, muscular dystrophy or cancer.
11. The method of claim 1 wherein the assay is the identification of a probe in a library that binds to a receptor and the reaction is the binding of a target molecule to a peptide probe.
12. The method of claim 1 wherein the reaction is the catalytic transformation of a probe molecule by a target catalyst.
13. The method of claim 1 further comprising controlling the temperature of the samples in the test wells and adding or removing fluids from the test wells at predetermined times.
14. The method of claim 1 wherein the target molecule is tagged with a fluorescent marker, a chemiluminescent marker, a light scattering marker or a radioactive marker.
15. The method of claim 14 wherein the marker is a fluorescent marker selected from the group consisting of fluorescein, rhodamine, or cyanine.
16. The method of claim 1 wherein the fluid handling device and the biological chip plate reader comprise
(a) a confocal detection device having a monochromatic or polychromatic light source;
(b) optics for directing an excitation light from the light source at the substrate;
(c) a temperature controller for controlling temperature of the substrate during a reaction; and
(d) a detector for detecting fluorescence emitted by the targets in response to the excitation light.
17. The method of claim 1 wherein the manipulating step comprises robotically controlling pipets for adding or removing fluids from the test wells at predetermined times.
18. The method of claim 1 wherein the interrogating step comprises detecting fluorescent emissions from the plate with a photomultiplier tube.
19. The method of claim 1 wherein the interrogating step comprises focusing the excitation light to a point on the plate and determining the region the fluorescence originated.
20. The method of claim 16 wherein the target is tagged with a fluorescent marker and the biological chip plate reader comprises a CCD array.
21. The method of claim 1 wherein the biological arrays each have at least about 2500 probe sites.
22. The method of claim 1 wherein the biological arrays each have at least about 50,000 probe sites.
23. The method of claim 1 wherein each test well comprises an individual probe array.
24. The method of claim 1 wherein said chip plate is made by the steps of mating a wafer to an array of open ended wells.
25. The method of claim 5, wherein the samples are from a plurality of patients.
26. The method of claim 25 further comprising the step of using information from the results to determine which of the patients exhibit a genetic disease or characteristic.
27. The method as recited in claim 1 wherein the interrogating step comprises the steps of:
(a) directing excitation light through a bottom surface of said plate; and
(b) detecting where targets bound on said probe arrays.
28. The method as recited in claim 1 wherein said arrays of probes are made by repeating the steps of:
(a) selectively directing light at said surface to remove photoremovable protecting groups; and
(b) selectively coupling monomers to said surface.
29. The method of claim 1 wherein the interrogating step comprises determining the on- or off-rates of binding between target molecules in a sample and probes.
30. A system for concurrently processing multiple biological chip assays comprising:
(a) a biological chip plate comprising a plurality of test wells, each test well defining a space for the introduction of a sample, and comprising a biological array comprising a substrate and a surface to which an array of at least 100 probes at known sites is attached, said probes exposed to the space;
(b) a fluid handling device that automatically performs steps to carry out reactions between target molecules in the samples and probes in a plurality of the test wells; and
(d) a biological chip plate reader that interrogates the probe arrays to detect any reactions between target molecules and probes in a plurality of the test wells to produce assay results.
31. The system of claim 30 further comprising a computer comprising a program for processing the assay results.
32. The system of claim 30 wherein the probes are DNA or RNA molecules.
33. The system of claim 30 wherein the fluid handling device and the biological chip plate reader comprise
(a) a confocal detection device having a monochromatic or polychromatic light source;
(b) means for directing an excitation light from the light source at the substrate;
(c) means for controlling temperature of the substrate during a reaction; and
(d) means for detecting fluorescence emitted by the targets in response to the excitation light.
34. The system of claim 33 wherein the fluid handling device comprises
robotically controlled pipets for adding or removing fluids from the test wells at predetermined times; and wherein
(a) the means for detecting the fluorescent emissions from the substrate comprise a photomultiplier tube;
(b) the means for focusing the excitation light to a point on the substrate and determining the region the fluorescence originated from comprise an x-y-z translation table; and
(c) wherein translation of the x-y-z table, temperature control and data collection are managed and recorded by a digital computer.
35. The system of claim 33 wherein the means for directing excitation light and means for detecting are arranged to illuminate and read the test wells through a bottom side of the test wells.
36. The system of claim 30 wherein the biological chip plate reader comprises a line scanner.
37. The system of claim 30 wherein the biological chip plate reader comprises a CCD array.
38. The system of claim 30 wherein the biological chips have at least about 2500 probe sites.
39. The system of claim 30 wherein the biological chips have at least about 50,000 sites.
40. The system of claim 30 wherein the biological chip plate comprises about 96 test wells.
41. A biological chip plate comprising a plurality of test wells, each test well defining a space for the introduction of a sample, and each test well comprising a biological chip produced by light-directed probe synthesis comprising a substrate and a surface to which an array of at least 100 probes are attached, the probes being exposed to the space.
42. The biological chip plate of claim 41 wherein the substrate comprises functionalized glass or silica comprising Si, Ge, GaAs, GaP, SiO2, SiN4 or modified silicon.
43. The biological chip plate of claim 41 wherein the surface comprises polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, polymerized Langmuir Blodgett film, functionalized glass, (poly)tetrafluoro-ethylene, (poly)vinylidenedifluoride, polystyrene or polycarbonate.
44. The biological chip plate of claim 41 comprising a body having test wells, wherein each test well comprises an individual biological chip.
45. The biological plate of claim 44 wherein the body comprises (poly)tetrafluoroethylene, (poly)vinylidenedi-fluoride, polypropylene, polystyrene, polycarbonate, or combinations thereof.
46. The biological chip plate of claim 41 comprising a wafer and a body, the wafer comprising a plurality of biological chips and the body comprising a plurality of channels, wherein the body is attached to the surface of the wafer so that a plurality of the channels each cover an array of probes and the wafer closes one end of a plurality of the channels, thereby forming the test wells.
47. The biological plate of claim 46 wherein the body comprises (poly)tetrafluoroethylene, (poly)vinylidenedi-fluoride, polypropylene, polystyrene, polycarbonate, or combinations thereof.
48. The biological chip plate of claim 41 comprising a wafer having a plurality of probe arrays and a material resistant to the flow of a liquid sample that surrounds each probe array.
49. The biological chip of claim 48 wherein the material is a hydrophobic material.
50. The biological chip plate of claim 41 comprising 96 wells arranged in 8 rows and 12 columns.
51. The biological chip plate of claim 41 wherein the probes are DNA or RNA molecules.
52. The biological chip plate of claim 51 wherein the DNA or RNA molecules comprise sequences directed to pathogenic organisms.
53. The biological chip plate of claim 52 wherein the pathogenic organism is HIV.
54. The biological chip plate of claim 51 wherein the nucleic acids comprise sequences directed to human DNA.
55. The biological chip plate of claim 52 wherein the sequences are directed to a human gene variant that indicates the existence of or predisposition to a genetic disease.
56. The biological chip plate of claim 53 wherein the disease is cystic fibrosis, diabetes, muscular dystrophy or cancer.
57. The biological chip plate of claim 41 wherein the array of probes in each test well is the same.
58. The biological chip plate of claim 41 wherein the test wells are arranged in rows and columns and the rows contain biological chips with the same probe array and the columns contain biological chips with a different probe array.
59. The biological chip plate of claim 41 wherein the probe arrays comprise at least 1000 features.
60. The biological chip plate of claim 41 wherein the probe arrays comprise at least 10,000 features.
61. The biological chip plate of claim 41 wherein the probe arrays comprise at least 100,000 features.
62. The biological chip plate of claim 41 wherein the probe arrays comprise at least 1,000,000 features.
63. A method for making a biological chip plate comprising the steps of providing a wafer and a body, the wafer comprising a substrate having a surface to which is attached a plurality of arrays of probes, and the body comprising a plurality of channels; and attaching the body to the surface of the wafer whereby a plurality of the channels each cover an array of probes and the wafer closes one end of the plurality of channels, thereby forming test wells defining spaces for receiving samples.
64. The method of claim 63 wherein the probes are DNA or RNA molecules.
65. A method for making a biological chip plate comprising the steps of:
(a) providing a body comprising a plurality of wells defining spaces;
(b) providing a plurality of biological arrays comprising a substrate having a surface to which is attached the plurality of probe arrays;
(c) attaching the substrate to the wells so that the probes are exposed to the spaces.
66. The method of claim 65 wherein the probes are DNA or RNA molecules.
67. A method for making a biological chip plate comprising the steps of providing a wafer having a plurality of probe arrays; and applying a material resistant to the flow of a liquid sample so as to surround the probe arrays, thereby creating test wells.
68. The method of claim 67 wherein the probes are DNA or RNA molecules.
69. A wafer comprising a substrate and a surface to which are attached a plurality of probe arrays, wherein the probe arrays are arranged on the wafer surface in rows and columns, wherein the probe arrays in each row are the same and the probe arrays in each column are different.
70. The wafer of claim 69 wherein the probes are DNA or RNA molecules.
71. The wafer of claim 70 wherein the DNA or RNA molecules comprise sequences of HIV.
72. The wafer of claim 70 wherein the probe arrays in the columns comprise sequences for screening a plurality of genetic diseases.
73. The wafer of claim 72 wherein the genetic diseases comprise cystic fibrosis, diabetes, muscular dystrophy or cancer.
US09/247,430 1995-06-07 1999-02-10 Method for concurrently processing multiple biological chip assays Abandoned US20020018991A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/247,430 US20020018991A1 (en) 1995-06-07 1999-02-10 Method for concurrently processing multiple biological chip assays
US10/157,252 US6720149B1 (en) 1995-06-07 2002-05-28 Methods for concurrently processing multiple biological chip assays
US10/795,086 US20050042628A1 (en) 1995-06-07 2004-03-05 Methods for concurrently processing multiple biological chip assays
US10/997,492 US20050123907A1 (en) 1995-06-07 2004-11-24 Methods for making a device for concurrently processing multiple biological chip assays
US11/044,834 US20050181403A1 (en) 1995-06-07 2005-01-26 Methods for making a device for concurrently processing multiple biological chip assays
US11/173,366 US20050282156A1 (en) 1995-06-07 2005-07-01 Methods for making a device for concurrently processing multiple biological chip assays

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/476,850 US5545531A (en) 1995-06-07 1995-06-07 Methods for making a device for concurrently processing multiple biological chip assays
US08/630,051 US5874219A (en) 1995-06-07 1996-04-09 Methods for concurrently processing multiple biological chip assays
US09/247,430 US20020018991A1 (en) 1995-06-07 1999-02-10 Method for concurrently processing multiple biological chip assays

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US08/476,850 Continuation US5545531A (en) 1995-06-07 1995-06-07 Methods for making a device for concurrently processing multiple biological chip assays
US08/630,051 Continuation US5874219A (en) 1995-06-07 1996-04-09 Methods for concurrently processing multiple biological chip assays

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/157,252 Continuation US6720149B1 (en) 1995-06-07 2002-05-28 Methods for concurrently processing multiple biological chip assays

Publications (1)

Publication Number Publication Date
US20020018991A1 true US20020018991A1 (en) 2002-02-14

Family

ID=23893507

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/476,850 Expired - Lifetime US5545531A (en) 1995-06-07 1995-06-07 Methods for making a device for concurrently processing multiple biological chip assays
US08/630,051 Expired - Lifetime US5874219A (en) 1995-06-07 1996-04-09 Methods for concurrently processing multiple biological chip assays
US09/247,430 Abandoned US20020018991A1 (en) 1995-06-07 1999-02-10 Method for concurrently processing multiple biological chip assays

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/476,850 Expired - Lifetime US5545531A (en) 1995-06-07 1995-06-07 Methods for making a device for concurrently processing multiple biological chip assays
US08/630,051 Expired - Lifetime US5874219A (en) 1995-06-07 1996-04-09 Methods for concurrently processing multiple biological chip assays

Country Status (1)

Country Link
US (3) US5545531A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1513948A1 (en) * 2002-05-29 2005-03-16 Autogenomics, Inc. Integrated micro array system and methods therefor
US20050106618A1 (en) * 1994-06-08 2005-05-19 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
WO2006047911A1 (en) * 2004-11-08 2006-05-11 Capitalbio Corporation A type of high-throughput biochip and its application
US20070134784A1 (en) * 2005-12-09 2007-06-14 Halverson Kurt J Microreplicated microarrays
US20090143249A1 (en) * 1994-06-08 2009-06-04 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US8501122B2 (en) 2009-12-08 2013-08-06 Affymetrix, Inc. Manufacturing and processing polymer arrays
CN107338288A (en) * 2017-06-14 2017-11-10 杨华卫 A kind of biomolecule detecting method

Families Citing this family (937)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270961B1 (en) * 1987-04-01 2001-08-07 Hyseq, Inc. Methods and apparatus for DNA sequencing and DNA identification
US6040138A (en) 1995-09-15 2000-03-21 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US6955915B2 (en) * 1989-06-07 2005-10-18 Affymetrix, Inc. Apparatus comprising polymers
US5677195A (en) * 1991-11-22 1997-10-14 Affymax Technologies N.V. Combinatorial strategies for polymer synthesis
US5384261A (en) * 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US6943034B1 (en) 1991-11-22 2005-09-13 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US20030232361A1 (en) * 1993-10-26 2003-12-18 Affymetrix, Inc. Nucleic acid array preparation using purified phosphoramidites
US6309601B1 (en) * 1993-11-01 2001-10-30 Nanogen, Inc. Scanning optical detection system
US7323298B1 (en) 1994-06-17 2008-01-29 The Board Of Trustees Of The Leland Stanford Junior University Microarray for determining the relative abundances of polynuceotide sequences
US7378236B1 (en) 1994-06-17 2008-05-27 The Board Of Trustees Of The Leland Stanford Junior University Method for analyzing gene expression patterns
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US7857957B2 (en) 1994-07-07 2010-12-28 Gamida For Life B.V. Integrated portable biological detection system
US6403367B1 (en) * 1994-07-07 2002-06-11 Nanogen, Inc. Integrated portable biological detection system
US6327031B1 (en) * 1998-09-18 2001-12-04 Burstein Technologies, Inc. Apparatus and semi-reflective optical system for carrying out analysis of samples
US8236493B2 (en) * 1994-10-21 2012-08-07 Affymetrix, Inc. Methods of enzymatic discrimination enhancement and surface-bound double-stranded DNA
US6239273B1 (en) 1995-02-27 2001-05-29 Affymetrix, Inc. Printing molecular library arrays
US5959098A (en) * 1996-04-17 1999-09-28 Affymetrix, Inc. Substrate preparation process
US5599695A (en) * 1995-02-27 1997-02-04 Affymetrix, Inc. Printing molecular library arrays using deprotection agents solely in the vapor phase
US5874214A (en) 1995-04-25 1999-02-23 Irori Remotely programmable matrices with memories
US6017496A (en) 1995-06-07 2000-01-25 Irori Matrices with memories and uses thereof
US6329139B1 (en) 1995-04-25 2001-12-11 Discovery Partners International Automated sorting system for matrices with memory
US5751629A (en) 1995-04-25 1998-05-12 Irori Remotely programmable matrices with memories
US6331273B1 (en) 1995-04-25 2001-12-18 Discovery Partners International Remotely programmable matrices with memories
US5741462A (en) 1995-04-25 1998-04-21 Irori Remotely programmable matrices with memories
US6416714B1 (en) 1995-04-25 2002-07-09 Discovery Partners International, Inc. Remotely programmable matrices with memories
US6025129A (en) * 1995-04-25 2000-02-15 Irori Remotely programmable matrices with memories and uses thereof
US5925562A (en) * 1995-04-25 1999-07-20 Irori Remotely programmable matrices with memories
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
US6720149B1 (en) * 1995-06-07 2004-04-13 Affymetrix, Inc. Methods for concurrently processing multiple biological chip assays
US6361951B1 (en) 1995-06-27 2002-03-26 The University Of North Carolina At Chapel Hill Electrochemical detection of nucleic acid hybridization
US6132971A (en) * 1995-06-27 2000-10-17 The University Of North Carolina At Chapel Hill Microelectronic device
US20020022261A1 (en) * 1995-06-29 2002-02-21 Anderson Rolfe C. Miniaturized genetic analysis systems and methods
DE19543065C2 (en) * 1995-11-09 2002-10-31 Gag Bioscience Gmbh Zentrum Fu Genome analysis method and means for performing the method
US6953663B1 (en) 1995-11-29 2005-10-11 Affymetrix, Inc. Polymorphism detection
US6300063B1 (en) 1995-11-29 2001-10-09 Affymetrix, Inc. Polymorphism detection
US6660233B1 (en) * 1996-01-16 2003-12-09 Beckman Coulter, Inc. Analytical biochemistry system with robotically carried bioarray
EP0880598A4 (en) 1996-01-23 2005-02-23 Affymetrix Inc Nucleic acid analysis techniques
JP2000504575A (en) * 1996-02-08 2000-04-18 アフィメトリックス,インコーポレイテッド Chip-based speciation and phenotypic characterization of microorganisms
US6924094B1 (en) * 1996-02-08 2005-08-02 Affymetrix, Inc. Chip-based species identification and phenotypic characterization of microorganisms
US6838256B2 (en) 1996-02-12 2005-01-04 Gene Logic Inc. Coding sequences of the human BRCA1 gene
US7244622B2 (en) * 1996-04-03 2007-07-17 Applera Corporation Device and method for multiple analyte detection
US6706875B1 (en) * 1996-04-17 2004-03-16 Affyemtrix, Inc. Substrate preparation process
US6387707B1 (en) 1996-04-25 2002-05-14 Bioarray Solutions Array Cytometry
US7041510B2 (en) * 1996-04-25 2006-05-09 Bioarray Solutions Ltd. System and method for programmable illumination pattern generation
US6251691B1 (en) * 1996-04-25 2001-06-26 Bioarray Solutions, Llc Light-controlled electrokinetic assembly of particles near surfaces
US6958245B2 (en) 1996-04-25 2005-10-25 Bioarray Solutions Ltd. Array cytometry
US7144119B2 (en) * 1996-04-25 2006-12-05 Bioarray Solutions Ltd. System and method for programmable illumination pattern generation
US6232124B1 (en) 1996-05-06 2001-05-15 Verification Technologies, Inc. Automated fingerprint methods and chemistry for product authentication and monitoring
US5731152A (en) * 1996-05-13 1998-03-24 Motorola, Inc. Methods and systems for biological reagent placement
US6048691A (en) * 1996-05-13 2000-04-11 Motorola, Inc. Method and system for performing a binding assay
WO1997046313A1 (en) * 1996-06-07 1997-12-11 Eos Biotechnology, Inc. Immobilised linear oligonucleotide arrays
DE19628928A1 (en) * 1996-07-18 1998-01-22 Basf Ag Solid supports for analytical measurement processes, a process for their production and their use
US7094609B2 (en) 1996-09-20 2006-08-22 Burstein Technologies, Inc. Spatially addressable combinatorial chemical arrays in encoded optical disk format
US6136274A (en) * 1996-10-07 2000-10-24 Irori Matrices with memories in automated drug discovery and units therefor
US6875620B1 (en) * 1996-10-31 2005-04-05 Agilent Technologies, Inc. Tiling process for constructing a chemical array
US7381525B1 (en) * 1997-03-07 2008-06-03 Clinical Micro Sensors, Inc. AC/DC voltage apparatus for detection of nucleic acids
US6096273A (en) * 1996-11-05 2000-08-01 Clinical Micro Sensors Electrodes linked via conductive oligomers to nucleic acids
NZ335453A (en) 1996-12-12 2001-07-27 Prolume Ltd Microelectronic device with microlocations including photodetector for detecting bioluminescence
JP4663824B2 (en) * 1996-12-31 2011-04-06 ハイ スループット ジェノミクス インコーポレイテッド Multiplexed molecular analyzer and method
US6309824B1 (en) 1997-01-16 2001-10-30 Hyseq, Inc. Methods for analyzing a target nucleic acid using immobilized heterogeneous mixtures of oligonucleotide probes
US6297006B1 (en) 1997-01-16 2001-10-02 Hyseq, Inc. Methods for sequencing repetitive sequences and for determining the order of sequence subfragments
US20020042048A1 (en) 1997-01-16 2002-04-11 Radoje Drmanac Methods and compositions for detection or quantification of nucleic acid species
JP3356784B2 (en) * 1997-02-28 2002-12-16 バースタイン テクノロジーズ,インコーポレイティド Optical disc and method for performing optical analysis of a sample
US20030027126A1 (en) 1997-03-14 2003-02-06 Walt David R. Methods for detecting target analytes and enzymatic reactions
US7622294B2 (en) 1997-03-14 2009-11-24 Trustees Of Tufts College Methods for detecting target analytes and enzymatic reactions
US6391622B1 (en) * 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
NO972006D0 (en) 1997-04-30 1997-04-30 Forskningsparken I Aas As New method for diagnosis of diseases
US6110748A (en) * 1997-04-30 2000-08-29 Motorola, Inc. Optical storage medium for binding assays
US5935785A (en) * 1997-04-30 1999-08-10 Motorola, Inc. Binding assay methods
AU756945B2 (en) 1997-05-23 2003-01-30 Bioarray Solutions Ltd Color-encoding and in-situ interrogation of matrix-coupled chemical compounds
US6548263B1 (en) * 1997-05-29 2003-04-15 Cellomics, Inc. Miniaturized cell array methods and apparatus for cell-based screening
US7541151B2 (en) 1997-06-05 2009-06-02 Duke University Single-cell biosensor for the measurement of GPCR ligands in a test sample
US5891646A (en) * 1997-06-05 1999-04-06 Duke University Methods of assaying receptor activity and constructs useful in such methods
US6528271B1 (en) 1997-06-05 2003-03-04 Duke University Inhibition of βarrestin mediated effects prolongs and potentiates opioid receptor-mediated analgesia
US6151123A (en) * 1997-07-14 2000-11-21 Symyx Technologies, Inc. Systems and methods for employing optical probes to characterize material properties
US6326489B1 (en) 1997-08-05 2001-12-04 Howard Hughes Medical Institute Surface-bound, bimolecular, double-stranded DNA arrays
US20090269814A1 (en) * 1998-05-22 2009-10-29 Murphy Patricia D Method of Analyzing a BRCA2 Gene in a Human Subject
WO1999009217A1 (en) * 1997-08-15 1999-02-25 Hyseq, Inc. Methods and compositions for detection or quantification of nucleic acid species
DE19736641A1 (en) * 1997-08-22 1999-03-11 Michael G Dr Weller Multicomponent analysis of fluids
US6492109B1 (en) 1997-09-23 2002-12-10 Gene Logic, Inc. Susceptibility mutation 6495delGC of BRCA2
US6284496B1 (en) 1997-10-03 2001-09-04 University Of South Florida DNA vector for determining the presence of out-of-reading-frame mutations
US20030036084A1 (en) * 1997-10-09 2003-02-20 Brian Hauser Nucleic acid detection method employing oligonucleotide probes affixed to particles and related compositions
JP2001519538A (en) 1997-10-10 2001-10-23 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Replica amplification of nucleic acid arrays
US6485944B1 (en) 1997-10-10 2002-11-26 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
US6511803B1 (en) 1997-10-10 2003-01-28 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
WO1999019510A1 (en) 1997-10-10 1999-04-22 President And Fellows Of Harvard College Surface-bound, double-stranded dna protein arrays
DE19753790C2 (en) * 1997-12-04 2001-07-19 Micronas Gmbh Method for examining a surface layer
DE19758533B4 (en) * 1997-12-04 2005-09-29 Micronas Gmbh Method for structuring a surface layer
US6232066B1 (en) 1997-12-19 2001-05-15 Neogen, Inc. High throughput assay system
US6238869B1 (en) 1997-12-19 2001-05-29 High Throughput Genomics, Inc. High throughput assay system
US20030096232A1 (en) 1997-12-19 2003-05-22 Kris Richard M. High throughput assay system
US20030039967A1 (en) * 1997-12-19 2003-02-27 Kris Richard M. High throughput assay system using mass spectrometry
US20100105572A1 (en) * 1997-12-19 2010-04-29 Kris Richard M High throughput assay system
US6458533B1 (en) 1997-12-19 2002-10-01 High Throughput Genomics, Inc. High throughput assay system for monitoring ESTs
US6087102A (en) * 1998-01-07 2000-07-11 Clontech Laboratories, Inc. Polymeric arrays and methods for their use in binding assays
ATE477850T1 (en) * 1998-01-12 2010-09-15 Massachusetts Inst Technology DEVICE FOR PERFORMING MICROTESTS
US6287776B1 (en) 1998-02-02 2001-09-11 Signature Bioscience, Inc. Method for detecting and classifying nucleic acid hybridization
US6287874B1 (en) 1998-02-02 2001-09-11 Signature Bioscience, Inc. Methods for analyzing protein binding events
US6741956B1 (en) 1998-02-03 2004-05-25 Lucent Technologies Inc. Analog computation using hybridization-capable oligomers
US6565813B1 (en) * 1998-02-04 2003-05-20 Merck & Co., Inc. Virtual wells for use in high throughput screening assays
AU2583899A (en) 1998-02-04 1999-08-23 Invitrogen Corporation Microarrays and uses therefor
DE19811732A1 (en) * 1998-03-18 1999-09-30 November Ag Molekulare Medizin Plastic micro-titration plate with biomolecular coating inside cavities, forming part of biomolecule detection kit
WO1999051773A1 (en) * 1998-04-03 1999-10-14 Phylos, Inc. Addressable protein arrays
US6519032B1 (en) * 1998-04-03 2003-02-11 Symyx Technologies, Inc. Fiber optic apparatus and use thereof in combinatorial material science
US7108968B2 (en) * 1998-04-03 2006-09-19 Affymetrix, Inc. Mycobacterial rpoB sequences
US6284497B1 (en) 1998-04-09 2001-09-04 Trustees Of Boston University Nucleic acid arrays and methods of synthesis
US6342395B1 (en) * 1998-04-22 2002-01-29 The Regents Of The University Of California Compact assay system with digital information
US6395562B1 (en) * 1998-04-22 2002-05-28 The Regents Of The University Of California Diagnostic microarray apparatus
US6355419B1 (en) 1998-04-27 2002-03-12 Hyseq, Inc. Preparation of pools of nucleic acids based on representation in a sample
US6686163B2 (en) 1998-05-06 2004-02-03 Gene Logic Inc. Coding sequence haplotype of the human BRCA1 gene
US6541211B1 (en) * 1998-05-20 2003-04-01 Selectide Corporation Apparatus and method for synthesizing combinational libraries
WO1999060170A1 (en) * 1998-05-21 1999-11-25 Hyseq, Inc. Linear arrays of immobilized compounds and methods of using same
US6270730B1 (en) * 1998-06-16 2001-08-07 Northwest Engineering Inc. Multi-well rotary synthesizer
GB9813216D0 (en) * 1998-06-18 1998-08-19 Pyrosequencing Ab Reaction monitoring systems
EP2045334A1 (en) 1998-06-24 2009-04-08 Illumina, Inc. Decoding of array sensors with microspheres
US20020119579A1 (en) * 1998-07-14 2002-08-29 Peter Wagner Arrays devices and methods of use thereof
US20030138973A1 (en) * 1998-07-14 2003-07-24 Peter Wagner Microdevices for screening biomolecules
US6576478B1 (en) * 1998-07-14 2003-06-10 Zyomyx, Inc. Microdevices for high-throughput screening of biomolecules
US6780582B1 (en) * 1998-07-14 2004-08-24 Zyomyx, Inc. Arrays of protein-capture agents and methods of use thereof
US6406921B1 (en) * 1998-07-14 2002-06-18 Zyomyx, Incorporated Protein arrays for high-throughput screening
US6271042B1 (en) * 1998-08-26 2001-08-07 Alpha Innotech Corporation Biochip detection system
ATE535814T1 (en) * 1998-08-28 2011-12-15 Febit Holding Gmbh CARRIER FOR ANALYTE DETERMINATION METHODS AND METHOD FOR PRODUCING THE SUPPORT
US6461812B2 (en) 1998-09-09 2002-10-08 Agilent Technologies, Inc. Method and multiple reservoir apparatus for fabrication of biomolecular arrays
US6475440B1 (en) 1998-09-16 2002-11-05 Clontech Laboratories, Inc. Applicator for use in deposition of fluid samples onto a substrate surface
US20030138354A1 (en) * 1998-09-23 2003-07-24 Stephen Peter Fitzgerald Assay devices
US6203989B1 (en) 1998-09-30 2001-03-20 Affymetrix, Inc. Methods and compositions for amplifying detectable signals in specific binding assays
US6262216B1 (en) 1998-10-13 2001-07-17 Affymetrix, Inc. Functionalized silicon compounds and methods for their synthesis and use
US6423493B1 (en) * 1998-10-26 2002-07-23 Board Of Regents The University Of Texas System Combinatorial selection of oligonucleotide aptamers
US20060172925A1 (en) * 1998-10-26 2006-08-03 Board Of Regents, The University Of Texas System Thio-siRNA aptamers
US20040242521A1 (en) * 1999-10-25 2004-12-02 Board Of Regents, The University Of Texas System Thio-siRNA aptamers
US6309828B1 (en) 1998-11-18 2001-10-30 Agilent Technologies, Inc. Method and apparatus for fabricating replicate arrays of nucleic acid molecules
DE19853640C2 (en) * 1998-11-20 2002-01-31 Molecular Machines & Ind Gmbh Multi-vessel arrangement with improved sensitivity for optical analysis, processes for its production and its use in optical analysis processes
US6129896A (en) * 1998-12-17 2000-10-10 Drawn Optical Components, Inc. Biosensor chip and manufacturing method
DE19858456A1 (en) * 1998-12-18 2000-07-06 Leica Microsystems Methods for locating, recording and possibly evaluating object structures
US6429027B1 (en) 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
US7510841B2 (en) 1998-12-28 2009-03-31 Illumina, Inc. Methods of making and using composite arrays for the detection of a plurality of target analytes
US20030180789A1 (en) * 1998-12-30 2003-09-25 Dale Roderic M.K. Arrays with modified oligonucleotide and polynucleotide compositions
US6087112A (en) * 1998-12-30 2000-07-11 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
US6490030B1 (en) 1999-01-18 2002-12-03 Verification Technologies, Inc. Portable product authentication device
US7252966B2 (en) * 1999-01-29 2007-08-07 Evolutionary Genomics Llc EG307 polynucleotides and uses thereof
US7439018B2 (en) * 1999-01-29 2008-10-21 Evolutionary Genomics, Inc. EG1117 Polynucleotides and uses thereof
US20080047032A1 (en) * 1999-01-29 2008-02-21 Evolutionary Genomics Llc Eg307 nucleic acids and uses thereof
JP2002541433A (en) * 1999-02-10 2002-12-03 マクロジェン・インコーポレーテッド Method and apparatus for manufacturing chemical substance library using optical modulator
US6500609B1 (en) 1999-02-11 2002-12-31 Scynexis Chemistry & Automation, Inc. Method and apparatus for synthesizing characterizing and assaying combinatorial libraries
US6215894B1 (en) * 1999-02-26 2001-04-10 General Scanning, Incorporated Automatic imaging and analysis of microarray biochips
US6627157B1 (en) 1999-03-04 2003-09-30 Ut-Battelle, Llc Dual manifold system and method for fluid transfer
US6716578B1 (en) 1999-03-08 2004-04-06 Bioforce Nanosciences, Inc. Method for solid state genome analysis
EP1041385A3 (en) * 1999-03-30 2004-01-02 Fuji Photo Film Co., Ltd. Method and apparatus for detecting an organism-originated substance
US6824866B1 (en) 1999-04-08 2004-11-30 Affymetrix, Inc. Porous silica substrates for polymer synthesis and assays
US6238868B1 (en) * 1999-04-12 2001-05-29 Nanogen/Becton Dickinson Partnership Multiplex amplification and separation of nucleic acid sequences using ligation-dependant strand displacement amplification and bioelectronic chip technology
US6326173B1 (en) * 1999-04-12 2001-12-04 Nanogen/Becton Dickinson Partnership Electronically mediated nucleic acid amplification in NASBA
US6531302B1 (en) * 1999-04-12 2003-03-11 Nanogen/Becton Dickinson Partnership Anchored strand displacement amplification on an electronically addressable microchip
US6309833B1 (en) 1999-04-12 2001-10-30 Nanogen/Becton Dickinson Partnership Multiplex amplification and separation of nucleic acid sequences on a bioelectronic microchip using asymmetric structures
WO2000062036A1 (en) * 1999-04-12 2000-10-19 Nanogen/Becton Dickinson Partnership Amplification and separation of nucleic acid sequences using strand displacement amplification and bioelectronic microchip technology
DE19916749B4 (en) * 1999-04-14 2004-02-12 Carl Zeiss Jena Gmbh Procedure for examining samples
US6171793B1 (en) * 1999-04-19 2001-01-09 Affymetrix, Inc. Method for scanning gene probe array to produce data having dynamic range that exceeds that of scanner
US7312087B2 (en) * 2000-01-11 2007-12-25 Clinical Micro Sensors, Inc. Devices and methods for biochip multiplexing
US20020177135A1 (en) * 1999-07-27 2002-11-28 Doung Hau H. Devices and methods for biochip multiplexing
US6395559B1 (en) 1999-05-04 2002-05-28 Orchid Biosciences, Inc. Multiple fluid sample processor with single well addressability
CA2373314C (en) * 1999-05-14 2010-09-14 Brandeis University Nucleic acid-based detection
US6680377B1 (en) * 1999-05-14 2004-01-20 Brandeis University Nucleic acid-based detection
JP3957118B2 (en) * 1999-05-18 2007-08-15 富士フイルム株式会社 Test piece and image information reading device from the test piece
US20030096321A1 (en) * 1999-05-19 2003-05-22 Jose Remacle Method for the identification and/or the quantification of a target compound obtained from a biological sample upon chips
US20030073250A1 (en) * 1999-05-21 2003-04-17 Eric Henderson Method and apparatus for solid state molecular analysis
US6573369B2 (en) * 1999-05-21 2003-06-03 Bioforce Nanosciences, Inc. Method and apparatus for solid state molecular analysis
US20020042081A1 (en) * 2000-10-10 2002-04-11 Eric Henderson Evaluating binding affinities by force stratification and force panning
US20030186311A1 (en) * 1999-05-21 2003-10-02 Bioforce Nanosciences, Inc. Parallel analysis of molecular interactions
US6376149B2 (en) 1999-05-26 2002-04-23 Yale University Methods and compositions for imaging acids in chemically amplified photoresists using pH-dependent fluorophores
WO2000075377A2 (en) 1999-06-03 2000-12-14 Jacques Schrenzel Non-cognate hybridization system (nchs)
US6815218B1 (en) 1999-06-09 2004-11-09 Massachusetts Institute Of Technology Methods for manufacturing bioelectronic devices
FR2794861A1 (en) * 1999-06-11 2000-12-15 Commissariat Energie Atomique Device for reading a biochip comprises a light source for illuminating the biochip in the form of a strip covering at least one line of discrete zones
US20010053849A1 (en) * 1999-06-16 2001-12-20 Mary Jeanne Kreek Plural biological sample arrays, and preparation and uses thereof
US6258593B1 (en) 1999-06-30 2001-07-10 Agilent Technologies Inc. Apparatus for conducting chemical or biochemical reactions on a solid surface within an enclosed chamber
KR100883079B1 (en) 1999-07-05 2009-02-10 노파르티스 아게 Sensor platform, apparatus incorporating the platform, and process using the platform
US6771376B2 (en) * 1999-07-05 2004-08-03 Novartis Ag Sensor platform, apparatus incorporating the platform, and process using the platform
US6346423B1 (en) 1999-07-16 2002-02-12 Agilent Technologies, Inc. Methods and compositions for producing biopolymeric arrays
ATE417127T1 (en) 1999-07-26 2008-12-15 Clinical Micro Sensors Inc NUKELIC ACID SEQUENCE DETERMINATION USING ELECTRONIC DETECTION
US6653151B2 (en) 1999-07-30 2003-11-25 Large Scale Proteomics Corporation Dry deposition of materials for microarrays using matrix displacement
US6713309B1 (en) 1999-07-30 2004-03-30 Large Scale Proteomics Corporation Microarrays and their manufacture
US7179638B2 (en) 1999-07-30 2007-02-20 Large Scale Biology Corporation Microarrays and their manufacture by slicing
US6524863B1 (en) 1999-08-04 2003-02-25 Scynexis Chemistry & Automation, Inc. High throughput HPLC method for determining Log P values
US6413431B1 (en) 1999-08-10 2002-07-02 Scynexis Chemistry & Automation, Inc. HPLC method for purifying organic compounds
EP1212128A1 (en) 1999-08-27 2002-06-12 Scynexis Chemistry and Automation, Inc. Sample preparation for high throughput purification
WO2001018524A2 (en) 1999-08-30 2001-03-15 Illumina, Inc. Methods for improving signal detection from an array
EP2343128A1 (en) * 1999-09-17 2011-07-13 BioArray Solutions Ltd. Substrate and chip for conducting bioassays
US7217573B1 (en) * 1999-10-05 2007-05-15 Hitachi, Ltd. Method of inspecting a DNA chip
US6376177B1 (en) 1999-10-06 2002-04-23 Virtual Pro, Inc. Apparatus and method for the analysis of nucleic acids hybridization on high density NA chips
AU1075701A (en) * 1999-10-08 2001-04-23 Protogene Laboratories, Inc. Method and apparatus for performing large numbers of reactions using array assembly
US6171797B1 (en) 1999-10-20 2001-01-09 Agilent Technologies Inc. Methods of making polymeric arrays
US6512580B1 (en) 1999-10-27 2003-01-28 Verification Technologies, Inc. Method and apparatus for portable product authentication
US6406849B1 (en) * 1999-10-29 2002-06-18 Agilent Technologies, Inc. Interrogating multi-featured arrays
US6784982B1 (en) 1999-11-04 2004-08-31 Regents Of The University Of Minnesota Direct mapping of DNA chips to detector arrays
US6867851B2 (en) * 1999-11-04 2005-03-15 Regents Of The University Of Minnesota Scanning of biological samples
US7167615B1 (en) 1999-11-05 2007-01-23 Board Of Regents, The University Of Texas System Resonant waveguide-grating filters and sensors and methods for making and using same
US7033840B1 (en) 1999-11-09 2006-04-25 Sri International Reaction calorimeter and differential scanning calorimeter for the high-throughput synthesis, screening and characterization of combinatorial libraries
AU1476601A (en) 1999-11-09 2001-06-06 Sri International Array for the high-throughput synthesis, screening and characterization of combinatorial libraries, and methods for making the array
US6642046B1 (en) * 1999-12-09 2003-11-04 Motorola, Inc. Method and apparatus for performing biological reactions on a substrate surface
US6569674B1 (en) 1999-12-15 2003-05-27 Amersham Biosciences Ab Method and apparatus for performing biological reactions on a substrate surface
US6596483B1 (en) * 1999-11-12 2003-07-22 Motorola, Inc. System and method for detecting molecules using an active pixel sensor
US6589778B1 (en) * 1999-12-15 2003-07-08 Amersham Biosciences Ab Method and apparatus for performing biological reactions on a substrate surface
AU1921001A (en) * 1999-11-18 2001-05-30 Large Scale Proteomics Corporation Sequence tag microarray and method for detection of multiple proteins through dna methods
US6800439B1 (en) 2000-01-06 2004-10-05 Affymetrix, Inc. Methods for improved array preparation
SG121902A1 (en) * 2000-01-11 2006-05-26 Maxygen Inc Integrated systems for diversity generation and screening
GB0000896D0 (en) * 2000-01-14 2000-03-08 Univ Glasgow Improved analytical chip
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
US7955794B2 (en) 2000-09-21 2011-06-07 Illumina, Inc. Multiplex nucleic acid reactions
US20050214825A1 (en) * 2000-02-07 2005-09-29 John Stuelpnagel Multiplex sample analysis on universal arrays
US8076063B2 (en) 2000-02-07 2011-12-13 Illumina, Inc. Multiplexed methylation detection methods
US6770441B2 (en) * 2000-02-10 2004-08-03 Illumina, Inc. Array compositions and methods of making same
US20020098513A1 (en) * 2000-02-17 2002-07-25 Glycominds Ltd. Combinatorial complex carbohydrate libraries and methods for the manufacture and uses thereof
US6309875B1 (en) * 2000-02-29 2001-10-30 Agilent Technologies, Inc. Apparatus for biomolecular array hybridization facilitated by agitation during centrifuging
US6329661B1 (en) * 2000-02-29 2001-12-11 The University Of Chicago Biochip scanner device
CN1311436A (en) * 2000-03-01 2001-09-05 上海和泰光电科技有限公司 Reading of biological chip fluorescent image on rotary platform
GB0005199D0 (en) * 2000-03-04 2000-04-26 Imp College Innovations Ltd Modulation of histone deacetylase
US6897015B2 (en) * 2000-03-07 2005-05-24 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of pathogens and biological materials
DE10013254A1 (en) * 2000-03-17 2001-10-04 Friz Biochem Gmbh New apparatus, useful for detecting biomolecules and polymers, comprises array of samples containing specific molecules with separate light sources and system for detecting which samples interact with molecule to be detected
US6806361B1 (en) 2000-03-17 2004-10-19 Affymetrix, Inc. Methods of enhancing functional performance of nucleic acid arrays
US20050119473A1 (en) * 2000-03-17 2005-06-02 Affymetrix, Inc. Phosphite ester oxidation in nucleic acid array preparation
US6833450B1 (en) 2000-03-17 2004-12-21 Affymetrix, Inc. Phosphite ester oxidation in nucleic acid array preparation
CA2403708A1 (en) * 2000-03-22 2001-09-27 Quantum Dot Corporation Methods of using semiconductor nanocrystals in bead-based nucleic acid assays
US6358387B1 (en) * 2000-03-27 2002-03-19 Caliper Technologies Corporation Ultra high throughput microfluidic analytical systems and methods
US6884578B2 (en) * 2000-03-31 2005-04-26 Affymetrix, Inc. Genes differentially expressed in secretory versus proliferative endometrium
US20030112423A1 (en) * 2000-04-24 2003-06-19 Rakesh Vig On-line verification of an authentication mark applied to products or product packaging
US20040000787A1 (en) * 2000-04-24 2004-01-01 Rakesh Vig Authentication mark for a product or product package
AU2001259241A1 (en) * 2000-04-26 2001-11-07 Arcturus Engineering, Inc. Laser capture microdissection (lcm) extraction device and device carrier and method for post-lcm fluid processing
US8399383B2 (en) 2000-05-04 2013-03-19 Yale University Protein chips for high throughput screening of protein activity
US7470546B2 (en) * 2000-05-31 2008-12-30 Infineon Technologies Ag Method and arrangement for taking up a first medium, which is present in a first phase, into a capillary device
US7163660B2 (en) * 2000-05-31 2007-01-16 Infineon Technologies Ag Arrangement for taking up liquid analytes
US7005259B1 (en) * 2000-06-01 2006-02-28 Affymetrix, Inc. Methods for array preparation using substrate rotation
JP4812223B2 (en) * 2000-06-02 2011-11-09 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Kit and method for multi-analyte determination
US9709559B2 (en) 2000-06-21 2017-07-18 Bioarray Solutions, Ltd. Multianalyte molecular analysis using application-specific random particle arrays
EP1311839B1 (en) * 2000-06-21 2006-03-01 Bioarray Solutions Ltd Multianalyte molecular analysis using application-specific random particle arrays
US7124944B2 (en) * 2000-06-30 2006-10-24 Verification Technologies, Inc. Product packaging including digital data
WO2002002301A1 (en) 2000-06-30 2002-01-10 Verification Technologies Inc. Copy-protected optical media and method of manufacture thereof
US6638593B2 (en) 2000-06-30 2003-10-28 Verification Technologies, Inc. Copy-protected optical media and method of manufacture thereof
CN1137999C (en) * 2000-07-04 2004-02-11 清华大学 Integrated microarray device
US6913879B1 (en) 2000-07-10 2005-07-05 Telechem International Inc. Microarray method of genotyping multiple samples at multiple LOCI
US7091033B2 (en) * 2000-07-21 2006-08-15 Phase-1 Molecular Toxicology, Inc. Array of toxicologically relevant canine genes and uses thereof
DE10036457A1 (en) * 2000-07-26 2002-02-14 Giesing Michael Use of an imaging photoelectric area sensor for evaluating biochips and imaging processes therefor
US6544477B1 (en) 2000-08-01 2003-04-08 Regents Of The University Of Minnesota Apparatus for generating a temperature gradient
US20040018615A1 (en) * 2000-08-02 2004-01-29 Garyantes Tina K. Virtual wells for use in high throughput screening assays
US7660415B2 (en) * 2000-08-03 2010-02-09 Selinfreund Richard H Method and apparatus for controlling access to storage media
US6984522B2 (en) 2000-08-03 2006-01-10 Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
CN1261745C (en) * 2000-08-15 2006-06-28 拜澳富斯毫微科学有限公司 Nanoscale molecular matrix arrayer
US7062092B2 (en) * 2000-08-22 2006-06-13 Affymetrix, Inc. System, method, and computer software product for gain adjustment in biological microarray scanner
JP2004507731A (en) 2000-08-23 2004-03-11 イメゴ アーベー Microfluidic device and method for capturing a sample in a recess with a lid that can be opened and closed
US20020048534A1 (en) * 2000-08-24 2002-04-25 David Storek Sample preparing arrangement and a method relating to such an arrangement
EP1387894A4 (en) * 2000-08-24 2006-10-11 Aviva Biosciences Corp Methods and compositions for identifying nucleic acid molecules using nucleolytic activities and hybridization
US7998746B2 (en) * 2000-08-24 2011-08-16 Robert Otillar Systems and methods for localizing and analyzing samples on a bio-sensor chip
US6900013B1 (en) 2000-08-25 2005-05-31 Aviva Biosciences Corporation Methods and compositions for identifying nucleic acid molecules using nucleolytic activities and hybridization
EP2157183A1 (en) 2000-08-25 2010-02-24 BASF Plant Science GmbH Plant polynucleotides encoding prenyl proteases
US20030190612A1 (en) * 2000-08-31 2003-10-09 Nobuko Yamamoto Detecting method and detection substrate for use therein
DE10042871A1 (en) * 2000-08-31 2002-05-16 Hte Ag The High Throughput Exp Three-dimensional material library and method for producing a three-dimensional material library
US6980674B2 (en) * 2000-09-01 2005-12-27 Large Scale Proteomics Corp. Reference database
US6539102B1 (en) 2000-09-01 2003-03-25 Large Scale Proteomics Reference database
US7108969B1 (en) 2000-09-08 2006-09-19 Affymetrix, Inc. Methods for detecting and diagnosing oral cancer
US20020072492A1 (en) * 2000-09-12 2002-06-13 Myers Timothy G. Non-genetic based protein disease markers
AUPR005600A0 (en) * 2000-09-12 2000-10-05 University Of Sydney, The Diagnostic assay
US20040185464A1 (en) * 2000-09-15 2004-09-23 Kris Richard M. High throughput assay system
US7057704B2 (en) * 2000-09-17 2006-06-06 Bioarray Solutions Ltd. System and method for programmable illumination pattern generation
GB0022978D0 (en) 2000-09-19 2000-11-01 Oxford Glycosciences Uk Ltd Detection of peptides
EP2333543B1 (en) 2000-09-26 2018-01-10 Health Research, Incorporated Analysis of hiv-1 coreceptor use in the clinical care of hiv-1 infected patients
US6849409B2 (en) * 2000-10-16 2005-02-01 Axxima Pharmaceuticals Ag Cellular kinases involved in Cytomegalovirus infection and their inhibition
US20030045005A1 (en) * 2000-10-17 2003-03-06 Michael Seul Light-controlled electrokinetic assembly of particles near surfaces
DE10051396A1 (en) * 2000-10-17 2002-04-18 Febit Ferrarius Biotech Gmbh An integrated synthesis and identification of an analyte, comprises particles immobilized at a carrier to be coupled to receptors in a structured pattern to give receptor arrays for biochemical reactions
EP1410044A2 (en) * 2000-11-08 2004-04-21 Burstein Technologies, Inc. Interactive system for analyzing biological samples and processing related information and the use thereof
DE10058394C1 (en) 2000-11-24 2002-07-11 Siemens Ag Methods for biochemical analysis and associated arrangement
US6905816B2 (en) * 2000-11-27 2005-06-14 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
US6760298B2 (en) * 2000-12-08 2004-07-06 Nagaoka & Co., Ltd. Multiple data layer optical discs for detecting analytes
WO2002047071A2 (en) * 2000-12-08 2002-06-13 Burstein Technologies, Inc. Multiple data layer optical discs for detecting analytes
US7776571B2 (en) * 2000-12-12 2010-08-17 Autogenomics, Inc. Multi-substrate biochip unit
US20020086294A1 (en) * 2000-12-29 2002-07-04 Ellson Richard N. Device and method for tracking conditions in an assay
CN1217194C (en) * 2001-01-04 2005-08-31 上海数康生物科技有限公司 Protein chip and its preparing process and application
US20030009293A1 (en) * 2001-01-09 2003-01-09 Anderson Norman G. Reference database
US20030120432A1 (en) * 2001-01-29 2003-06-26 Affymetrix, Inc. Method, system and computer software for online ordering of custom probe arrays
DE10103954B4 (en) * 2001-01-30 2005-10-06 Advalytix Ag Method for analyzing macromolecules
EP1366058B1 (en) 2001-02-09 2011-01-26 Human Genome Sciences, Inc. Human g-protein chemokine receptor (ccr5) hdgnr10
KR20020067256A (en) * 2001-02-16 2002-08-22 (주)지노믹트리 Microarray system using chamber slide that has spotted bio-polymer separately
DE10108892B4 (en) * 2001-02-23 2005-08-18 Graffinity Pharmaceuticals Ag Synthesizer and method for its production
ES2441412T3 (en) * 2001-03-09 2014-02-04 Trovagene, Inc. Conjugated probes and optical analyte detection
US20030013137A1 (en) * 2001-03-13 2003-01-16 Barak Larry S. Automated methods of detecting receptor activity
DE10112387B4 (en) * 2001-03-15 2004-03-25 Bruker Daltonik Gmbh Mass spectrometric genotyping
AU2002306768A1 (en) * 2001-03-20 2002-10-03 Ortho-Clinical Diagnostics, Inc. Expression profiles and methods of use
EP1373467A4 (en) * 2001-03-28 2007-06-06 Genetech Biotechnology Shangai Device and method for detection of multiple analytes
KR20040008155A (en) * 2001-04-09 2004-01-28 리써치 트라이앵글 인스티튜트 Thin-film thermoelectric cooling and heating devices for dna genomic and proteomic chips, thermo-optical switching circuits, and ir tags
JP2002357604A (en) * 2001-04-17 2002-12-13 Nisshinbo Ind Inc Reaction vessel and analysis method for biologically active substance using the same
US20020160427A1 (en) * 2001-04-27 2002-10-31 Febit Ag Methods and apparatuses for electronic determination of analytes
WO2002088324A2 (en) * 2001-05-02 2002-11-07 Sigma-Genosys, Ltd. Methods for determining secondary modifications of molecules using arrays
NL1017989C2 (en) * 2001-05-03 2002-11-05 Univ Delft Tech Method for performing an assay, device for that, as well as a method for manufacturing a device.
US20040265923A1 (en) * 2001-05-03 2004-12-30 James Gilmore Method and apparatus to determine the performance of protein arrays
US20020171838A1 (en) * 2001-05-16 2002-11-21 Pal Andrew Attila Variable sampling control for rendering pixelization of analysis results in a bio-disc assembly and apparatus relating thereto
US20050009101A1 (en) * 2001-05-17 2005-01-13 Motorola, Inc. Microfluidic devices comprising biochannels
DE60202240T2 (en) * 2001-05-21 2005-12-15 Fuji Photo Film Co., Ltd., Minami-Ashigara Apparatus for carrying out biochemical analyzes and process for their preparation
AU2002317672A1 (en) * 2001-05-23 2002-12-03 Lifebits Ag Method for the biochemical detection of analytes
DE10127221A1 (en) * 2001-05-23 2002-11-28 Lifebits Ag Carrier, for analysis of chemical or biological sensor molecules, has geometrical surface layout for samples, according to scanning method
US7556733B2 (en) * 2001-06-15 2009-07-07 Mds Analytical Technologies (Us) Inc. Low volume filtration column devices and methods of filtering therewith
US7229595B2 (en) * 2001-06-15 2007-06-12 Molecular Devices Corporation Filtration column devices and methods of filtering therewith
US7749388B2 (en) * 2001-06-15 2010-07-06 Life Technologies Corporation Low volume filtration column devices and methods of filtering therewith
US7262063B2 (en) 2001-06-21 2007-08-28 Bio Array Solutions, Ltd. Directed assembly of functional heterostructures
US20040166593A1 (en) * 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
US6685885B2 (en) 2001-06-22 2004-02-03 Purdue Research Foundation Bio-optical compact dist system
US6662091B2 (en) * 2001-06-29 2003-12-09 Battelle Memorial Institute Diagnostics/prognostics using wireless links
EP1405044A1 (en) 2001-07-02 2004-04-07 Battelle Memorial Institute Intelligent microsensor module
WO2003006948A2 (en) * 2001-07-10 2003-01-23 Wisconsin Alumni Research Foundation Surface plasmon resonance imaging of micro-arrays
US20030134273A1 (en) * 2001-07-17 2003-07-17 Eric Henderson Combined molecular binding detection through force microscopy and mass spectrometry
US20030022150A1 (en) * 2001-07-24 2003-01-30 Sampson Jeffrey R. Methods for detecting a target molecule
AU2002367840A1 (en) * 2001-07-26 2003-11-17 Motorola, Inc. System and methods for mixing within a microfluidic device
US6682702B2 (en) 2001-08-24 2004-01-27 Agilent Technologies, Inc. Apparatus and method for simultaneously conducting multiple chemical reactions
US6767731B2 (en) * 2001-08-27 2004-07-27 Intel Corporation Electron induced fluorescent method for nucleic acid sequencing
US20020169730A1 (en) * 2001-08-29 2002-11-14 Emmanuel Lazaridis Methods for classifying objects and identifying latent classes
US20030044320A1 (en) * 2001-08-31 2003-03-06 Shun Luo High throughput screening micro array platform
US6929944B2 (en) * 2001-08-31 2005-08-16 Beckman Coulter, Inc. Analysis using a distributed sample
US20030044798A1 (en) * 2001-08-31 2003-03-06 Lefkowitz Steven M. Methods for generating ligand arrays via deposition of ligands onto olefin displaying substrates, and arrays produced thereby
US6974671B1 (en) 2001-09-12 2005-12-13 Salk Institute For Biological Studies Methods for indentifying compounds that modulate gluconeogenesis through the binding of CREB to the PGC-1 promoter
US7042488B2 (en) 2001-09-27 2006-05-09 Fujinon Corporation Electronic endoscope for highlighting blood vessel
JP2005506693A (en) * 2001-10-05 2005-03-03 リサーチ・トライアングル・インスティチュート Phonon blocking electron transfer low dimensional structure
WO2003034064A2 (en) * 2001-10-12 2003-04-24 Duke University Image analysis of high-density synthetic dna microarrays
WO2003033128A2 (en) * 2001-10-12 2003-04-24 Duke University Methods for image analysis of high-density synthetic dna microarrays
US20040002073A1 (en) 2001-10-15 2004-01-01 Li Alice Xiang Multiplexed analysis of polymorphic loci by concurrent interrogation and enzyme-mediated detection
US20030108726A1 (en) * 2001-10-18 2003-06-12 Schembri Carol T. Chemical arrays
US20040248135A1 (en) * 2001-10-18 2004-12-09 Daniel Notterman Methods for detemining multiple effects of drugs that modulate function of transcription regulatory proteins
US20030081216A1 (en) * 2001-11-01 2003-05-01 Martin Ebert Graphical user interface for sample positioning
US20030175947A1 (en) * 2001-11-05 2003-09-18 Liu Robin Hui Enhanced mixing in microfluidic devices
US7223538B2 (en) * 2001-12-14 2007-05-29 Ge Healthcare Bio-Sciences Ab Post-synthesis labeling of nucleic acids, assays using nucleic acids that are labeled post-synthetically, single nucleotide polymorphism detection, and associated compounds and microarrays
CN1281324C (en) * 2001-12-19 2006-10-25 阿菲梅特里克斯公司 Manufacturing process for array plate assembly
EP1947201A3 (en) 2002-01-16 2009-05-06 Evolutionary Genomics, LLC Methods to identify evolutionarily significant changes in polynucleotide and polypeptide sequences in domesticated plants and animals
DE10201463B4 (en) 2002-01-16 2005-07-21 Clondiag Chip Technologies Gmbh Reaction vessel for performing array method
US20030143551A1 (en) * 2002-01-30 2003-07-31 Cattell Herbert F. Reading multiple chemical arrays
US20050084645A1 (en) * 2002-02-07 2005-04-21 Selinfreund Richard H. Method and system for optical disc copy-protection
US8271202B1 (en) 2002-02-11 2012-09-18 Fernandez Dennis S Modified host bio-data management
KR20030068780A (en) * 2002-02-18 2003-08-25 서울대학교병원 Bio-cell chip
US20050112623A1 (en) * 2002-02-18 2005-05-26 Lee Dong S. Bio-cell chip
AU2003212471A1 (en) * 2002-02-27 2003-09-09 Miragene, Inc. Improved substrate chemistry for protein immobilization on a rigid support
US20050054118A1 (en) * 2002-02-27 2005-03-10 Lebrun Stewart J. High throughput screening method
US7018842B2 (en) * 2002-02-28 2006-03-28 Agilent Technologies, Inc. Reading dry chemical arrays through the substrate
US20030177380A1 (en) * 2002-03-18 2003-09-18 Woods Stanley P. Devices for storing array data and methods of using the same
US20040241723A1 (en) * 2002-03-18 2004-12-02 Marquess Foley Leigh Shaw Systems and methods for improving protein and milk production of dairy herds
US20030182669A1 (en) * 2002-03-19 2003-09-25 Rockman Howard A. Phosphoinositide 3-kinase mediated inhibition of GPCRs
GB0207350D0 (en) * 2002-03-28 2002-05-08 Univ Sheffield Surface
US20030186302A1 (en) * 2002-03-29 2003-10-02 Yixin Wang Colorectal cancer diagnostics
KR20050000514A (en) * 2002-04-15 2005-01-05 리써치 트라이앵글 인스티튜트 Thermoelectric device utilizing double-sided peltier junctions and method of making the device
US6620623B1 (en) * 2002-05-06 2003-09-16 The University Of Chicago Biochip reader with enhanced illumination and bioarray positioning apparatus
ATE534035T1 (en) 2002-05-08 2011-12-15 Northwest Biotherapeutics Inc QUALITY TESTS FOR ANTIGEN-PRESENTING CELLS
US20040072274A1 (en) * 2002-05-09 2004-04-15 Lebrun Stewart J. System and method for visualization and digital analysis of protein and other macromolecule microarrays
US20030208936A1 (en) * 2002-05-09 2003-11-13 Lee Charles Hee Method for manufacturing embroidery decorated cards and envelopes
ATE513923T1 (en) * 2002-05-24 2011-07-15 Roche Nimblegen Inc MICROARRAYS AND METHOD FOR PERFORMING A HYBRIDIZATION REACTION FOR MULTIPLE SAMPLES ON A SINGLE MICROARRAY
US20050239193A1 (en) * 2002-05-30 2005-10-27 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of microorganisms and microparticles
US7290215B2 (en) * 2002-06-03 2007-10-30 Microsoft Corporation Dynamic wizard interface system and method
AU2003203334A1 (en) * 2002-06-12 2003-12-31 Chengdu Kuachang Science And Technology Co., Ltd Biochip with maximization of the reactor number
US20030232379A1 (en) * 2002-06-14 2003-12-18 Amorese Douglas A. Methods of performing array based assays and compositions for practicing the same
US7332273B2 (en) 2002-06-20 2008-02-19 Affymetrix, Inc. Antireflective coatings for high-resolution photolithographic synthesis of DNA arrays
KR100555793B1 (en) * 2002-06-25 2006-03-03 주식회사 마크로젠 Bio-supporter surface modified by polymer grafting and method for preparing the same
US20040009608A1 (en) * 2002-07-10 2004-01-15 Caren Michael P. Arrays with positioning control
USH2223H1 (en) 2002-07-11 2008-09-02 The United States Of America As Represented By The Secretary Of The Navy Patterned, micrometer-sized antibody features
US20040023397A1 (en) * 2002-08-05 2004-02-05 Rakesh Vig Tamper-resistant authentication mark for use in product or product packaging authentication
AU2003257109A1 (en) * 2002-08-05 2004-02-23 Invitrogen Corporation Compositions and methods for molecular biology
US7384742B2 (en) * 2002-08-16 2008-06-10 Decision Biomarkers, Inc. Substrates for isolating reacting and microscopically analyzing materials
US20050233473A1 (en) * 2002-08-16 2005-10-20 Zyomyx, Inc. Methods and reagents for surface functionalization
US7785799B2 (en) * 2002-08-16 2010-08-31 The Board Of Regents Of The University Of Texas System Compositions and methods related to flavivirus envelope protein domain III antigens
US20060127946A1 (en) * 2002-08-16 2006-06-15 Montagu Jean I Reading of fluorescent arrays
US20040043494A1 (en) * 2002-08-30 2004-03-04 Amorese Douglas A. Apparatus for studying arrays
WO2004024314A2 (en) * 2002-09-11 2004-03-25 Exiqon A/S A population of nucleic acids including a subpopulation of lna oligomers
GB2393246A (en) * 2002-09-21 2004-03-24 Sonoptix Ltd Transducer sensor
WO2004029914A1 (en) * 2002-09-26 2004-04-08 Verification Technologies, Inc. Authentication of items using transient optical state change materials
AU2003270898A1 (en) * 2002-09-27 2004-04-19 Nimblegen Systems, Inc. Microarray with hydrophobic barriers
DE10393406T5 (en) * 2002-09-30 2005-12-22 Nimblegen Systems, Inc., Madison Parallel loading of arrays
US20040110212A1 (en) * 2002-09-30 2004-06-10 Mccormick Mark Microarrays with visual alignment marks
CA2500783C (en) * 2002-10-01 2012-07-17 Nimblegen Systems, Inc. Microarrays having multiple oligonucleotides in single array features
US20040259105A1 (en) * 2002-10-03 2004-12-23 Jian-Bing Fan Multiplex nucleic acid analysis using archived or fixed samples
EP1572978A4 (en) * 2002-10-16 2006-05-24 Univ Texas Bead bound combinatorial oligonucleoside phosphorothioate and phosphorodithioate aptamer libraries
US6863822B2 (en) * 2002-10-16 2005-03-08 Anthony Pipes Method and apparatus for parallel desalting
US9740817B1 (en) 2002-10-18 2017-08-22 Dennis Sunga Fernandez Apparatus for biological sensing and alerting of pharmaco-genomic mutation
US20040219565A1 (en) * 2002-10-21 2004-11-04 Sakari Kauppinen Oligonucleotides useful for detecting and analyzing nucleic acids of interest
US20040081969A1 (en) * 2002-10-29 2004-04-29 Ilsley Diane D. Devices and methods for evaulating the quality of a sample for use in an array assay
US20040235008A1 (en) * 2002-11-14 2004-11-25 Affymetrix, Inc. Methods and compositions for profiling transcriptionally active sites of the genome
US7526114B2 (en) 2002-11-15 2009-04-28 Bioarray Solutions Ltd. Analysis, secure access to, and transmission of array images
GB0227238D0 (en) * 2002-11-21 2002-12-31 Diagenic As Product and method
JP4395133B2 (en) * 2002-12-20 2010-01-06 カリパー・ライフ・サイエンシズ・インク. Single molecule amplification and detection of DNA
US20040126766A1 (en) * 2002-12-26 2004-07-01 Amorese Douglas A. Breakaway seal for processing a subarray of an array
JP2006512583A (en) * 2003-01-02 2006-04-13 バイオフォース ナノサイエンシズ インコーポレイテッド Method and apparatus for molecular analysis in small sample volumes
US20040129676A1 (en) * 2003-01-07 2004-07-08 Tan Roy H. Apparatus for transfer of an array of liquids and methods for manufacturing same
WO2004065009A1 (en) * 2003-01-17 2004-08-05 Greiner Bio-One Gmbh Sample vessel for analyses
US9005549B2 (en) * 2003-01-17 2015-04-14 Greiner Bio-One Gmbh High throughput polymer-based microarray slide
WO2004065000A1 (en) 2003-01-21 2004-08-05 Illumina Inc. Chemical reaction monitor
WO2004065551A2 (en) * 2003-01-21 2004-08-05 Bristol-Myers Squibb Company Polynucleotide encoding a novel acyl coenzyme a, monoacylglycerol acyltransferase-3 (mgat3), and uses thereof
US20060203700A1 (en) * 2003-02-06 2006-09-14 Verification Technologies, Inc. Method and system for optical disk copy-protection
US7534621B2 (en) * 2003-02-07 2009-05-19 Canon Kabuhsiki Kashia Method of producing probe medium and method of immobilizing probe using probe medium
DE20302263U1 (en) * 2003-02-13 2004-10-14 Evotec Oai Ag sample carrier
US7192703B2 (en) 2003-02-14 2007-03-20 Intel Corporation, Inc. Biomolecule analysis by rolling circle amplification and SERS detection
US20040166495A1 (en) * 2003-02-24 2004-08-26 Greinwald John H. Microarray-based diagnosis of pediatric hearing impairment-construction of a deafness gene chip
US20060182655A1 (en) * 2003-03-04 2006-08-17 Fanglin Zou Integrating analysis chip with minimized reactors and its application
EP1606419A1 (en) 2003-03-18 2005-12-21 Quantum Genetics Ireland Limited Systems and methods for improving protein and milk production of dairy herds
US20040191782A1 (en) * 2003-03-31 2004-09-30 Yixin Wang Colorectal cancer prognostics
US8652774B2 (en) * 2003-04-16 2014-02-18 Affymetrix, Inc. Automated method of manufacturing polyer arrays
MXPA05011404A (en) * 2003-04-25 2006-05-31 Johnson & Johnson Preservation of rna in a biological sample.
US7348420B2 (en) 2003-04-25 2008-03-25 North Carolina State University Lactobacillus acidophilus nucleic acid sequences encoding cell surface protein homologues and uses therefore
US20040229226A1 (en) * 2003-05-16 2004-11-18 Reddy M. Parameswara Reducing microarray variation with internal reference spots
US20040235147A1 (en) * 2003-05-21 2004-11-25 Affymetrix, Inc. System, method, and encased probe array product
US7910523B2 (en) * 2003-05-23 2011-03-22 Board Of Regents, The University Of Texas System Structure based and combinatorially selected oligonucleoside phosphorothioate and phosphorodithioate aptamer targeting AP-1 transcription factors
WO2005037053A2 (en) * 2003-05-23 2005-04-28 Board Of Regents - The University Of Texas System High throughput screening of aptamer libraries for specific binding to proteins on viruses and other pathogens
US20070026400A1 (en) * 2003-06-07 2007-02-01 An Sung W Multi-hybridization set for dna microarray related assay
US20040248323A1 (en) 2003-06-09 2004-12-09 Protometrix, Inc. Methods for conducting assays for enzyme activity on protein microarrays
WO2005000098A2 (en) 2003-06-10 2005-01-06 The Trustees Of Boston University Detection methods for disorders of the lung
US20050019224A1 (en) * 2003-06-16 2005-01-27 Schering Corporation Virtual well plate system
US20040259100A1 (en) 2003-06-20 2004-12-23 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
JP2007525963A (en) * 2003-06-20 2007-09-13 イルミナ インコーポレイテッド Methods and compositions for whole genome amplification and genotyping
EP2319863A1 (en) 2003-06-23 2011-05-11 North Carolina State University Lactobacillus acidophilus nucleic acids encoding fructo-oligosaccharide utilization compounds and uses thereof
CA2531087A1 (en) 2003-06-30 2005-03-17 Evolutionary Genomics Llc Methods to identify polynucleotide and polypeptide sequences which may be associated with physiological and medical conditions
CN100494399C (en) * 2003-06-30 2009-06-03 清华大学 Genotype typing method based on DNA chip and use thereof
US20090081694A1 (en) * 2003-07-08 2009-03-26 Trex Enterprises Corp. Modified well plates for molecular binding studies
JP4067463B2 (en) * 2003-07-18 2008-03-26 トヨタ自動車株式会社 Control device for hybrid vehicle
US20050118611A1 (en) * 2003-07-24 2005-06-02 Board Of Regents, The University Of Texas System Thioaptamers enable discovery of physiological pathways and new therapeutic strategies
US20050026299A1 (en) * 2003-07-31 2005-02-03 Arindam Bhattacharjee Chemical arrays on a common carrier
DE10336375A1 (en) * 2003-08-06 2004-12-02 Infineon Technologies Ag Fixing biochips in small sample tubes, attaches wafer to sheet, parts biochips from each other and removes them individually for adhesive transfer process
US8346482B2 (en) * 2003-08-22 2013-01-01 Fernandez Dennis S Integrated biosensor and simulation system for diagnosis and therapy
US7927796B2 (en) 2003-09-18 2011-04-19 Bioarray Solutions, Ltd. Number coding for identification of subtypes of coded types of solid phase carriers
US7998435B2 (en) 2003-09-19 2011-08-16 Life Technologies Corporation High density plate filler
US20050226782A1 (en) * 2003-09-19 2005-10-13 Reed Mark T High density plate filler
US20050220675A1 (en) * 2003-09-19 2005-10-06 Reed Mark T High density plate filler
US20060233671A1 (en) * 2003-09-19 2006-10-19 Beard Nigel P High density plate filler
US9492820B2 (en) 2003-09-19 2016-11-15 Applied Biosystems, Llc High density plate filler
US7695688B2 (en) * 2003-09-19 2010-04-13 Applied Biosystems, Llc High density plate filler
US8277760B2 (en) 2003-09-19 2012-10-02 Applied Biosystems, Llc High density plate filler
US20060272738A1 (en) * 2003-09-19 2006-12-07 Gary Lim High density plate filler
US7407630B2 (en) 2003-09-19 2008-08-05 Applera Corporation High density plate filler
US20060233673A1 (en) * 2003-09-19 2006-10-19 Beard Nigel P High density plate filler
WO2005031305A2 (en) 2003-09-22 2005-04-07 Bioarray Solutions, Ltd. Surface immobilized polyelectrolyte with multiple functional groups capable of covalently bonding to biomolecules
WO2005079196A2 (en) * 2003-10-01 2005-09-01 Evolutionary Genomics Llc Methods to identify evolutionarily significant changes in polynucleotide and polypeptide sequences in prokaryotes
US7563569B2 (en) 2003-10-28 2009-07-21 Michael Seul Optimization of gene expression analysis using immobilized capture probes
WO2005040163A1 (en) * 2003-10-28 2005-05-06 Dr. Reddy's Laboratories Ltd Heterocyclic compounds that block the effects of advanced glycation end products (age)
US20050089916A1 (en) * 2003-10-28 2005-04-28 Xiongwu Xia Allele assignment and probe selection in multiplexed assays of polymorphic targets
JP2007509629A (en) 2003-10-29 2007-04-19 バイオアレイ ソリューションズ リミテッド Complex nucleic acid analysis by cleavage of double-stranded DNA
US20070207055A1 (en) * 2003-10-31 2007-09-06 Commissariat A L'energie Atomique Operating Device Comprising A Localized Zone For The Capture Of A Drop A Liquid Of Interest
US20060127963A1 (en) * 2003-11-21 2006-06-15 Lebrun Stewart J Microarray-based analysis of rheumatoid arthritis markers
US20050112292A1 (en) * 2003-11-25 2005-05-26 Parker Russell A. Methods for treating at least one member of a microarray structure and methods of using the same
DK1709198T3 (en) 2003-11-26 2013-09-02 Advandx Inc Peptide Nucleic Acid Probes for the Analysis of Certain Staphylococcus Species
US20050124017A1 (en) * 2003-12-05 2005-06-09 Stewart Lebrun Quantitative alkaline-phosphatase precipitation reagent and methods for visualization of protein microarrays
US7638705B2 (en) * 2003-12-11 2009-12-29 Nextreme Thermal Solutions, Inc. Thermoelectric generators for solar conversion and related systems and methods
US7341834B2 (en) * 2003-12-15 2008-03-11 Geneohn Sciences, Inc. Multiplexed electrochemical detection system and method
ATE463300T1 (en) 2004-02-11 2010-04-15 Pamgene Bv DEVICE FOR ANALYZING AN INTERACTION BETWEEN TARGET AND PROBE MOLECULES
CA2497324A1 (en) 2004-02-17 2005-08-17 Affymetrix, Inc. Methods for fragmenting and labelling dna
WO2005112544A2 (en) 2004-02-19 2005-12-01 The Governors Of The University Of Alberta Leptin promoter polymorphisms and uses thereof
US20050186577A1 (en) 2004-02-20 2005-08-25 Yixin Wang Breast cancer prognostics
WO2005082110A2 (en) * 2004-02-26 2005-09-09 Illumina Inc. Haplotype markers for diagnosing susceptibility to immunological conditions
US7459289B2 (en) 2004-03-08 2008-12-02 North Carolina State University Lactobacillus acidophilus nucleic acid sequences encoding carbohydrate utilization-related proteins and uses therefor
AU2005222618A1 (en) 2004-03-12 2005-09-29 Biotrove, Inc. Nanoliter array loading
KR20110027823A (en) 2004-03-24 2011-03-16 트리패스 이미징, 인코포레이티드 Methods and compositions for the detection of cervical disease
US20050239134A1 (en) * 2004-04-21 2005-10-27 Board Of Regents, The University Of Texas System Combinatorial selection of phosphorothioate single-stranded DNA aptamers for TGF-beta-1 protein
US7919277B2 (en) 2004-04-28 2011-04-05 Danisco A/S Detection and typing of bacterial strains
US20050244984A1 (en) * 2004-04-28 2005-11-03 Parker Russell A Methods and compositions for calibrating chemical array readers
SE0401219D0 (en) * 2004-05-10 2004-05-10 Biochromix Ab Methods for detecting conformational changes or aggregation of proteins by conjugated polyelectrolytes
US20050261839A1 (en) * 2004-05-18 2005-11-24 Shinde Ninad A Smart substance processing device and a system and method of monitoring thereof
EP2290071B1 (en) 2004-05-28 2014-12-31 Asuragen, Inc. Methods and compositions involving microRNA
GB0412301D0 (en) * 2004-06-02 2004-07-07 Diagenic As Product and method
US20050277122A1 (en) * 2004-06-14 2005-12-15 Fredrick Joseph P Devices and methods for contacting fluid with a chemical array
US7702466B1 (en) 2004-06-29 2010-04-20 Illumina, Inc. Systems and methods for selection of nucleic acid sequence probes
US7363170B2 (en) * 2004-07-09 2008-04-22 Bio Array Solutions Ltd. Transfusion registry network providing real-time interaction between users and providers of genetically characterized blood products
US7848889B2 (en) 2004-08-02 2010-12-07 Bioarray Solutions, Ltd. Automated analysis of multiplexed probe-target interaction patterns: pattern matching and allele identification
US20060073506A1 (en) 2004-09-17 2006-04-06 Affymetrix, Inc. Methods for identifying biological samples
DE102004046618A1 (en) * 2004-09-25 2006-03-30 Robert Bosch Gmbh Circuit arrangement for analog / digital conversion
US20060073486A1 (en) * 2004-10-01 2006-04-06 Sana Theodore R Multiple array substrates and methods for using the same
EP1645640B1 (en) 2004-10-05 2013-08-21 Affymetrix, Inc. Method for detecting chromosomal translocations
US7523617B2 (en) * 2004-10-22 2009-04-28 Nextreme Thermal Solutions, Inc. Thin film thermoelectric devices for hot-spot thermal management in microprocessors and other electronics
US8063298B2 (en) * 2004-10-22 2011-11-22 Nextreme Thermal Solutions, Inc. Methods of forming embedded thermoelectric coolers with adjacent thermally conductive fields
EP1652580A1 (en) 2004-10-29 2006-05-03 Affymetrix, Inc. High throughput microarray, package assembly and methods of manufacturing arrays
US7682782B2 (en) 2004-10-29 2010-03-23 Affymetrix, Inc. System, method, and product for multiple wavelength detection using single source excitation
US20090197249A1 (en) 2004-11-01 2009-08-06 George Mason University Compositions and methods for diagnosing colon disorders
DE102004056735A1 (en) 2004-11-09 2006-07-20 Clondiag Chip Technologies Gmbh Device for performing and analyzing microarray experiments
EP2281887A1 (en) 2004-11-12 2011-02-09 Asuragen, Inc. Methods and compositions involving miRNA and miRNA inhibitor molecules
ATE390562T1 (en) * 2004-11-19 2008-04-15 Ebm Papst St Georgen Gmbh & Co ARRANGEMENT WITH A FAN AND A PUMP
CA2589782A1 (en) * 2004-11-30 2006-06-08 Veridex Llc Lung cancer prognostics
US20060166224A1 (en) * 2005-01-24 2006-07-27 Norviel Vernon A Associations using genotypes and phenotypes
JP2008527996A (en) * 2005-01-25 2008-07-31 スカイ、ジェネティクス、インク Nucleic acids for apoptosis of cancer cells
US20060183893A1 (en) * 2005-01-25 2006-08-17 North Don A Nucleic acids for apoptosis of cancer cells
US7405831B2 (en) 2005-02-01 2008-07-29 Purdue Research Foundation Laser scanning interferometric surface metrology
US20070023643A1 (en) 2005-02-01 2007-02-01 Nolte David D Differentially encoded biological analyzer planar array apparatus and methods
US7910356B2 (en) * 2005-02-01 2011-03-22 Purdue Research Foundation Multiplexed biological analyzer planar array apparatus and methods
US7393665B2 (en) 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
US20060199207A1 (en) * 2005-02-24 2006-09-07 Matysiak Stefan M Self-assembly of molecules using combinatorial hybridization
AU2006230352A1 (en) * 2005-03-29 2006-10-05 Evolutionary Genomics Llc EG1117 and EG307 polynucleotides and uses thereof
US20060223194A1 (en) * 2005-04-01 2006-10-05 Viorica Lopez-Avila Methods of screening for post-translationally modified proteins
WO2006108135A2 (en) * 2005-04-04 2006-10-12 Veridex, Llc Laser microdissection and microarray analysis of breast tumors reveal estrogen receptor related genes and pathways
US20060246576A1 (en) * 2005-04-06 2006-11-02 Affymetrix, Inc. Fluidic system and method for processing biological microarrays in personal instrumentation
WO2006110858A2 (en) * 2005-04-12 2006-10-19 Nextreme Thermal Solutions Methods of forming thermoelectric devices including superlattice structures and related devices
EP2360278A1 (en) 2005-04-14 2011-08-24 Trustees Of Boston University Diagnostic for lung disorders using class prediction
CN101198689A (en) 2005-04-15 2008-06-11 北卡罗来纳州大学 Methods and compositions to modulate adhesion and stress tolerance in bacteria
US20070072175A1 (en) * 2005-05-13 2007-03-29 Biogen Idec Ma Inc. Nucleotide array containing polynucleotide probes complementary to, or fragments of, cynomolgus monkey genes and the use thereof
ES2429564T3 (en) 2005-05-18 2013-11-15 Novartis Ag Procedures for the diagnosis and treatment of diseases that have an autoimmune and / or inflammatory component
US20060281702A1 (en) * 2005-05-18 2006-12-14 Board Of Regents, The University Of Texas System Combinatorial selection of phosphorothioate aptamers for RNases
US8486629B2 (en) 2005-06-01 2013-07-16 Bioarray Solutions, Ltd. Creation of functionalized microparticle libraries by oligonucleotide ligation or elongation
US8940143B2 (en) 2007-06-29 2015-01-27 Intel Corporation Gel-based bio chip for electrochemical synthesis and electrical detection of polymers
US8053774B2 (en) 2005-06-06 2011-11-08 Intel Corporation Method and apparatus to fabricate polymer arrays on patterned wafers using electrochemical synthesis
EP3492602A1 (en) 2005-06-15 2019-06-05 Complete Genomics, Inc. Single molecule arrays for genetic and chemical analysis
WO2007002342A2 (en) * 2005-06-22 2007-01-04 Nextreme Thermal Solutions Methods of forming thermoelectric devices including electrically insulating matrixes between conductive traces and related structures
WO2007002337A2 (en) 2005-06-22 2007-01-04 Nextreme Thermal Solutions Methods of forming thermoelectric devices including conductive posts and/or different solder materials and related methods and structures
KR100668342B1 (en) * 2005-07-02 2007-01-12 삼성전자주식회사 Method of manufacturing DNA chip
WO2007008604A2 (en) * 2005-07-08 2007-01-18 Bristol-Myers Squibb Company Single nucleotide polymorphisms associated with dose-dependent edema and methods of use thereof
US7805081B2 (en) * 2005-08-11 2010-09-28 Pacific Biosciences Of California, Inc. Methods and systems for monitoring multiple optical signals from a single source
US20070202512A1 (en) * 2005-08-19 2007-08-30 Bristol-Myers Squibb Company Human single nucleotide polymorphisms associated with dose-dependent weight gain and methods of use thereof
KR20080063296A (en) * 2005-09-02 2008-07-03 에보류셔너리 제노믹스 인크 Eg8798 and eg9703 polynucleotides and uses thereof
WO2007032236A1 (en) * 2005-09-16 2007-03-22 Yamatake Corporation Substrate for biochip, biochip, method for manufacturing substrate for biochip, and method for manufacturing biochip
JP4755871B2 (en) * 2005-09-16 2011-08-24 株式会社山武 Biochip substrate and biochip manufacturing method
EP2402758B1 (en) 2005-09-19 2014-09-10 Janssen Diagnostics, LLC Methods and uses for identifying the origin of a carcinoma of unknown primary origin
EP1941057A4 (en) * 2005-10-07 2009-11-11 Baylor Res Inst Diagnosis of systemic onset juvenile idiopathic arthritis through blood leukocyte microarray analysis
WO2007047408A2 (en) * 2005-10-12 2007-04-26 Pathologica, Llc. Promac signature application
GB2432217A (en) * 2005-11-09 2007-05-16 Seiko Epson Corp Application of biosensor chips
US7329860B2 (en) 2005-11-23 2008-02-12 Illumina, Inc. Confocal imaging methods and apparatus
US7927869B2 (en) * 2005-11-29 2011-04-19 Spencer Z Rosero System and method for supporting a biological chip device
US20090215055A1 (en) * 2005-12-13 2009-08-27 Erasmus University Medical Center Rotterdam Genetic Brain Tumor Markers
US20090305248A1 (en) * 2005-12-15 2009-12-10 Lander Eric G Methods for increasing accuracy of nucleic acid sequencing
US20070255054A1 (en) * 2005-12-30 2007-11-01 Affymetrix, Inc. Oligonucleotide synthesis with intermittent and post synthetic oxidation
WO2007084568A2 (en) 2006-01-17 2007-07-26 Health Research, Inc. Heteroduplex tracking assay
US20090305238A1 (en) * 2006-01-23 2009-12-10 Applera Corporation Microarray Microcard
US8055098B2 (en) 2006-01-27 2011-11-08 Affymetrix, Inc. System, method, and product for imaging probe arrays with small feature sizes
EP2363711A1 (en) 2006-01-27 2011-09-07 Tripath Imaging, Inc. Methods for identifying patients with an increased likelihood of having ovarian cancer and compositions therefor
US9445025B2 (en) 2006-01-27 2016-09-13 Affymetrix, Inc. System, method, and product for imaging probe arrays with small feature sizes
US7692783B2 (en) * 2006-02-13 2010-04-06 Pacific Biosciences Of California Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources
US7715001B2 (en) 2006-02-13 2010-05-11 Pacific Biosciences Of California, Inc. Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources
US7995202B2 (en) 2006-02-13 2011-08-09 Pacific Biosciences Of California, Inc. Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources
GB0602992D0 (en) * 2006-02-15 2006-03-29 Morvus Technology Ltd Methods, genes and proteins
US8460878B2 (en) * 2006-02-21 2013-06-11 The Trustees Of Tufts College Methods and arrays for detecting cells and cellular components in small defined volumes
US11237171B2 (en) 2006-02-21 2022-02-01 Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
US7951572B2 (en) * 2006-02-27 2011-05-31 Korea Advanced Institute Of Science And Technology Construction of gold nanoparticle-based peptide chip, and assaying enzyme activity and inhibitor effect using secondary ion mass spectrometric analysis thereof
US7679203B2 (en) * 2006-03-03 2010-03-16 Nextreme Thermal Solutions, Inc. Methods of forming thermoelectric devices using islands of thermoelectric material and related structures
US20090061454A1 (en) 2006-03-09 2009-03-05 Brody Jerome S Diagnostic and prognostic methods for lung disorders using gene expression profiles from nose epithelial cells
BRPI0709396A2 (en) * 2006-03-13 2011-07-05 Veridex Llc primary cell propagation
US20100233350A1 (en) * 2006-03-15 2010-09-16 Boston Scientific Scimed, Inc. Drug delivery composition and methods of making same using nanofabrication
MX2008012013A (en) 2006-03-23 2008-10-03 Novartis Ag Anti-tumor cell antigen antibody therapeutics.
WO2007121054A2 (en) * 2006-03-27 2007-10-25 Sky Genetics, Inc. Nucleic acids for apoptosis of cancer cells
US20070235397A1 (en) * 2006-03-30 2007-10-11 Wannop George M Storage bin and frame system
US7914988B1 (en) * 2006-03-31 2011-03-29 Illumina, Inc. Gene expression profiles to predict relapse of prostate cancer
US20070249007A1 (en) * 2006-04-20 2007-10-25 Rosero Spencer Z Method and apparatus for the management of diabetes
GB0607798D0 (en) * 2006-04-20 2006-05-31 Alligator Bioscience Ab Novel polypeptides and use thereof
KR100772893B1 (en) * 2006-05-02 2007-11-05 삼성전자주식회사 Oligomer probe array with improved signal to noise ratio and assay intensity and fabrication method thereof
KR100772897B1 (en) 2006-05-02 2007-11-05 삼성전자주식회사 Oligomer probe array with improved signal to noise ratio and fabrication method thereof
KR100772894B1 (en) * 2006-05-02 2007-11-05 삼성전자주식회사 Oligomer probe array with multifunctional assay and fabrication method thereof
US20070259366A1 (en) * 2006-05-03 2007-11-08 Greg Lawrence Direct printing of patterned hydrophobic wells
US20080003667A1 (en) * 2006-05-19 2008-01-03 Affymetrix, Inc. Consumable elements for use with fluid processing and detection systems
US7642049B2 (en) * 2006-06-30 2010-01-05 Bristol-Myers Squibb Company Method for identifying HIV-1 protease inhibitors with reduced metabolic affects through detection of human resistin polymorphisms
US7572618B2 (en) 2006-06-30 2009-08-11 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
AU2007273055B2 (en) 2006-07-14 2014-05-01 The Regents Of The University Of California Cancer biomarkers and methods of use thereof
AU2007284651B2 (en) 2006-08-09 2014-03-20 Institute For Systems Biology Organ-specific proteins and methods of their use
US8207509B2 (en) 2006-09-01 2012-06-26 Pacific Biosciences Of California, Inc. Substrates, systems and methods for analyzing materials
EP4220138A1 (en) * 2006-09-01 2023-08-02 Pacific Biosciences of California, Inc. Substrates, systems and methods for analyzing materials
AU2007299828C1 (en) 2006-09-19 2014-07-17 Interpace Diagnostics, Llc MicroRNAs differentially expressed in pancreatic diseases and uses thereof
JP2010510964A (en) 2006-09-19 2010-04-08 アシュラジェン インコーポレイテッド MiR-15, miR-26, miR-31, miR-145, miR-147, miR-188, miR-215, miR-216, miR-331, mmu-miR-292 as targets for therapeutic intervention Genes and pathways regulated by 3p
US20080080059A1 (en) * 2006-09-28 2008-04-03 Pacific Biosciences Of California, Inc. Modular optical components and systems incorporating same
US9845494B2 (en) 2006-10-18 2017-12-19 Affymetrix, Inc. Enzymatic methods for genotyping on arrays
US7826693B2 (en) * 2006-10-26 2010-11-02 The Trustees Of Princeton University Monolithically integrated reconfigurable optical add-drop multiplexer
EP2450456A3 (en) 2006-11-02 2012-08-01 Yale University Assessment of oocyte competence
US7892719B2 (en) * 2006-11-03 2011-02-22 Intel Corporation Photonic crystal EUV photoresists
EP2080140B1 (en) 2006-11-03 2013-04-24 Baylor Research Institute Diagnosis of metastatic melanoma and monitoring indicators of immunosuppression through blood leukocyte microarray analysis
ITTO20060833A1 (en) * 2006-11-23 2007-02-22 Silvano Battaglio MICROPOZZETTO CONVEXED IN ORDER TO CREATE A PERIMETRAL ROOM FOR THE COLLECTION OF CORPUSCULATED ELEMENTS
US20080230605A1 (en) * 2006-11-30 2008-09-25 Brian Weichel Process and apparatus for maintaining data integrity
US7522282B2 (en) 2006-11-30 2009-04-21 Purdue Research Foundation Molecular interferometric imaging process and apparatus
US20080144899A1 (en) * 2006-11-30 2008-06-19 Manoj Varma Process for extracting periodic features from images by template matching
CA2672951A1 (en) 2006-12-20 2008-07-03 Bayer Healthcare Llc Hydroxy methyl phenyl pyrazolyl urea compound useful in the treatment of cancer
US8999724B2 (en) 2006-12-28 2015-04-07 Intel Corporation Method and apparatus for match quality analysis of analyte binding
US7923237B2 (en) * 2006-12-28 2011-04-12 Intel Corporation Method and apparatus for combined electrochemical synthesis and detection of analytes
US8614086B2 (en) * 2006-12-28 2013-12-24 Intel Corporation Quality control methods for the manufacture of polymer arrays
US7659968B2 (en) * 2007-01-19 2010-02-09 Purdue Research Foundation System with extended range of molecular sensing through integrated multi-modal data acquisition
US7733488B1 (en) 2007-01-26 2010-06-08 Revolution Optics, Llc Compact multi-wavelength optical reader and method of acquiring optical data on clustered assay samples using differing-wavelength light sources
WO2008098256A1 (en) * 2007-02-09 2008-08-14 Bristol-Myers Squibb Company Methods for identifying patients with an increased likelihood of responding to dpp-iv inhibitors
WO2008118934A1 (en) * 2007-03-26 2008-10-02 Purdue Research Foundation Method and apparatus for conjugate quadrature interferometric detection of an immunoassay
US20080277595A1 (en) * 2007-05-10 2008-11-13 Pacific Biosciences Of California, Inc. Highly multiplexed confocal detection systems and methods of using same
US20100167413A1 (en) * 2007-05-10 2010-07-01 Paul Lundquist Methods and systems for analyzing fluorescent materials with reduced autofluorescence
WO2009023676A1 (en) 2007-08-12 2009-02-19 Integrated Dna Technologies, Inc. Microarray system with improved sequence specificity
WO2009023733A1 (en) * 2007-08-13 2009-02-19 Trustees Of Tufts College Methods and microarrays for detecting enteric viruses
EP2195451A4 (en) * 2007-08-28 2011-01-19 Merck Sharp & Dohme Expression profiles of biomarker genes in notch mediated cancers
CA2734029C (en) 2007-08-30 2016-03-29 The Trustees Of Tufts College Methods for determining the concentration of an analyte in solution
US8288118B2 (en) 2007-09-19 2012-10-16 Becton, Dickinson And Company Method of analyzing various surface chemistries for culturing a given cell line
EP2195657A1 (en) * 2007-09-28 2010-06-16 Koninklijke Philips Electronics N.V. Sensor device for the detection of target components
WO2009061017A1 (en) * 2007-11-09 2009-05-14 Electronics And Telecommunications Research Institute Bio lab-on-a-chip and method of fabricating and operating the same
US20090156428A1 (en) * 2007-11-30 2009-06-18 Malcolm Alastair J Multi-mode microarray apparatus and method for concurrent and sequential biological assays
US20090192045A1 (en) * 2008-01-22 2009-07-30 Yuqiu Jiang Molecular staging of stage ii and iii colon cancer and prognosis
US20090233809A1 (en) * 2008-03-04 2009-09-17 Affymetrix, Inc. Resequencing methods for identification of sequence variants
US7932036B1 (en) 2008-03-12 2011-04-26 Veridex, Llc Methods of determining acute myeloid leukemia response to treatment with farnesyltransferase
US8039817B2 (en) 2008-05-05 2011-10-18 Illumina, Inc. Compensator for multiple surface imaging
WO2009137521A2 (en) * 2008-05-07 2009-11-12 Illumina, Inc. Compositions and methods for providing substances to and from an array
US8258111B2 (en) 2008-05-08 2012-09-04 The Johns Hopkins University Compositions and methods related to miRNA modulation of neovascularization or angiogenesis
WO2010096036A2 (en) 2008-05-14 2010-08-26 Millennium Pharmaceuticals, Inc. Methods and kits for monitoring the effects of immunomodulators on adaptive immunity
EP2281069A2 (en) 2008-05-16 2011-02-09 Bristol-Myers Squibb Company Methods for identifying subjects with an increased likelihood of responding to dpp-iv inhibitors
EP2135626B1 (en) 2008-06-19 2011-01-26 Eppendorf Array Technologies SA Strip for multiparametrics assays
US8697605B2 (en) 2008-06-30 2014-04-15 Intel Corporation Polymer co-location in surface-attached biopolymers and arrays of biopolymers
CA2974241C (en) 2008-09-16 2020-01-07 Pacific Biosciences Of California, Inc. Substrates and optical systems and methods of use thereof
US8222047B2 (en) 2008-09-23 2012-07-17 Quanterix Corporation Ultra-sensitive detection of molecules on single molecule arrays
US20100075439A1 (en) * 2008-09-23 2010-03-25 Quanterix Corporation Ultra-sensitive detection of molecules by capture-and-release using reducing agents followed by quantification
US20100075862A1 (en) * 2008-09-23 2010-03-25 Quanterix Corporation High sensitivity determination of the concentration of analyte molecules or particles in a fluid sample
US20100087325A1 (en) * 2008-10-07 2010-04-08 Illumina, Inc. Biological sample temperature control system and method
CA2742324A1 (en) 2008-10-30 2010-06-03 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Methods for assessing rna patterns
JP2012508577A (en) 2008-11-12 2012-04-12 カリス ライフ サイエンシズ ルクセンブルク ホールディングス Method and system for using exosomes to determine phenotype
EP2373817A4 (en) * 2008-12-10 2013-01-02 Illumina Inc Methods and compositions for hybridizing nucleic acids
GB0905790D0 (en) 2009-04-03 2009-05-20 Alligator Bioscience Ab Novel polypeptides and use thereof
ES2805347T3 (en) 2009-02-11 2021-02-11 Caris Mpi Inc Molecular profiling of tumors
EP3255146B1 (en) 2009-03-16 2019-05-15 Pangu Biopharma Limited Compositions and methods comprising histidyl-trna synthetase splice variants having non-canonical biological activities
CN102449143B (en) 2009-03-31 2017-11-14 Atyr医药公司 Include the composition and method of the aspartoyl tRNA synzyme with unconventional bioactivity
WO2010125566A2 (en) 2009-04-27 2010-11-04 Technion Research And Development Foundation Ltd. Markers for cancer detection
US20100298171A1 (en) * 2009-05-22 2010-11-25 Affymetrix, Inc. Apparatus for polymer synthesis
US9523701B2 (en) 2009-07-29 2016-12-20 Dynex Technologies, Inc. Sample plate systems and methods
GB0913258D0 (en) 2009-07-29 2009-09-02 Dynex Technologies Inc Reagent dispenser
US9771618B2 (en) * 2009-08-19 2017-09-26 Bioarray Genetics, Inc. Methods for treating breast cancer
US10072287B2 (en) 2009-09-10 2018-09-11 Centrillion Technology Holdings Corporation Methods of targeted sequencing
US10174368B2 (en) 2009-09-10 2019-01-08 Centrillion Technology Holdings Corporation Methods and systems for sequencing long nucleic acids
EP2486151B1 (en) 2009-10-06 2016-04-13 Shire Human Genetic Therapies, Inc. Assays for agents affecting megakaryocyte development
DK2488873T3 (en) 2009-10-16 2015-11-09 Novartis Ag Biomarkers for pharmacodynamic tumor responses
AU2010315400B2 (en) 2009-10-27 2016-07-21 Caris Mpi, Inc. Molecular profiling for personalized medicine
EP2496944A2 (en) 2009-11-05 2012-09-12 Novartis AG Biomarkers predictive of progression of fibrosis
WO2011062962A2 (en) 2009-11-17 2011-05-26 The Trustees Of The University Of Pennsylvania Smndelta7 degron: novel compositions and methods of use
AU2010324594B2 (en) 2009-11-30 2016-09-15 Caris Life Sciences Switzerland Holdings Gmbh Methods and systems for isolating, storing, and analyzing vesicles
WO2011067234A2 (en) * 2009-12-02 2011-06-09 Roche Diagnostics Gmbh Multiplexed microarray and method of fabricating thereof
US8835358B2 (en) 2009-12-15 2014-09-16 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
US20110143966A1 (en) * 2009-12-15 2011-06-16 Affymetrix, Inc. Surface Modifications and Methods for their Synthesis and Use
WO2011088226A2 (en) 2010-01-13 2011-07-21 Caris Life Sciences Luxembourg Holdings Detection of gastrointestinal disorders
WO2011093939A1 (en) 2010-02-01 2011-08-04 Illumina, Inc. Focusing methods and optical systems and assemblies using the same
EA201201113A1 (en) 2010-02-10 2013-03-29 Новартис Аг METHODS AND CONNECTIONS FOR GROWTH OF MUSCLE
US8994946B2 (en) 2010-02-19 2015-03-31 Pacific Biosciences Of California, Inc. Integrated analytical system and method
US8467061B2 (en) 2010-02-19 2013-06-18 Pacific Biosciences Of California, Inc. Integrated analytical system and method
US9110025B2 (en) 2010-03-01 2015-08-18 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
CA2791905A1 (en) 2010-03-01 2011-09-09 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Biomarkers for theranostics
US8415171B2 (en) * 2010-03-01 2013-04-09 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
US8236574B2 (en) 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
US9678068B2 (en) 2010-03-01 2017-06-13 Quanterix Corporation Ultra-sensitive detection of molecules using dual detection methods
EP2542678B1 (en) 2010-03-04 2017-04-12 InteRNA Technologies B.V. A MiRNA MOLECULE DEFINED BY ITS SOURCE AND ITS THERAPEUTIC USES IN CANCER ASSOCIATED WITH EMT
CN202281746U (en) 2010-03-06 2012-06-20 伊鲁米那股份有限公司 Measuring equipment for detecting optical signal from sample as well as optical module and optical system for measuring equipment
US9601677B2 (en) * 2010-03-15 2017-03-21 Laird Durham, Inc. Thermoelectric (TE) devices/structures including thermoelectric elements with exposed major surfaces
EP2556172A4 (en) 2010-04-06 2013-10-30 Caris Life Sciences Luxembourg Holdings Circulating biomarkers for disease
CN103079567A (en) 2010-04-17 2013-05-01 拜尔健康护理有限责任公司 Synthetic metabolites of fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention diseases and conditions
WO2011139714A2 (en) 2010-04-26 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of cysteinyl-trna synthetase
EP3508854A1 (en) 2010-04-27 2019-07-10 The Regents of The University of California Cancer biomarkers and methods of use thereof
US8961960B2 (en) 2010-04-27 2015-02-24 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of isoleucyl tRNA synthetases
EP2563911B1 (en) 2010-04-28 2021-07-21 aTyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl trna synthetases
AU2011248490B2 (en) 2010-04-29 2016-11-10 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Asparaginyl tRNA synthetases
US9034320B2 (en) 2010-04-29 2015-05-19 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Valyl-tRNA synthetases
JP5976638B2 (en) 2010-05-03 2016-08-23 エータイアー ファーマ, インコーポレイテッド Innovative discovery of therapeutic, diagnostic and antibody compositions related to protein fragments of arginyl tRNA synthetase
US8981045B2 (en) 2010-05-03 2015-03-17 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of methionyl-tRNA synthetases
EP2566495B1 (en) 2010-05-03 2017-03-01 aTyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-trna synthetases
US9062302B2 (en) 2010-05-04 2015-06-23 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-tRNA synthetase complex
EP2568996B1 (en) 2010-05-14 2017-10-04 aTyr Pharma, Inc. Therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-beta-trna synthetases
US9034598B2 (en) 2010-05-17 2015-05-19 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of leucyl-tRNA synthetases
WO2011146725A1 (en) 2010-05-19 2011-11-24 Bayer Healthcare Llc Biomarkers for a multikinase inhibitor
AU2011258106B2 (en) 2010-05-27 2017-02-23 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutaminyl-tRNA synthetases
CN103118694B (en) 2010-06-01 2016-08-03 Atyr医药公司 The discovery for the treatment of, diagnosis and the antibody compositions relevant to the protein fragments of lysyl-tRNA synzyme
NZ702485A (en) 2010-06-03 2016-04-29 Pharmacyclics Llc The use of inhibitors of bruton’s tyrosine kinase (btk)
WO2011159942A1 (en) 2010-06-18 2011-12-22 Illumina, Inc. Conformational probes and methods for sequencing nucleic acids
WO2012005572A1 (en) 2010-07-06 2012-01-12 Interna Technologies Bv Mirna and its diagnostic and therapeutic uses in diseases or conditions associated with melanoma, or in diseases or conditions associated with activated braf pathway
EP2593125B1 (en) 2010-07-12 2017-11-01 aTyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glycyl-trna synthetases
EP2596347B1 (en) 2010-07-22 2017-09-06 Hach Company Alkalinity analysis using a lab-on-a-chip
US20140342940A1 (en) 2011-01-25 2014-11-20 Ariosa Diagnostics, Inc. Detection of Target Nucleic Acids using Hybridization
US8700338B2 (en) 2011-01-25 2014-04-15 Ariosa Diagnosis, Inc. Risk calculation for evaluation of fetal aneuploidy
US11031095B2 (en) 2010-08-06 2021-06-08 Ariosa Diagnostics, Inc. Assay systems for determination of fetal copy number variation
US10167508B2 (en) 2010-08-06 2019-01-01 Ariosa Diagnostics, Inc. Detection of genetic abnormalities
US11203786B2 (en) 2010-08-06 2021-12-21 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
US10533223B2 (en) 2010-08-06 2020-01-14 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
US20120034603A1 (en) 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
US20130261003A1 (en) 2010-08-06 2013-10-03 Ariosa Diagnostics, In. Ligation-based detection of genetic variants
US20130040375A1 (en) 2011-08-08 2013-02-14 Tandem Diagnotics, Inc. Assay systems for genetic analysis
US9029506B2 (en) 2010-08-25 2015-05-12 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of tyrosyl-tRNA synthetases
WO2012031234A2 (en) * 2010-09-03 2012-03-08 Life Technologies Corporation Methods, systems and apparatus for sequencing
WO2012050920A1 (en) 2010-09-29 2012-04-19 Illumina, Inc. Compositions and methods for sequencing nucleic acids
US8753816B2 (en) 2010-10-26 2014-06-17 Illumina, Inc. Sequencing methods
EP2640403A4 (en) 2010-11-15 2014-04-23 Jua-Nan Lee Generation of neural stem cells from human trophoblast stem cells
BR112013012265A2 (en) 2010-11-17 2016-08-02 Asuragen Inc mirnas as biomarkers to distinguish benign from malignant thyroid neoplasms
US8951781B2 (en) 2011-01-10 2015-02-10 Illumina, Inc. Systems, methods, and apparatuses to image a sample for biological or chemical analysis
EP2474617A1 (en) 2011-01-11 2012-07-11 InteRNA Technologies BV Mir for treating neo-angiogenesis
US9994897B2 (en) 2013-03-08 2018-06-12 Ariosa Diagnostics, Inc. Non-invasive fetal sex determination
US10131947B2 (en) 2011-01-25 2018-11-20 Ariosa Diagnostics, Inc. Noninvasive detection of fetal aneuploidy in egg donor pregnancies
US20120190020A1 (en) 2011-01-25 2012-07-26 Aria Diagnostics, Inc. Detection of genetic abnormalities
US8756020B2 (en) 2011-01-25 2014-06-17 Ariosa Diagnostics, Inc. Enhanced risk probabilities using biomolecule estimations
US11270781B2 (en) 2011-01-25 2022-03-08 Ariosa Diagnostics, Inc. Statistical analysis for non-invasive sex chromosome aneuploidy determination
US9952237B2 (en) 2011-01-28 2018-04-24 Quanterix Corporation Systems, devices, and methods for ultra-sensitive detection of molecules or particles
WO2012115648A1 (en) 2011-02-24 2012-08-30 Hill's Pet Nutrition, Inc. Compositions and methods for diagnosing and treating kidney disorders in a feline
WO2012118745A1 (en) 2011-02-28 2012-09-07 Arnold Oliphant Assay systems for detection of aneuploidy and sex determination
WO2012158238A2 (en) 2011-02-28 2012-11-22 University Of Iowa Research Foundation Anti-müllerian hormone changes in pregnancy and prediction ofadverse pregnancy outcomes and gender
PE20140627A1 (en) 2011-03-02 2014-05-30 Berg Llc CELL-BASED INTERROGATORY TESTS AND THE USE OF THEM
WO2012129100A1 (en) 2011-03-18 2012-09-27 Eisai R&D Management Co., Ltd. Methods and compositions for predicting response to eribulin
US9777332B2 (en) 2011-03-31 2017-10-03 St. Jude Children's Research Hospital Methods and compositions for identifying minimal residual disease in acute lymphoblastic leukemia
US20120252682A1 (en) 2011-04-01 2012-10-04 Maples Corporate Services Limited Methods and systems for sequencing nucleic acids
US20140302532A1 (en) 2011-04-12 2014-10-09 Quanterix Corporation Methods of determining a treatment protocol for and/or a prognosis of a patient's recovery from a brain injury
US8753873B2 (en) 2011-04-15 2014-06-17 Roche Nimblegen, Inc. Multiplexed microarray assembly and method for fabricating a multiplexed microarray
EP2705165B1 (en) 2011-05-04 2016-08-24 HTG Molecular Diagnostics, Inc. Quantitative nuclease protection assay (qnpa) and sequencing (qnps) improvements
EP2718465B1 (en) 2011-06-09 2022-04-13 Illumina, Inc. Method of making an analyte array
JP5930556B2 (en) 2011-06-15 2016-06-08 ヒルズ・ペット・ニュートリシャン・インコーポレーテッド Compositions and methods for diagnosing and monitoring hyperthyroidism in felines
EP3564393A1 (en) 2011-06-21 2019-11-06 Alnylam Pharmaceuticals, Inc. Assays and methods for determining activity of a therapeutic agent in a subject
US8712697B2 (en) 2011-09-07 2014-04-29 Ariosa Diagnostics, Inc. Determination of copy number variations using binomial probability calculations
US9644241B2 (en) 2011-09-13 2017-05-09 Interpace Diagnostics, Llc Methods and compositions involving miR-135B for distinguishing pancreatic cancer from benign pancreatic disease
WO2013063519A1 (en) 2011-10-26 2013-05-02 Asuragen, Inc. Methods and compositions involving mirna expression levels for distinguishing pancreatic cysts
WO2013063544A1 (en) 2011-10-27 2013-05-02 Asuragen, Inc. Mirnas as diagnostic biomarkers to distinguish benign from malignant thyroid tumors
WO2013060482A1 (en) * 2011-10-28 2013-05-02 Torsten Matthias Device and method for detecting substances present in biological or chemical samples
CN106978487A (en) 2011-10-28 2017-07-25 米伦纽姆医药公司 Biomarkers of response to inhibitors of NEDD8 activating enzyme (NAE)
US8778849B2 (en) 2011-10-28 2014-07-15 Illumina, Inc. Microarray fabrication system and method
US20150184246A1 (en) 2011-11-11 2015-07-02 Millennium Pharmaceuticals, Inc. Biomarkers of response to proteasome inhibitors
EP2776043B1 (en) 2011-11-11 2018-02-21 Millennium Pharmaceuticals, Inc. Biomarkers of response to proteasome inhibitors
KR102385013B1 (en) 2011-11-18 2022-04-12 알닐람 파마슈티칼스 인코포레이티드 RNAi AGENTS, COMPOSITIONS AND METHODS OF USE THEREOF FOR TREATING TRANSTHYRETIN (TTR) ASSOCIATED DISEASES
CA2856107C (en) 2011-11-18 2022-10-18 Memorial Sloan-Kettering Cancer Center 2-hydroxyglutarate as a biomarker for chronic hypoxia
WO2013080050A2 (en) 2011-11-30 2013-06-06 Universitaetsklinikum Erlangen Methods and compositions for determining responsiveness to treatment with a tnf-alpha inhibitor
US8748097B1 (en) 2011-12-02 2014-06-10 President And Fellows Of Harvard College Identification of agents for treating calcium disorders and uses thereof
WO2013087789A1 (en) 2011-12-13 2013-06-20 Glykos Finland Ltd. Antibody isoform arrays and methods thereof
WO2013095935A1 (en) 2011-12-19 2013-06-27 Hill's Pet Nutrition, Inc. Compositions and methods for diagnosing and treating hyperthyroidism in companion animals
WO2013119923A1 (en) 2012-02-09 2013-08-15 The Regents Of The University Of Michigan Different states of cancer stem cells
CA2864300A1 (en) 2012-02-16 2013-08-22 Atyr Pharma, Inc. Histidyl-trna synthetases for treating autoimmune and inflammatory diseases
WO2013123125A1 (en) 2012-02-17 2013-08-22 President And Fellows Of Harvard College Assembly of nucleic acid sequences in emulsions
EP2827882B1 (en) 2012-02-21 2020-04-08 Cytonics Corporation Systems, compositions, and methods for transplantation
EP2820174B1 (en) 2012-02-27 2019-12-25 The University of North Carolina at Chapel Hill Methods and uses for molecular tags
US10061887B2 (en) 2012-04-02 2018-08-28 Berg Llc Interrogatory cell-based assays and uses thereof
US10289800B2 (en) 2012-05-21 2019-05-14 Ariosa Diagnostics, Inc. Processes for calculating phased fetal genomic sequences
WO2013176773A1 (en) 2012-05-24 2013-11-28 The Governing Council Of The University Of Toronto Systems and methods for multiplexed electrochemical detection
US9012022B2 (en) 2012-06-08 2015-04-21 Illumina, Inc. Polymer coatings
US9180449B2 (en) 2012-06-12 2015-11-10 Hach Company Mobile water analysis
US9372308B1 (en) 2012-06-17 2016-06-21 Pacific Biosciences Of California, Inc. Arrays of integrated analytical devices and methods for production
WO2014007623A1 (en) 2012-07-03 2014-01-09 Interna Technologies B.V. Diagnostic portfolio and its uses
EP2875156A4 (en) 2012-07-19 2016-02-24 Ariosa Diagnostics Inc Multiplexed sequential ligation-based detection of genetic variants
CA2879570A1 (en) 2012-07-24 2014-01-30 Pharmacyclics, Inc. Mutations associated with resistance to inhibitors of bruton's tyrosine kinase (btk)
US10895534B2 (en) 2012-08-20 2021-01-19 Illumina, Inc. Method and system for fluorescence lifetime based sequencing
EP2904115B1 (en) 2012-10-01 2018-08-08 Millennium Pharmaceuticals, Inc. Biomarkers and methods to predict response to inhibitors and uses thereof
WO2014055117A1 (en) 2012-10-04 2014-04-10 Asuragen, Inc. Diagnostic mirnas for differential diagnosis of incidental pancreatic cystic lesions
EP2925886B1 (en) 2012-11-27 2019-04-24 Pontificia Universidad Católica de Chile Compositions and methods for diagnosing thyroid tumors
BR112015012295A8 (en) 2012-11-28 2023-03-14 Merck Sharp & Dohme USE OF A WEE1 INHIBITOR, E, KIT TO IDENTIFY A PATIENT WITH CANCER
CA2891542C (en) 2012-11-30 2021-12-14 Accelerated Biosciences Corp. Pancreatic progenitor cells expressing betatrophin and insulin
WO2014089313A1 (en) 2012-12-05 2014-06-12 Alnylam Pharmaceuticals PCSK9 iRNA COMPOSITIONS AND METHODS OF USE THEREOF
USD768872S1 (en) 2012-12-12 2016-10-11 Hach Company Cuvette for a water analysis instrument
US9223084B2 (en) 2012-12-18 2015-12-29 Pacific Biosciences Of California, Inc. Illumination of optical analytical devices
US9932626B2 (en) 2013-01-15 2018-04-03 Quanterix Corporation Detection of DNA or RNA using single molecule arrays and other techniques
BR112015017403A2 (en) 2013-01-21 2017-11-21 Abbvie Inc anti-tnf and anti-il17 combination therapy biomarkers for inflammatory disease
WO2014130900A1 (en) 2013-02-22 2014-08-28 Pacific Biosciences Of California, Inc. Integrated illumination of optical analytical devices
CA2902068C (en) 2013-02-28 2023-10-03 Caprion Proteomics Inc. Tuberculosis biomarkers and uses thereof
PE20160046A1 (en) 2013-03-14 2016-02-14 Alnylam Pharmaceuticals Inc COMPOSITION OF RNAi AGAINST THE C5 COMPONENT OF THE COMPLEMENT AND METHODS FOR ITS USE
DK2970356T3 (en) 2013-03-15 2018-08-27 Illumina Cambridge Ltd Modified nucleosides or nucleotides
US20140274749A1 (en) 2013-03-15 2014-09-18 Affymetrix, Inc. Systems and Methods for SNP Characterization and Identifying off Target Variants
EP2971149B1 (en) 2013-03-15 2018-05-09 Baylor Research Institute Ulcerative colitis (uc)-associated colorectal neoplasia markers
EP2971132B1 (en) 2013-03-15 2020-05-06 Baylor Research Institute Tissue and blood-based mirna biomarkers for the diagnosis, prognosis and metastasis-predictive potential in colorectal cancer
EP3404116B1 (en) 2013-03-15 2022-10-19 The University of Chicago Methods and compositions related to t-cell activity
US10535420B2 (en) 2013-03-15 2020-01-14 Affymetrix, Inc. Systems and methods for probe design to detect the presence of simple and complex indels
US9944987B2 (en) 2013-03-27 2018-04-17 Bluegnome Ltd Assessment of risk of aneuploidy
SG10201913872XA (en) 2013-05-22 2020-03-30 Alnylam Pharmaceuticals Inc SERPINA1 iRNA COMPOSITIONS AND METHODS OF USE THEREOF
SG11201510565TA (en) 2013-05-22 2016-01-28 Alnylam Pharmaceuticals Inc Tmprss6 irna compositions and methods of use thereof
CN105074011B (en) 2013-06-13 2020-10-02 阿瑞奥萨诊断公司 Statistical analysis for non-invasive chromosomal aneuploidy determination
US9069358B2 (en) 2013-06-24 2015-06-30 Biolytic Lab Performance, Inc. System for controlling and optimizing reactions in solid phase synthesis of small molecules
PL3017065T3 (en) 2013-07-01 2019-03-29 Illumina, Inc. Catalyst-free surface functionalization and polymer grafting
WO2015031654A2 (en) 2013-08-28 2015-03-05 Cytonics Corporation Systems, compositions, and methods for transplantation and treating conditions
WO2015042564A1 (en) 2013-09-23 2015-03-26 Alnylam Pharmaceuticals, Inc. Methods for treating or preventing transthyretin (ttr) associated diseases
US9352315B2 (en) 2013-09-27 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method to produce chemical pattern in micro-fluidic structure
WO2015051122A2 (en) 2013-10-02 2015-04-09 The Board Of Trustees Of The Leland Stanford Junior University Wnt compositions and methods for purification
US20150098940A1 (en) 2013-10-03 2015-04-09 Oklahoma Medical Research Foundation Biomarkers for Systemic Lupus Erythematosus Disease Activity, and Intensity and Flare
US20160265036A1 (en) 2013-11-05 2016-09-15 Htg Molecular Diagnostics, Inc. Methods for detecting nucleic acids
US20160214113A1 (en) 2013-11-29 2016-07-28 Mitsubishi Rayon Co., Ltd. Biochip holder, method for manufacturing biochip holder, biochip retainer, and biochip holder kit
CA2931090A1 (en) 2013-12-12 2015-06-18 Alnylam Pharmaceuticals, Inc. Complement component irna compositions and methods of use thereof
US20160304969A1 (en) 2013-12-17 2016-10-20 Merck Sharp & Dohme Corp. Ifn-gamma gene signature biomarkers of tumor response to pd-1 antagonists
EP3084523B1 (en) 2013-12-19 2019-07-03 Illumina, Inc. Substrates comprising nano-patterning surfaces and methods of preparing thereof
JP6666852B2 (en) 2014-01-16 2020-03-18 イルミナ インコーポレイテッド Gene expression panel for prognosis of prostate cancer recurrence
CA2940653A1 (en) 2014-02-27 2015-09-03 Vijay Kuchroo T cell balance gene expression, compositions of matters and methods of use thereof
JP2017509336A (en) 2014-03-20 2017-04-06 ファーマサイクリックス エルエルシー Mutations associated with phospholipase C gamma 2 and resistance
WO2015184461A1 (en) 2014-05-30 2015-12-03 Faruki Hawazin Methods for typing of lung cancer
US20160000936A1 (en) 2014-06-10 2016-01-07 Abbvie Inc. Biomarkers for inflammatory disease and methods of using same
GB201414098D0 (en) 2014-08-08 2014-09-24 Illumina Cambridge Ltd Modified nucleotide linkers
EP3183577B1 (en) 2014-08-21 2020-08-19 Illumina Cambridge Limited Reversible surface functionalization
US9606068B2 (en) 2014-08-27 2017-03-28 Pacific Biosciences Of California, Inc. Arrays of integrated analytical devices
WO2016040589A1 (en) 2014-09-12 2016-03-17 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting complement component c5 and methods of use thereof
JOP20200115A1 (en) 2014-10-10 2017-06-16 Alnylam Pharmaceuticals Inc Compositions And Methods For Inhibition Of HAO1 (Hydroxyacid Oxidase 1 (Glycolate Oxidase)) Gene Expression
WO2016061487A1 (en) 2014-10-17 2016-04-21 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting aminolevulinic acid synthase-1 (alas1) and uses thereof
JP7065610B6 (en) 2014-10-24 2022-06-06 コーニンクレッカ フィリップス エヌ ヴェ Medical prognosis and prediction of therapeutic response using multiple cellular signaling pathway activities
US10016159B2 (en) 2014-10-24 2018-07-10 Koninklijke Philips N.V. Determination of TGF-β pathway activity using unique combination of target genes
US11640845B2 (en) 2014-10-24 2023-05-02 Koninklijke Philips N.V. Bioinformatics process for identifying at risk subject populations
WO2016069694A2 (en) 2014-10-30 2016-05-06 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting serpinc1 (at3) and methods of use thereof
PT3212684T (en) 2014-10-31 2020-02-03 Illumina Cambridge Ltd Novel polymers and dna copolymer coatings
JP6812797B2 (en) * 2014-11-04 2021-01-13 凸版印刷株式会社 Nucleic acid introduction method, nucleic acid detection method, biological component analysis method, array device for quantifying biological components, and biological component analysis kit
US10683552B2 (en) 2014-11-25 2020-06-16 Presidents And Fellows Of Harvard College Clonal haematopoiesis
US11168369B2 (en) 2014-11-25 2021-11-09 The Brigham And Women's Hospital, Inc. Method of identifying and treating a person having a predisposition to or afflicted with a cardiometabolic disease
SG10202009095VA (en) 2014-11-26 2020-10-29 Accelerated Biosciences Corp Induced hepatocytes and uses thereof
US11543411B2 (en) 2014-12-05 2023-01-03 Prelude Corporation DCIS recurrence and invasive breast cancer
JP6759229B2 (en) 2014-12-08 2020-09-23 バーグ エルエルシー Use of markers containing filamin A in the diagnosis and treatment of prostate cancer
RU2017123117A (en) 2014-12-09 2019-01-10 Мерк Шарп И Доум Корп. SYSTEM AND METHODS FOR PRODUCING BIOMARKERS OF GENE SIGNATURES OF RESPONSE TO PD-1 ANTAGONISTS
CA2976445A1 (en) 2015-02-13 2016-08-18 Alnylam Pharmaceuticals, Inc. Patatin-like phospholipase domain containing 3 (pnpla3) irna compositions and methods of use thereof
EP3262193A2 (en) 2015-02-26 2018-01-03 The Broad Institute Inc. T cell balance gene expression, compositions of matters and methods of use thereof
CN113064236B (en) 2015-03-16 2022-11-01 加利福尼亚太平洋生物科学股份有限公司 Integrated device and system for free space optical coupling
US9976174B2 (en) 2015-03-24 2018-05-22 Illumina Cambridge Limited Methods, carrier assemblies, and systems for imaging samples for biological or chemical analysis
EP3283882B1 (en) 2015-04-17 2020-12-16 Merck Sharp & Dohme Corp. Blood-based biomarkers of tumor sensitivity to pd-1 antagonists
TWI582240B (en) 2015-05-19 2017-05-11 鄭鴻鈞 Prediction of local and regional recurrence and response to radiotherapy in breast cancer by genomic prognostic kits
ES2927121T3 (en) 2015-05-29 2022-11-02 Illumina Inc Sample holder and assay system for performing designated reactions
CN107924027B (en) 2015-06-12 2024-01-23 加利福尼亚太平洋生物科学股份有限公司 Integrated target waveguide device and system for optical coupling
EP3307316A1 (en) 2015-06-12 2018-04-18 Alnylam Pharmaceuticals, Inc. Complement component c5 irna compositions and methods of use thereof
WO2016205323A1 (en) 2015-06-18 2016-12-22 Alnylam Pharmaceuticals, Inc. Polynucleotde agents targeting hydroxyacid oxidase (glycolate oxidase, hao1) and methods of use thereof
WO2017011286A1 (en) 2015-07-10 2017-01-19 Alnylam Pharmaceuticals, Inc. Insulin-like growth factor binding protein, acid labile subunit (igfals) and insulin-like growth factor 1 (igf-1) irna compositions and methods of use thereof
EP3325648B1 (en) 2015-07-17 2023-03-29 Illumina, Inc. Polymer sheets for sequencing applications
JP6923509B2 (en) 2015-07-28 2021-08-18 オトノミ—,インク. Treatment with truncated TRKB and TRKC antagonists
BR112018002848A2 (en) 2015-08-14 2018-11-06 Koninklijke Philips Nv method, apparatus, non-transient storage media, computer program, kit for measuring expression levels of six or more cell signaling target genes
WO2017034868A1 (en) 2015-08-24 2017-03-02 Illumina, Inc. In-line pressure accumulator and flow-control system for biological or chemical assays
US10889813B2 (en) 2015-09-02 2021-01-12 Alnylam Pharmaceuticals, Inc. Programmed cell death 1 ligand 1 (PD-L1) iRNA compositions and methods of use thereof
US11384399B2 (en) 2015-09-29 2022-07-12 Htg Molecular Diagnostics, Inc. Methods for subtyping diffuse large B-cell lymphoma (DLBCL)
EP3362580B1 (en) 2015-10-18 2021-02-17 Affymetrix, Inc. Multiallelic genotyping of single nucleotide polymorphisms and indels
CN109310700A (en) 2016-04-04 2019-02-05 希诺皮亚生物科学公司 Extra Pyramidal Syndrome is treated using trapidil
MA45295A (en) 2016-04-19 2019-02-27 Alnylam Pharmaceuticals Inc HIGH DENSITY LIPOPROTEIN BINDING PROTEIN (HDLBP / VIGILINE) RNA COMPOSITION AND METHODS FOR USING THEM
WO2017201165A1 (en) 2016-05-17 2017-11-23 Genecentric Diagnostics, Inc. Methods for subtyping of lung adenocarcinoma
WO2017201164A1 (en) 2016-05-17 2017-11-23 Genecentric Diagnostics, Inc. Methods for subtyping of lung squamous cell carcinoma
AU2017267653B2 (en) 2016-05-18 2021-05-13 Illumina, Inc. Self assembled patterning using patterned Hydrophobic surfaces
US20200185063A1 (en) 2016-06-05 2020-06-11 Berg Llc Systems and methods for patient stratification and identification of potential biomarkers
US20190256845A1 (en) 2016-06-10 2019-08-22 Alnylam Pharmaceuticals, Inc. COMPLEMENT COMPONENT C5 iRNA COMPOSITIONS AND METHODS OF USE THEREOF FOR TREATING PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH)
WO2018013883A1 (en) 2016-07-14 2018-01-18 Caprion Proteomics Inc. Biomarkers of latent tuberculosis infection
WO2018064116A1 (en) 2016-09-28 2018-04-05 Illumina, Inc. Methods and systems for data compression
TW202313978A (en) 2016-11-23 2023-04-01 美商阿尼拉製藥公司 Serpina1 irna compositions and methods of use thereof
TWI790217B (en) 2016-12-16 2023-01-21 美商阿尼拉製藥公司 METHODS FOR TREATING OR PREVENTING TTR-ASSOCIATED DISEASES USING TRANSTHYRETIN (TTR) iRNA COMPOSITIONS
CN110462062A (en) 2017-01-26 2019-11-15 俄克拉荷马医学研究基金会 Systemic loupus erythematosus Disease Activity, intensity and the biomarker of acute attack
TWI801377B (en) 2017-04-18 2023-05-11 美商阿尼拉製藥公司 Methods for the treatment of subjects having a hepatitis b virus (hbv) infection
EP3615694B1 (en) 2017-04-25 2022-03-30 The Brigham and Women's Hospital, Inc. Il-8, il-6, il-1b and tet2 and dnmt3a in atherosclerosis
JP2020517715A (en) 2017-04-28 2020-06-18 メルク・シャープ・エンド・ドーム・コーポレイション Biomarkers for cancer therapy
WO2018213803A1 (en) 2017-05-19 2018-11-22 Neon Therapeutics, Inc. Immunogenic neoantigen identification
WO2018237327A1 (en) 2017-06-22 2018-12-27 Triact Therapeutics, Inc. Methods of treating glioblastoma
WO2019018764A1 (en) 2017-07-21 2019-01-24 Genecentric Therapeutics, Inc. Methods for determining response to parp inhibitors
WO2019067991A1 (en) 2017-09-29 2019-04-04 Triact Therapeutics, Inc. Iniparib formulations and uses thereof
EP3461915A1 (en) 2017-10-02 2019-04-03 Koninklijke Philips N.V. Assessment of jak-stat1/2 cellular signaling pathway activity using mathematical modelling of target gene expression
SG11202002753QA (en) 2017-10-26 2020-05-28 Nat Univ Singapore A new approach for universal monitoring of minimal residual disease in acute myeloid leukemia
AU2018360697A1 (en) 2017-11-01 2020-05-14 Alnylam Pharmaceuticals, Inc. Complement component C3 iRNA compositions and methods of use thereof
US11497762B2 (en) 2017-11-03 2022-11-15 Interna Technologies B.V. MiRNA molecule, equivalent, antagomir, or source thereof for treating and/or diagnosing a condition and/or a disease associated with neuronal deficiency or for neuronal (re)generation
WO2019094578A1 (en) 2017-11-09 2019-05-16 Alnylam Pharmaceuticals Inc. Assays and methods for determining expression of the lect2 gene
WO2019099610A1 (en) 2017-11-16 2019-05-23 Alnylam Pharmaceuticals, Inc. Kisspeptin 1 (kiss1) irna compositions and methods of use thereof
WO2019100039A1 (en) 2017-11-20 2019-05-23 Alnylam Pharmaceuticals, Inc. Serum amyloid p component (apcs) irna compositions and methods of use thereof
US20200377958A1 (en) 2017-12-01 2020-12-03 Millennium Pharmaceuticals, Inc. Biomarkers and methods for treatment with nae inhibitors
AR113490A1 (en) 2017-12-12 2020-05-06 Amgen Inc RNAi CONSTRUCTIONS TO INHIBIT THE EXPRESSION OF PNPLA3 AND METHODS OF USE OF THE SAME
MX2020006012A (en) 2017-12-18 2020-09-14 Alnylam Pharmaceuticals Inc High mobility group box-1 (hmgb1) irna compositions and methods of use thereof.
EP3502279A1 (en) 2017-12-20 2019-06-26 Koninklijke Philips N.V. Assessment of mapk-ap 1 cellular signaling pathway activity using mathematical modelling of target gene expression
TW202016304A (en) 2018-05-14 2020-05-01 美商阿尼拉製藥公司 Angiotensinogen (agt) irna compositions and methods of use thereof
JP2021533767A (en) 2018-08-13 2021-12-09 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Hepatitis B virus (HBV) dsRNA substance composition and its usage
AU2019339508A1 (en) 2018-09-14 2021-04-15 Prelude Corporation Method of selection for treatment of subjects at risk of invasive breast cancer
JP2022500003A (en) 2018-09-18 2022-01-04 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Ketohexokinase (KHK) iRNA composition and its usage
EP3856907A1 (en) 2018-09-28 2021-08-04 Alnylam Pharmaceuticals, Inc. Transthyretin (ttr) irna compositions and methods of use thereof for treating or preventing ttr-associated ocular diseases
EP3864165A4 (en) 2018-10-09 2022-08-03 Genecentric Therapeutics, Inc. Detecting cancer cell of origin
WO2020081204A1 (en) 2018-10-18 2020-04-23 Oklahoma Medical Research Foundation Biomarkers for a systemic lupus erythematosus (sle) disease activity immune index that characterizes disease activity
MX2021006234A (en) 2018-11-30 2021-09-10 Caris Mpi Inc Next-generation molecular profiling.
AR117297A1 (en) 2018-12-10 2021-07-28 Amgen Inc ARNI CONSTRUCTS TO INHIBIT THE EXPRESSION OF PNPLA3 AND METHODS OF USE OF THEM
AU2019406186A1 (en) 2018-12-20 2021-07-15 Praxis Precision Medicines, Inc. Compositions and methods for the treatment of KCNT1 related disorders
US11293061B2 (en) 2018-12-26 2022-04-05 Illumina Cambridge Limited Sequencing methods using nucleotides with 3′ AOM blocking group
US11421271B2 (en) 2019-03-28 2022-08-23 Illumina Cambridge Limited Methods and compositions for nucleic acid sequencing using photoswitchable labels
US20220162198A1 (en) 2019-04-12 2022-05-26 The Regents Of The University Of California Compositions and methods for increasing muscle mass and oxidative metabolism
KR20220015394A (en) 2019-04-30 2022-02-08 라리마 테라퓨틱스, 인코포레이티드 Frataxin sensitivity markers for determining the efficacy of prataxin replacement therapy
AU2020284254A1 (en) 2019-05-30 2021-12-23 Amgen Inc. RNAi constructs for inhibiting SCAP expression and methods of use thereof
WO2021022109A1 (en) 2019-08-01 2021-02-04 Alnylam Pharmaceuticals, Inc. SERPIN FAMILY F MEMBER 2 (SERPINF2) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
EP4007811A2 (en) 2019-08-01 2022-06-08 Alnylam Pharmaceuticals, Inc. Carboxypeptidase b2 (cpb2) irna compositions and methods of use thereof
WO2021030522A1 (en) 2019-08-13 2021-02-18 Alnylam Pharmaceuticals, Inc. SMALL RIBOSOMAL PROTEIN SUBUNIT 25 (RPS25) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF
JP2022544238A (en) 2019-08-13 2022-10-17 アムジエン・インコーポレーテツド RNAi constructs for inhibiting SLC30A8 expression and methods of use thereof
WO2021076828A1 (en) 2019-10-18 2021-04-22 Alnylam Pharmaceuticals, Inc. Solute carrier family member irna compositions and methods of use thereof
BR112022007540A2 (en) 2019-10-22 2022-07-12 Alnylam Pharmaceuticals Inc COMPONENTS COMPLEMENTARY C3 IRNA COMPOSITIONS AND METHODS OF USE THEREOF
MX2022004388A (en) 2019-11-01 2022-05-06 Alnylam Pharmaceuticals Inc HUNTINGTIN (HTT) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF.
WO2021092145A1 (en) 2019-11-06 2021-05-14 Alnylam Pharmaceuticals, Inc. Transthyretin (ttr) irna composition and methods of use thereof for treating or preventing ttr-associated ocular diseases
US20230056569A1 (en) 2019-11-22 2023-02-23 Alnylam Pharmaceuticals, Inc. Ataxin3 (atxn3) rnai agent compositions and methods of use thereof
IL293489A (en) 2019-12-02 2022-08-01 Caris Mpi Inc Pan-cancer platinum response predictor
EP4073251A1 (en) 2019-12-13 2022-10-19 Alnylam Pharmaceuticals, Inc. Human chromosome 9 open reading frame 72 (c9orf72) irna agent compositions and methods of use thereof
WO2021126734A1 (en) 2019-12-16 2021-06-24 Alnylam Pharmaceuticals, Inc. Patatin-like phospholipase domain containing 3 (pnpla3) irna compositions and methods of use thereof
WO2021154941A1 (en) 2020-01-31 2021-08-05 Alnylam Pharmaceuticals, Inc. Complement component c5 irna compositions for use in the treatment of amyotrophic lateral sclerosis (als)
MX2022010052A (en) 2020-02-18 2022-09-05 Alnylam Pharmaceuticals Inc Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof.
EP4114947A1 (en) 2020-03-05 2023-01-11 Alnylam Pharmaceuticals, Inc. Complement component c3 irna compositions and methods of use thereof for treating or preventing complement component c3-associated diseases
EP4114948A1 (en) 2020-03-06 2023-01-11 Alnylam Pharmaceuticals, Inc. Ketohexokinase (khk) irna compositions and methods of use thereof
EP4121534A1 (en) 2020-03-18 2023-01-25 Alnylam Pharmaceuticals, Inc. Compositions and methods for treating subjects having a heterozygous alanine-glyoxylate aminotransferase gene (agxt) variant
TW202204615A (en) 2020-03-26 2022-02-01 美商阿尼拉製藥公司 Coronavirus irna compositions and methods of use thereof
EP4133076A1 (en) 2020-04-07 2023-02-15 Alnylam Pharmaceuticals, Inc. Angiotensin-converting enzyme 2 (ace2) irna compositions and methods of use thereof
EP4133077A1 (en) 2020-04-07 2023-02-15 Alnylam Pharmaceuticals, Inc. Transmembrane serine protease 2 (tmprss2) irna compositions and methods of use thereof
EP4143319A1 (en) 2020-04-27 2023-03-08 Alnylam Pharmaceuticals, Inc. Apolipoprotein e (apoe) irna agent compositions and methods of use thereof
CA3181198A1 (en) 2020-04-30 2021-11-04 Alnylam Pharmaceuticals, Inc. Complement factor b (cfb) irna compositions and methods of use thereof
EP4150089A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of retinoschisin 1 (rs1)
EP4150086A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of leucine rich repeat kinase 2 (lrrk2)
WO2021231680A1 (en) 2020-05-15 2021-11-18 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of methyl-cpg binding protein 2 (mecp2)
WO2021231692A1 (en) 2020-05-15 2021-11-18 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of otoferlin (otof)
WO2021231675A1 (en) 2020-05-15 2021-11-18 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of argininosuccinate synthetase (ass1)
EP4150078A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of argininosuccinate lyase (asl)
WO2021231679A1 (en) 2020-05-15 2021-11-18 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of gap junction protein beta 2 (gjb2)
EP4150077A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of transmembrane channel-like protein 1 (tmc1)
US20230279399A1 (en) 2020-06-01 2023-09-07 Amgen Inc. Rnai constructs for inhibiting hsd17b13 expression and methods of use thereof
US11408000B2 (en) 2020-06-03 2022-08-09 Triplet Therapeutics, Inc. Oligonucleotides for the treatment of nucleotide repeat expansion disorders associated with MSH3 activity
WO2021252557A1 (en) 2020-06-09 2021-12-16 Alnylam Pharmaceuticals, Inc. Rnai compositions and methods of use thereof for delivery by inhalation
KR20230026455A (en) 2020-06-18 2023-02-24 알닐람 파마슈티칼스 인코포레이티드 Xanthine dehydrogenase (XDH) iRNA compositions and methods of use thereof
JP2023531009A (en) 2020-06-22 2023-07-20 イルミナ ケンブリッジ リミテッド Nucleosides and nucleotides with 3' acetal blocking groups
IL299771A (en) 2020-07-10 2023-03-01 Inst Nat Sante Rech Med Methods and compositions for treating epilepsy
US20220033900A1 (en) 2020-07-28 2022-02-03 Illumina Cambridge Limited Substituted coumarin dyes and uses as fluorescent labels
WO2022047359A1 (en) 2020-08-31 2022-03-03 Berg Llc Protein biomarkers for pancreatic cancer
EP4217489A1 (en) 2020-09-24 2023-08-02 Alnylam Pharmaceuticals, Inc. Dipeptidyl peptidase 4 (dpp4) irna compositions and methods of use thereof
TW202229552A (en) 2020-10-05 2022-08-01 美商艾拉倫製藥股份有限公司 G protein-coupled receptor 75 (gpr75) irna compositions and methods of use thereof
EP4232582A1 (en) 2020-10-23 2023-08-30 Alnylam Pharmaceuticals, Inc. Mucin 5b (muc5b) irna compositions and methods of use thereof
CA3200595A1 (en) 2020-11-13 2022-05-19 Alnylam Pharmaceuticals, Inc. Coagulation factor v (f5) irna compositions and methods of use thereof
TW202237150A (en) 2020-12-01 2022-10-01 美商艾拉倫製藥股份有限公司 Methods and compositions for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression
WO2022125490A1 (en) 2020-12-08 2022-06-16 Alnylam Pharmaceuticals, Inc. Coagulation factor x (f10) irna compositions and methods of use thereof
US20220195196A1 (en) 2020-12-17 2022-06-23 Illumina Cambridge Limited Alkylpyridinium coumarin dyes and uses in sequencing applications
US20220195517A1 (en) 2020-12-17 2022-06-23 Illumina Cambridge Limited Long stokes shift chromenoquinoline dyes and uses in sequencing applications
US20220195516A1 (en) 2020-12-17 2022-06-23 Illumina Cambridge Limited Methods, systems and compositions for nucleic acid sequencing
US20220195518A1 (en) 2020-12-22 2022-06-23 Illumina Cambridge Limited Methods and compositions for nucleic acid sequencing
WO2022150260A1 (en) 2021-01-05 2022-07-14 Alnylam Pharmaceuticals, Inc. COMPLEMENT COMPONENT 9 (C9) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
BR112023015761A2 (en) 2021-02-12 2023-11-07 Alnylam Pharmaceuticals Inc SUPEROXIDE DISMUTASE 1 (SOD1) IRNA COMPOSITIONS AND METHODS OF USE THEREOF TO TREAT OR PREVENT NEURODEGENERATIVE DISEASES ASSOCIATED WITH SUPEROXIDE DISMUTASE 1 (SOD1)
WO2022182864A1 (en) 2021-02-25 2022-09-01 Alnylam Pharmaceuticals, Inc. Prion protein (prnp) irna compositions and methods and methods of use thereof
EP4298218A1 (en) 2021-02-26 2024-01-03 Alnylam Pharmaceuticals, Inc. Ketohexokinase (khk) irna compositions and methods of use thereof
KR20230150843A (en) 2021-03-04 2023-10-31 알닐람 파마슈티칼스 인코포레이티드 Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of using the same
EP4305169A1 (en) 2021-03-12 2024-01-17 Alnylam Pharmaceuticals, Inc. Glycogen synthase kinase 3 alpha (gsk3a) irna compositions and methods of use thereof
KR20230162024A (en) 2021-03-29 2023-11-28 알닐람 파마슈티칼스 인코포레이티드 Huntingtin (HTT) iRNA preparation composition and method of use thereof
EP4314293A1 (en) 2021-04-01 2024-02-07 Alnylam Pharmaceuticals, Inc. Proline dehydrogenase 2 (prodh2) irna compositions and methods of use thereof
WO2022216846A1 (en) 2021-04-06 2022-10-13 Berg Llc Protein markers for estrogen receptor (er)-positive-like and estrogen receptor (er)-negative-like breast cancer
WO2022216841A1 (en) 2021-04-06 2022-10-13 Berg Llc Protein markers for estrogen receptor (er)-positive luminal a(la)-like and luminal b1 (lb1)-like breast cancer
CA3214833A1 (en) 2021-04-06 2022-10-13 Bpgbio, Inc. Protein markers for the prognosis of breast cancer progression
BR112023022284A2 (en) 2021-04-26 2023-12-26 Alnylam Pharmaceuticals Inc COMPOSITIONS OF TRANSMEMBRANE PROTEASE IRNA, SERINE 6 (TMPRSS6) AND METHODS OF USE THEREOF
WO2022232343A1 (en) 2021-04-29 2022-11-03 Alnylam Pharmaceuticals, Inc. Signal transducer and activator of transcription factor 6 (stat6) irna compositions and methods of use thereof
AU2022269804A1 (en) 2021-05-05 2023-11-02 Illumina Cambridge Limited Fluorescent dyes containing bis-boron fused heterocycles and uses in sequencing
EP4341401A1 (en) 2021-05-18 2024-03-27 Alnylam Pharmaceuticals, Inc. Sodium-glucose cotransporter-2 (sglt2) irna compositions and methods of use thereof
EP4341434A1 (en) 2021-05-20 2024-03-27 Illumina, Inc. Compositions and methods for sequencing by synthesis
WO2022246023A1 (en) 2021-05-20 2022-11-24 Korro Bio, Inc. Methods and compositions for adar-mediated editing
WO2022256283A2 (en) 2021-06-01 2022-12-08 Korro Bio, Inc. Methods for restoring protein function using adar
TW202317762A (en) 2021-06-02 2023-05-01 美商艾拉倫製藥股份有限公司 Patatin-like phospholipase domain containing 3 (pnpla3) irna compositions and methods of use thereof
IL308743A (en) 2021-06-04 2024-01-01 Alnylam Pharmaceuticals Inc HUMAN CHROMOSOME 9 OPEN READING FRAME 72 (C9ORF72) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF
AR126070A1 (en) 2021-06-08 2023-09-06 Alnylam Pharmaceuticals Inc COMPOSITIONS AND METHODS FOR TREATING OR PREVENTING STARGARDT DISEASE AND/OR DISORDERS ASSOCIATED WITH RETINOL BORDER PROTEIN 4 (RBP4)
WO2022265994A1 (en) 2021-06-15 2022-12-22 Illumina, Inc. Hydrogel-free surface functionalization for sequencing
US20230194709A9 (en) 2021-06-29 2023-06-22 Seagate Technology Llc Range information detection using coherent pulse sets with selected waveform characteristics
WO2023278410A1 (en) 2021-06-29 2023-01-05 Korro Bio, Inc. Methods and compositions for adar-mediated editing
WO2023003922A1 (en) 2021-07-21 2023-01-26 Alnylam Pharmaceuticals, Inc. Metabolic disorder-associated target gene irna compositions and methods of use thereof
KR20240037293A (en) 2021-07-23 2024-03-21 알닐람 파마슈티칼스 인코포레이티드 Beta-catenin (CTNNB1) iRNA composition and methods of use thereof
US20230116852A1 (en) 2021-07-23 2023-04-13 Illumina, Inc. Methods for preparing substrate surface for dna sequencing
WO2023009687A1 (en) 2021-07-29 2023-02-02 Alnylam Pharmaceuticals, Inc. 3-hydroxy-3-methylglutaryl-coa reductase (hmgcr) irna compositions and methods of use thereof
IL310244A (en) 2021-08-03 2024-03-01 Alnylam Pharmaceuticals Inc Transthyretin (ttr) irna compositions and methods of use thereof
CA3228255A1 (en) 2021-08-04 2023-02-09 Alnylam Pharmaceuticals, Inc. Irna compositions and methods for silencing angiotensinogen (agt)
AR126771A1 (en) 2021-08-13 2023-11-15 Alnylam Pharmaceuticals Inc RNAi COMPOSITIONS AGAINST FACTOR XII (F12) AND THEIR METHODS OF USE
WO2023044370A2 (en) 2021-09-17 2023-03-23 Alnylam Pharmaceuticals, Inc. Irna compositions and methods for silencing complement component 3 (c3)
AU2022345881A1 (en) 2021-09-20 2024-03-21 Alnylam Pharmaceuticals, Inc. Inhibin subunit beta e (inhbe) modulator compositions and methods of use thereof
WO2023064530A1 (en) 2021-10-15 2023-04-20 Alnylam Pharmaceuticals, Inc. Extra-hepatic delivery irna compositions and methods of use thereof
WO2023069927A1 (en) 2021-10-20 2023-04-27 Illumina, Inc. Methods for capturing library dna for sequencing
WO2023069754A2 (en) 2021-10-22 2023-04-27 Amgen Inc. Rnai constructs for inhibiting gpam expression and methods of use thereof
WO2023069603A1 (en) 2021-10-22 2023-04-27 Korro Bio, Inc. Methods and compositions for disrupting nrf2-keap1 protein interaction by adar mediated rna editing
TW202334418A (en) 2021-10-29 2023-09-01 美商艾拉倫製藥股份有限公司 Huntingtin (htt) irna agent compositions and methods of use thereof
WO2023076451A1 (en) 2021-10-29 2023-05-04 Alnylam Pharmaceuticals, Inc. Complement factor b (cfb) irna compositions and methods of use thereof
WO2023122762A1 (en) 2021-12-22 2023-06-29 Camp4 Therapeutics Corporation Modulation of gene transcription using antisense oligonucleotides targeting regulatory rnas
US20230215515A1 (en) 2021-12-23 2023-07-06 Illumina Software, Inc. Facilitating secure execution of external workflows for genomic sequencing diagnostics
WO2023122363A1 (en) 2021-12-23 2023-06-29 Illumina Software, Inc. Dynamic graphical status summaries for nucelotide sequencing
WO2023129764A1 (en) 2021-12-29 2023-07-06 Illumina Software, Inc. Automatically switching variant analysis model versions for genomic analysis applications
WO2023141314A2 (en) 2022-01-24 2023-07-27 Alnylam Pharmaceuticals, Inc. Heparin sulfate biosynthesis pathway enzyme irna agent compositions and methods of use thereof
WO2023183764A1 (en) 2022-03-22 2023-09-28 Illumina Cambridge Limited Substrate with orthogonally functional nanodomains
WO2023186815A1 (en) 2022-03-28 2023-10-05 Illumina Cambridge Limited Labeled avidin and methods for sequencing
WO2023186819A1 (en) 2022-03-29 2023-10-05 Illumina Cambridge Limited Chromenoquinoline dyes and uses in sequencing
WO2023196937A1 (en) 2022-04-06 2023-10-12 Larimar Therapeutics, Inc. Frataxin-sensitive markers for monitoring frataxin replacement therapy
US20230383342A1 (en) 2022-05-31 2023-11-30 Illumina Cambridge Limited Compositions and methods for nucleic acid sequencing
WO2023240201A1 (en) 2022-06-08 2023-12-14 Larimar Therapeutics, Inc. Frataxin-sensitive markers for monitoring progression and treatment of leigh syndrome
WO2023240277A2 (en) 2022-06-10 2023-12-14 Camp4 Therapeutics Corporation Methods of modulating progranulin expression using antisense oligonucleotides targeting regulatory rnas
US20230416279A1 (en) 2022-06-28 2023-12-28 Illumina Cambridge Limited Fluorescent dyes containing fused tetracyclic bis-boron heterocycle and uses in sequencing
WO2024028794A1 (en) 2022-08-02 2024-02-08 Temple Therapeutics BV Methods for treating endometrial and ovarian hyperproliferative disorders
WO2024039776A2 (en) 2022-08-18 2024-02-22 Alnylam Pharmaceuticals, Inc. Universal non-targeting sirna compositions and methods of use thereof
WO2024039516A1 (en) 2022-08-19 2024-02-22 Illumina, Inc. Third dna base pair site-specific dna detection

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348855A (en) * 1986-03-05 1994-09-20 Miles Inc. Assay for nucleic acid sequences in an unpurified sample
US5424186A (en) * 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5196305A (en) * 1989-09-12 1993-03-23 Eastman Kodak Company Diagnostic and amplification methods using primers having thymine at 3' end to overcome primer-target mismatch at the 3' end
JPH06504997A (en) * 1990-12-06 1994-06-09 アフィメトリックス, インコーポレイテッド Synthesis of immobilized polymers on a very large scale
US5384261A (en) * 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5288514A (en) * 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
DE4239311C2 (en) * 1992-11-23 1996-04-18 Guehring Joerg Dr Drills, especially pointed drilling tools with exchangeable cutting inserts
US5382512A (en) * 1993-08-23 1995-01-17 Chiron Corporation Assay device with captured particle reagent
US5578832A (en) * 1994-09-02 1996-11-26 Affymetrix, Inc. Method and apparatus for imaging a sample on a device
US5571639A (en) * 1994-05-24 1996-11-05 Affymax Technologies N.V. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5538857A (en) * 1994-06-01 1996-07-23 Isolab, Inc. Assay for enzyme activity from a red blood sample using a direct microfluorometric assay
US5556752A (en) * 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060234267A1 (en) * 1994-06-08 2006-10-19 Affymetrix, Inc Bioarray chip reaction apparatus and its manufacture
US20050106618A1 (en) * 1994-06-08 2005-05-19 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US20100298165A1 (en) * 1994-06-08 2010-11-25 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US20060040380A1 (en) * 1994-06-08 2006-02-23 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
US20090143249A1 (en) * 1994-06-08 2009-06-04 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
EP1513948A4 (en) * 2002-05-29 2006-04-19 Autogenomics Inc Integrated micro array system and methods therefor
EP1513948A1 (en) * 2002-05-29 2005-03-16 Autogenomics, Inc. Integrated micro array system and methods therefor
US7666819B2 (en) 2002-05-29 2010-02-23 Autogenomics, Inc. Integrated micro array system and methods therefor
US20050233325A1 (en) * 2002-05-29 2005-10-20 Fareed Kureshy Integrated micro array system and methods therefor
WO2006047911A1 (en) * 2004-11-08 2006-05-11 Capitalbio Corporation A type of high-throughput biochip and its application
WO2007070310A2 (en) * 2005-12-09 2007-06-21 3M Innovative Properties Company Microreplicated microarrays
WO2007070310A3 (en) * 2005-12-09 2007-08-30 3M Innovative Properties Co Microreplicated microarrays
US20070134784A1 (en) * 2005-12-09 2007-06-14 Halverson Kurt J Microreplicated microarrays
US8501122B2 (en) 2009-12-08 2013-08-06 Affymetrix, Inc. Manufacturing and processing polymer arrays
CN107338288A (en) * 2017-06-14 2017-11-10 杨华卫 A kind of biomolecule detecting method

Also Published As

Publication number Publication date
US5874219A (en) 1999-02-23
US5545531A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
US5874219A (en) Methods for concurrently processing multiple biological chip assays
US6720149B1 (en) Methods for concurrently processing multiple biological chip assays
US20030157700A1 (en) Apparatus and methods for constructing array plates
US5843655A (en) Methods for testing oligonucleotide arrays
US6632605B1 (en) Hybridization assays on oligonucleotide arrays
US8084197B2 (en) Identification of molecular sequence signatures and methods involving the same
US6623696B1 (en) Biochip, apparatus for detecting biomaterials using the same, and method therefor
CA2389358C (en) Multiplexed molecular analysis apparatus and method
KR100991052B1 (en) Biomolecular substrate, method of testing or diagnosis with use thereof and apparatus therefor
US6329140B1 (en) Identification of molecular sequence signatures and methods involving the same
US20040038388A1 (en) Manufacturing process for array plate assembly
US20100075865A1 (en) microarray system and a process for producing microarrays
WO2005077537A1 (en) A device for analysing an interaction between target and probe molecules
US20040115722A1 (en) Biopolymeric arrays and methods of producing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: AFFYMETRIX, INC., A DELAWARE CORPORATION, CALIFORN

Free format text: MERGER;ASSIGNOR:AFFYMETRIX, INC., A CALIFORNIA CORPORATION;REEL/FRAME:010215/0137

Effective date: 19980928

AS Assignment

Owner name: AFFYMAX TECHNOLOGIES N.V., ENGLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORVIEL, VERNON A.;REEL/FRAME:011005/0544

Effective date: 20000209

Owner name: AFFYMETRIX INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AFFYMAX TECHNOLOGIES N.V.;REEL/FRAME:011005/0540

Effective date: 20000714

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION