Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20020026560 A1
Publication typeApplication
Application numberUS 09/169,223
Publication dateFeb 28, 2002
Filing dateOct 9, 1998
Priority dateOct 9, 1998
Also published asCA2343802A1, CA2343802C, CN1255728C, CN1322315A, EP1119808A1, US6438652, WO2000022526A1
Publication number09169223, 169223, US 2002/0026560 A1, US 2002/026560 A1, US 20020026560 A1, US 20020026560A1, US 2002026560 A1, US 2002026560A1, US-A1-20020026560, US-A1-2002026560, US2002/0026560A1, US2002/026560A1, US20020026560 A1, US20020026560A1, US2002026560 A1, US2002026560A1
InventorsKevin Michael Jordan, Kun-Lung Wu, Philip Shi-lung Yu
Original AssigneeKevin Michael Jordan, Kun-Lung Wu, Yu Philip Shi-Lung
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Load balancing cooperating cache servers by shifting forwarded request
US 20020026560 A1
Abstract
In a system including a collection of cooperating cache servers, such as proxy cache servers, a request can be forwarded to a cooperating cache server if the requested object cannot be found locally. An overload condition is detected if for example, due to reference skew, some objects are in high demand by all the clients and the cache servers that contain those hot objects become overloaded due to forwarded requests. In response, the load is balanced by shifting some or all of the forwarded requests from an overloaded cache server to a less loaded one. Both centralized and distributed load balancing environments are described.
Images(6)
Previous page
Next page
Claims(97)
We claim:
1. A cache server load balancing method, comprising the steps of:
receiving forwarded requests from a cooperating cache server in response to a cache miss for an object on the cooperating cache server; and
shifting one or more of said forwarded requests for the object between cooperating cache servers based on a load condition and a forwarding frequency for the object.
2. The method of claim 1, said shifting step further comprising the steps of:
periodically monitoring the load condition on and the forwarding frequency to an owning cache server; and
proactively shifting one or more subsequent forwarded requests for the cached object from the owning cache server to one or more of said cooperating cache servers, in response to said monitoring.
3. The method of claim 1, said shifting step further comprising the step of checking the load condition and forwarding frequency, in response to the forwarded request.
4. The method of claim 1, wherein said shifting comprises the step of modifying an ownership for the object to a shared ownership between two or more of said cooperating cache servers.
5. The method of claim 4, further comprising the step of merging said shared ownership in response to change in the load condition.
6. The method of claim 1, further comprising the step of locally monitoring the load on each cooperating cache server.
7. The method of claim 6, further comprising the step of:
a distributed load monitor monitoring and maintaining a local load condition, the forwarding frequency and ownership information for cached objects on said each cooperating cache server.
8. The method of claim 7, further comprising the steps of:
said cooperating cache servers periodically exchanging and maintaining one or more of: the load condition information; the forwarding frequency; and the ownership information.
9. The method of claim 7, further comprising the steps of:
said cooperating cache servers exchanging by piggybacking one or more of. the load condition information; the forwarding frequency; and the ownership information; with one or more of the forwarded requests and responses.
10. The method of claim 1, further comprising the step of. receiving a forwarded request and updating the forwarding frequency.
11. The method of claim 7, further comprising the steps of:
identifying a less loaded cooperating cache server; and
communicating one or more of: a shift request; and a copy of the cached object, to said less loaded cooperating cache server.
12. The method of claim 11, further comprising the steps of:
said less loaded cooperating cache server receiving said shift request; and
said less loaded cooperating cache server requesting a copy of the object from an originating object server, in response to said shift request.
13. The method of claim 11, wherein the copy is obtained via one or more of an intranet, WAN or Internet.
14. The method of claim 1, further comprising the step of multi casting a shift request message to one or more of the other cooperating cache servers so that subsequent forward requests will be shifted.
15. The method of claim 14, further comprising the step of:
the cooperating cache servers maintaining one of a local copy of a caching table and modifying a hash function; and
the cooperating cache servers modifying the ownership information by one of. updating a local copy of a caching table; and modifying a hash function.
16. The method of claim 15, further comprising the steps of:
modifying the ownership for the object to a shared ownership between at least two of said cooperating cache servers; and
said cooperating cache servers forwarding subsequent object requests to one or more less loaded shared owners of the object.
17. The method of claim 16, further comprising the steps of:
detecting a decrease in the load condition for a shared object; and
merging the shared ownership, in response to the decrease in the load condition.
18. The method of claim 1, wherein said shifting one or more of said forwarded requests comprises the steps of:
communicating a copy of the object from an owning cache server to one or more of said cooperating cache servers; and
said cooperating cache server receiving and caching the copy of the object.
19. The method of claim 1, further comprising the steps of,
calculating the load condition of each cache server in past intervals;
computing a mean load of all cache servers in past intervals; and
finding the cache servers that exceed a threshold above said mean load.
20. The method of claim 1, wherein the load condition of said cooperating cache server can be a weighted sum of a count of said forwarded requests, and a count of direct requests to said cooperating cache server.
21. The method of claim 1, further comprising the step of maintaining cache information at one or more of: each object level; and a partition of objects level.
22. The method of claim 21, wherein said cache information of said object level or said partition comprises the forwarding frequency associated with the object.
23. The method of claim 22, further comprising the step of:
a distributed load monitor monitoring and locally maintaining load conditions, forwarding frequency and ownership information for cached objects on each cache server.
24. The method of claim 23, further comprising the steps of.
said cooperating cache servers periodically exchanging one or more of the load condition, the forwarding frequency and the ownership information.
25. The method of claim 22, further comprising the steps of:
said cooperating cache servers exchanging by piggybacking one or more of. the load condition; the forwarding frequency; and the ownership information; with one or more of the forwarded requests and responses.
26. In a collection of cooperating cache servers, where each cache server can receive direct requests and forwarded requests, and upon a cache miss, a request can be forwarded to an owning cache server caching said object, a load balancing method comprising the steps of,
monitoring a load condition and a forwarding frequency for said cooperating cache servers; and
shifting one or more forwarded requests from one cooperating cache server to a second cooperating cache server based on a change in the load condition and the forwarding frequency.
27. The method of claim 26, wherein said step of monitoring the load condition comprises the steps of,
calculating the load condition of each cache server in past intervals;
computing a mean load of all proxy cache servers in past intervals; and
finding those proxy cache servers that exceed a threshold above said mean load.
28. The method of claim 26, wherein said shifting step can be performed in response to one or more of: said forwarded requests from said cooperating cache servers; and periodically monitoring the load condition and the forwarding frequency.
29. The method of claim 26, further comprising the step of a centralized logical load monitor maintaining the forwarding frequency and the load condition for the cooperating cache servers.
30. The method of claim 26, wherein the load condition of said cache server can be a weighted sum of: a count of forwarded requests; and a count of direct requests to said cache server.
31. The method of claim 26, further comprising the step of maintaining cache information at each object level or at a partition of objects level.
32. The method of claim 31, wherein said cache information of the object level or the partition level comprises the forwarding frequency of requests through said load monitor to said object.
33. The method of claim 26, wherein said cooperating cache servers comprise cooperating proxy cache servers.
34. The method of claim 26, further comprising the steps of:
a logical directory server maintaining a caching table and a load table;
said cache servers interrogating said directory server for object locations in other cache servers for a locally missed object; and
said directory server load balancing requests among said cache servers by manipulating said caching table, in response to requests for object locations.
35. The method of claim 29, further comprising the steps of:
each cache server multicasting to a list of cooperating cache servers to locate a copy of a locally missed object; and
said shifting step comprising the step of excluding overloaded cache servers from a subset of neighboring cache servers for multicasting.
36. A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform method steps for cache server load balancing, said method steps comprising:
receiving forwarded requests from a cooperating cache server in response to a cache miss for an object on the cooperating cache server; and
shifting one or more of said forwarded requests for the object between cooperating cache servers based on a load condition and a forwarding frequency for the object.
37. The program storage device of claim 36, said shifting step further comprising the steps of:
periodically monitoring the load condition on and the forwarding frequency to an owning cache server; and
proactively shifting one or more subsequent forwarded requests for the cached object from the owning cache server to one or more of said cooperating cache servers, in response to said monitoring.
38. The program storage device of claim 36, said shifting step further comprising the step of checking the load condition and forwarding frequency, in response to the forwarded request.
39. The program storage device of claim 36, wherein said shifting comprises the step of modifying an ownership for the object to a shared ownership between two or more of said cooperating cache servers.
40. The program storage device of claim 39, further comprising the step of merging said shared ownership in response to change in the load condition.
41. The program storage device of claim 36, further comprising the step of locally monitoring the load on each cooperating cache server.
42. The program storage device of claim 41, further comprising the step of:
a distributed load monitor monitoring and maintaining a local load condition, the forwarding frequency and ownership information for cached objects on said each cooperating cache server.
43. The program storage device of claim 42, further comprising the steps of:
said cooperating cache servers periodically exchanging and maintaining one or more of: the load condition information; the forwarding frequency; and the ownership information.
44. The program storage device of claim 42, further comprising the steps of:
said cooperating cache servers exchanging by piggybacking one or more of: the load condition information; the forwarding frequency; and the ownership information; with one or more of the forwarded requests and responses.
45. The program storage device of claim 36, further comprising the step of. receiving a forwarded request and updating the forwarding frequency.
46. The program storage device of claim 42, further comprising the steps of:
identifying a less loaded cooperating cache server; and
communicating one or more of: a shift request; and a copy of the cached object, to said less loaded cooperating cache server.
47. The program storage device of claim 46, further comprising the steps of:
said less loaded cooperating cache server receiving said shift request; and
said less loaded cooperating cache server requesting a copy of the object from an originating object server, in response to said shift request.
48. The program storage device of claim 46, wherein the copy is obtained via one or more of an intranet, WAN or Internet.
49. The program storage device of claim 45, further comprising the step of.
multicasting a shift request message to one or more of the other cooperating cache servers so that subsequent forward requests will be shifted.
50. The program storage device of claim 49, further comprising the step of:
the cooperating cache servers maintaining one of: a local copy of a caching table; and a hash function; and
the cooperating cache servers modifying the ownership information by one of: updating the local copy of a caching table; and modifying a hash function.
51. The program storage device of claim 50, further comprising the steps of:
modifying the ownership for the object to a shared ownership between at least two of said cooperating cache servers; and
said cooperating cache servers forwarding subsequent object requests to one or more less loaded shared owners of the object.
52. The program storage device of claim 51, further comprising the steps of:
detecting a decrease in the load condition for a shared object; and
merging the shared ownership, in response to the decrease in the load condition.
53. The program storage device of claim 36, wherein said shifting one or more of said forwarded requests comprises the steps of:
communicating a copy of the object from an owning cache server to one or more of said cooperating cache servers; and
said cooperating cache server receiving and caching the copy of the object.
54. The program storage device of claim 36, further comprising the steps of,
calculating the load condition of each cache server in past intervals;
computing a mean load of all cache servers in past intervals; and
finding the cache servers that exceed a threshold above said mean load.
55. The program storage device of claim 36, wherein the load condition of said cooperating cache server can be a weighted sum of a count of said forwarded requests, and a count of direct requests to said cooperating cache server.
56. The program storage device of claim 36, further comprising the step of maintaining cache information at one or more of: each object level; and a partition of objects level.
57. The program storage device of claim 56, wherein said cache information of said object level or said partition comprises the forwarding frequency associated with the object.
58. The program storage device of claim 57, further comprising the step of:
a distributed load monitor monitoring and locally maintaining load conditions, forwarding frequency and ownership information for cached objects on each cache server.
59. The program storage device of claim 58, further comprising the steps of:
said cooperating cache servers periodically exchanging one or more of the load condition, the forwarding frequency and the ownership information.
60. The program storage device of claim 57, further comprising the steps of:
said cooperating cache servers exchanging by piggybacking one or more of: the load condition; the forwarding frequency; and the ownership information; with one or more of the forwarded requests and responses.
61. A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform method steps for cache server load balancing in a collection of cooperating cache servers, where each cache server can receive direct requests and forwarded requests, and upon a cache miss, a request can be forwarded to a cooperating cache server caching said object, said method steps comprising:
monitoring a load condition and a forwarding frequency for said cooperating cache servers; and
shifting one or more forwarded requests from one cooperating cache server to a second cooperating cache server based on a change in the load condition and the forwarding frequency.
62. The program storage device of claim 61, wherein said step of monitoring the load condition comprises the steps of,
calculating the load condition of each cache server in past intervals;
computing a mean load of all proxy cache servers in past intervals; and
finding those proxy cache servers that exceed a threshold above said mean load.
63. The program storage device of claim 61, wherein said shifting step can be performed in response to one or more of: said forwarded requests from said cooperating cache servers; and periodically monitoring the load condition and the forwarding frequency.
64. The program storage device of claim 61, further comprising the step of. a centralized logical load monitor maintaining the forwarding frequency and the load condition for the cooperating cache servers.
65. The program storage device of claim 61, wherein the load condition of said cache server can be a weighted sum of: a count of forwarded requests; and a count of direct requests to said cache server.
66. The program storage device of claim 61, further comprising the step of maintaining cache information at each object level or at a partition of objects level.
67. The program storage device of claim 61, wherein said cache information of the object level or the partition level comprises the forwarding frequency of requests through said load monitor to said object.
68. The program storage device of claim 61, wherein said cooperating cache servers comprise cooperating proxy cache servers.
69. The program storage device of claim 61, further comprising the steps of:
maintaining a caching table and a load table;
receiving requests for object locations in other cache servers for a locally missed object; and
load balancing requests among said cache servers by manipulating said caching table, in response to said requests for object locations.
70. The program storage device of claim 64, further comprising the steps of:
each cache server multicasting to a list of cooperating cache servers to locate a copy of a locally missed object; and
said shifting step comprising the step of excluding overloaded cache servers from a subset of neighboring cache servers for multicasting.
71. A cache server load balancing system, comprising:
means for receiving forwarded requests from a cooperating cache server in response to a cache miss for an object on the cooperating cache server; and
shifting means for shifting one or more of said forwarded requests for the object between cooperating cache servers based on a load condition and a forwarding frequency for the object.
72. The system of claim 71, said shifting means further comprising:
means for periodically monitoring the load condition on and the forwarding frequency to said cooperating cache servers; and
means for proactively shifting one or more subsequent forwarded requests for the cached object from between said cooperating cache servers, in response to said monitoring.
73. The system of claim 71, said shifting means further comprising means for checking the load condition and forwarding frequency, in response to the forwarded request.
74. The system of claim 71, wherein said shifting means comprises means for modifying an ownership for the object to a shared ownership between two or more of said cooperating cache servers.
75. The system of claim 74, further comprising merging said shared ownership in response to a change in the load condition.
76. The system of claim 71, further comprising means for locally monitoring the load condition on each cooperating cache server.
77. The system of claim 76, further comprising:
distributed load monitor means for maintaining a local load condition, the forwarding frequency and ownership information for cached objects on said each cooperating cache server.
78. The system of claim 77, further comprising:
means for said cooperating cache servers to periodically exchange and maintain one or more of: the load condition information; the forwarding frequency; and the ownership information.
79. The system of claim 77, further comprising the steps of:
means for said cooperating cache servers to piggyback one or more of: the load condition information; the forwarding frequency; and the ownership information; with one or more of the forwarded requests and responses.
80. The system of claim 71, further comprising: means for updating the forwarding frequency, in response to a forwarded request.
81. The system of claim 77, further comprising:
means for identifying a less loaded cooperating cache server; and
means for communicating one or more of: a shift request; and a copy of the cached object, to said less loaded cooperating cache server.
82. The system of claim 81, further comprising:
said less loaded cooperating cache server including means for receiving said shift request; and
said less loaded cooperating cache server including means for requesting a copy of the object from an originating object server, in response to said shift request.
83. The system of claim 8l, wherein the copy is obtained via one or more of an intranet, WAN or Internet.
84. The system of claim 80, further comprising:
multicasting means for multi casting a shift request message to one or more of the other cooperating cache servers so that subsequent forward requests will be shifted.
85. The system of claim 77, further comprising:
a local copy of a caching table on said each cooperating cache server; and
means for said cooperating cache servers to maintain the forwarding frequency and the ownership information based on the local copy of the caching table.
86. The system of claim 77, further comprising:
hash function means for hashing the object space into a number of hash buckets much larger than a total number of said cache servers and assigning said hash buckets to said each cooperating cache server for locating a copy of a locally missed object; and
said shifting means comprising means for moving one or more hash buckets from an overloaded server to a less loaded server, effectively changing the hash function so that forwarded requests will not go to said overloaded server.
87. The system of claim 86, further comprising:
means for modifying the ownership for the object to a shared ownership between at least two of said cooperating cache servers; and
means for said cooperating cache servers to forward subsequent object requests to one or more less loaded shared owners of the object.
88. The system of claim 87, further comprising:
means for detecting a decrease in the load condition for a shared object; and
means for merging the shared ownership, in response to the decrease in the load condition.
89. The system of claim 71, wherein said shifting means for shifting one or more of said forwarded requests comprises means for communicating a copy of the object from an owning cache server to one or more of said cooperating cache servers.
90. The system of claim 71, further comprising,
means for calculating the load condition of each cache server in past intervals;
means for computing a mean load of all cache servers in past intervals; and
means for finding the cache servers that exceed a threshold above said mean load.
91. The system of claim 71, wherein the load condition of said cooperating cache server comprises a weighted sum of a count of said forwarded requests, and a count of direct requests to said cooperating cache server.
92. The system of claim 71, further comprising means for maintaining cache information at one or more of: each object level; and a partition of objects level.
93. The system of claim 92, wherein said cache information of said object level or said partition comprises the forwarding frequency associated with the object.
94. The system of claim 71, further comprising:
centralized logical load monitor means for maintaining the forwarding frequency and the load condition for said cooperating cache servers.
95. The system of claim 71, wherein said cooperating cache servers comprise cooperating proxy cache servers.
96. The system of claim 98, further comprising:
a logical directory server means for locating objects and forwarding requests for locally missed objects;
means for maintaining a caching table and a load table, coupled to said directory server;
cache server means for interrogating said directory server for object locations in other cache servers for a locally missed object; and
directory server means for load balancing requests among said cache servers by manipulating said caching table, in response to requests for object locations.
97. The system of claim 71, further comprising:
multicasting means on each cache server for multicasting to a list of cooperating cache servers to locate a copy of a locally missed object;
said shifting means comprising means for excluding overloaded cache servers from a subset of neighboring cache servers for multicasting.
Description
FIELD OF THE INVENTION

[0001] The present invention is related to load balancing among cooperating cache servers and in particular to load balancing based on load conditions and a frequency that requests are forwarded from cooperating cache servers.

BACKGROUND

[0002] The growth in the usage of the World Wide Web has been increasing exponentially. As a result, response times for accessing web objects can become unsatisfactorily slow. One approach to improving web access time is to employ one or more proxy cache servers between browsers and the originating web servers. Examples of proxy cache servers include a cluster of PC servers running Microsoft's Windows NT™, such as the NETFINITY™ servers from IBM; and workstation servers running IBM's AIX™ operating system, such as the IBM RS/6000™ or SP/2™. In fact, more and more organizations, such as Internet Service Providers (ISPs) and corporations, are using a collection of cooperating proxy cache servers to help improve response time as well as reduce traffic to the Internet. A collection of cooperating cache servers have distinct advantages over a single cache server in terms of reliability and performance. If one fails, requests can still be serviced by other cooperating cache servers. Requests can be distributed among the servers, thus increasing scalability. Finally, the aggregate cache size is much larger so that it is more likely that a requested object will be found in one of the cache servers.

[0003] With cooperating cache servers, a request that cannot be serviced locally due to a cache miss can be forwarded to another cache server storing the requested object. As a result, there are two kinds of requests that can come to a cache server: direct requests and forwarded requests. Direct requests are those that are received directly from clients. Forwarded requests are those that come from other cooperating cache servers on behalf of their clients due to cache misses on the cache servers. With requests forwarded among the cache servers, a cache server can easily become overloaded if it happens to contain in-demand (or“hot”) objects that most clients are currently interested in, creating uneven workloads among the cache servers. Uneven workloads can create a performance bottleneck, as many of the cache servers are waiting for the same overloaded cache server to respond to requests forwarded to it. Therefore, there is a need for a way to perform dynamic load balancing among a collection of proxy cache servers. The present invention addresses such a need.

[0004] Load balancing is traditionally done by a front-end scheduler which“evenly distributes” incoming direct requests among the cache servers. For example, load balancing can be done at the DNS level by manipulating a mapping table, such as is done by the NETRA™ proxy cache by Sun Microsystems (“Proxy Cache Server, Product Overview”, white paper, Sun Microsystems, http://www.sun.com/). Load balancing among a cluster of servers can also be done with a front-end router, such as the NETDISPATCHER™ offered by IBM (see e.g., G. Goldszmidt and G. Hunt,“NetDispatcher: A TCP Connection Router,” IBM Research Report, RC 20853, May 1997). Here, incoming requests are distributed by the NETDISPATCHER™ to the least loaded server in the cluster. However, these traditional approaches distribute only“direct requests” and do not address a load imbalance problem resulting from too many requests for hot objects being simultaneously forwarded to the same proxy server. The present invention addresses such a need.

[0005] Cooperative caching, or remote caching, has been used in distributed file systems to improve system performance (see“Cooperative caching: Using Remote Client Memory to Improve File System Performance,” by M. D. Dahlin et al., Proc. of 1st Symp. on Operating Systems Design and Implementation, pp. 1-14, 1994). Here, the file caches of a collection of workstations distributed on a LAN are coordinated to form a more effective overall file cache. Each workstation caches not only objects referenced by local requests but also objects that may be referenced by requests from a remote workstation. Upon a local cache miss, a local request can be sent to other client workstations where a copy can be obtained, if found. Otherwise, the object is obtained from the object server. The emphasis here is mainly how to maintain cache coherency in the face of updates and how to maintain cache hit ratios by moving a locally replaced object to the cache memory of another workstation. There is no dynamic load balancing.

[0006] Cooperative caching is also used in collective proxy cache servers to reduce the access time. Upon a cache miss, instead of going directly to the originating web server potentially through a WAN, a cache server may forward the request to obtain the object from a cooperating cache server in a LAN or a regional area network. For example, upon a local cache miss in the SQUID system, a cache server multicasts a request (using the Internet Cache Protocol (ICP)) to a set of other cache servers ( see“Squid Internet Object Cache”, by D. Wessels et al., http://squid.nlanr.net/). If their caches contain the requested object, these cooperating cache servers reply with a message indicating such. The requested object is then obtained from the cooperating cache server which responded first to the request, instead of from the original web server on the Internet. However, if none replies after a time-out period, then the requested object will be fetched from the originating web server. Load imbalances can occur at a cache server due to forwarded requests.

[0007] Instead of multicasting, the CRISP system uses a logical central directory to locate an object cached on another proxy server (see“Directory Structures for Scaleable Internet Caches”, S. Gadde et al., Technical Report CS-1997-18, Dept. of Computer Science, Duke University, 1997). Here, upon a cache miss, a cache server asks the directory server for the obj ect. With central knowledge of the caches object storage, the directory server sends such a request to the server whose cache includes the object. If found, the object is then sent to the requesting server while the original server continues to cache the object. If no cache has a copy of the requested object, the requesting server obtains the object from the originating web server through the Internet (potentially through a WAN). Again, this can create a load imbalance at the cache server due to subsequent requests forwarded to this cache server.

[0008] Yet another way to locate an object on a cooperating cache server is through a hash function. An example is the Cache Array Routing Protocol (CARP) (see V. Valloppillil and K. W. Ross, “Cache Array Routing Protocol v 1.0,” Internet Draft, http://ircache.nlanr.net/Cache/ICP/draft-vinod-carp-v1-03.txt, February 1998). In CARP, the entire object space is partitioned among the cooperating cache servers, with one partition for each cache server. When a request is received by a cache server from a configured client browser, a hash function is applied to a key from the request, such as the URL or the destination IP address, to identify the partition. If the hash partition is the assigned to requesting cache server, then the request is serviced locally. Otherwise, it is forwarded to the proper cache server in the identified partition.

[0009] SQUID, CRISP and CARP use the caches of other proxy servers to reduce the possibility of having to go through the WAN for a missed object. They differ in the mechanism for locating a cooperating cache server whose cache may contain a copy of the requested object. Each cache server services two kinds of requests: direct requests and forwarded requests. Direct requests are those made directly from the browsers connected to the proxy server. Forwarded requests are those made by cooperating cache servers whose caches do not have the requested objects. In any event, depending on the types of objects a proxy server caches at a given moment, its CPU could be overloaded because it is busy serving both direct and forwarded requests.

SUMMARY OF THE INVENTION

[0010] In accordance with the aforementioned needs, the present invention is directed to a method and system for balancing the load across a collection of cache servers that process both direct and forwarded requests by shifting some or all forwarded requests to a less loaded cache server.

[0011] For example, in a system including a collection of cooperating proxy cache servers, a request can be forwarded to another cooperating server if the requested object cannot be found locally. Instead of fetching the object from the originating web server through the Internet, a cache server can obtain a copy from a cooperating cache server in a local area network or an intranet. The average response time for access to an object can be significantly improved by the cooperating cache server. However, due to reference skew, some objects can be in high demand by all the clients. As a result, the proxy cache servers that contain those hot objects can become overloaded by forwarded requests coming from other proxy cache servers, creating a performance bottleneck. According to the present invention, we propose a load balancing method for a collection of cooperating proxy cache servers by shifting some or all of the forwarded requests from an overloaded cache server to a less loaded one.

[0012] An example of a cache server load balancing method in accordance with the present invention includes the steps of: receiving forwarded requests from a cooperating cache server in response to a cache miss for an object on the cooperating cache server; and shifting one or more of the forwarded requests for the object between cooperating cache servers based on a load condition and a forwarding frequency for the object.

[0013] The present invention also includes features for periodically monitoring the load condition on and the forwarding frequency to the owning cache server; and proactively shifting one or more subsequent forwarded requests for the cached object from the owning cache server to one or more of the cooperating cache servers, in response to the monitoring. Alternatively, the shifting step further includes the step of checking the load condition and forwarding frequency, in response to the receipt of a forwarded request. In one example, the load condition of the cooperating cache server is a weighted sum of a count of said forwarded requests, and a count of direct requests to said cooperating cache server. In another example, the cache information is maintained at: each object level; or a partition of objects level.

[0014] The present invention also includes various implementations for performing the load balancing, including both centralized and distributed environments and various hybrids thereof. For example, a distributed load monitor can be used for monitoring and maintaining a local load condition, the forwarding frequency and ownership information for cached objects on each cooperating cache server. The cooperating cache servers can periodically exchange and maintain one or more of: the load condition information; the forwarding frequency; and the ownership information. For example, the cooperating cache servers can exchange information by piggybacking one or more of: the load condition information; the forwarding frequency; and the ownership information, with one or more of the forwarded requests and responses.

[0015] In another example, an overloaded cooperating cache server can identify a less loaded cooperating cache server; and communicate a shift request and a copy of the cached object to the less loaded cooperating cache server (which then caches the object), so that subsequent requests for the object will not be forwarded. Alternatively, an overloaded cooperating cache server can communicate the shift request to the less loaded cooperating cache server, which then obtains a copy of the object from an originating object server, in response to the shift request. In yet another alternative, the owning cache server can multicast the shift request message to one or more of the other cooperating cache servers so that subsequent forward requests will be shifted.

[0016] In a fully distributed implementation of the present invention, the cooperating cache servers can each include a distributed load monitor for monitoring and locally maintaining load conditions, and also can maintain the forwarding frequency and ownership information in a local copy of a caching table or by means of a hashing function. The cooperating cache servers can modify the ownership information by means of the local copy of the caching table or the hash function.

[0017] The present invention includes still other features for modifying the ownership for the object to a shared ownership between at least two of the cooperating cache servers and forwarding subsequent object requests to one or more less loaded shared owners of the object. If a decrease in the load condition for a shared object is detected, the shared ownership can be merged, in response to the decrease in the load condition.

[0018] In yet another example, the shifting of one or more of the forwarded requests based on the load conditon an the forwarding frequency can be accomplished by communicating a copy of the object from the owning cache server to one or more of the cooperating cache servers, so that subsequent requests will not be forwarded (as long as the object remains in the recipient's cache).

[0019] An example of a centralized environment in accordance with the present invention includes: a centralized logical load monitor for maintaining the forwarding frequency and the load condition for the cooperating cache servers. The load monitor can include a logical directory server for maintaining a load table for monitoring the load on the cache servers and a caching table (or hash function) for monitoring the forwarding frequency and locating objects. The directory server receives requests for object locations in other cache servers for a locally missed object and forwards requests for locally missed objects. The directory server load balances requests among the cooperating cache servers by manipulating the caching table based on the load and the forwarding frequency for a given object, in response to the requests for object locations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description, appended claims, and accompanying drawings wherein:

[0021]FIG. 1a shows an example of a system in a block diagram form employing a collection of proxy cache servers, wherein a centralized load balancing logic according to the present invention can be applied;

[0022]FIG. 1b shows another example of a system in a block diagram form employing a collection of proxy cache servers, where a distributed load balancing logic according to the present invention can be applied;

[0023]FIGS. 2a-b show examples of data formats for two tables that can be maintained by the load monitor depicted in FIGS. 1a-b;

[0024]FIG. 3 shows an example of a logic flow for the load monitor in response to a request from a cache server because of a cache miss; and

[0025]FIG. 4 shows an example of a logic flow for a cache server in response to a request for an object.

DETAILED DESCRIPTION

[0026] Examples of the load balancing logic of the present invention will be described for both centralized and distributed architectures. FIG. 1a shows an example of a block diagram of a system employing a collection of proxy cache servers, where a centralized load balancing logic proposed in this invention can be applied. As depicted, the system includes a collection of proxy cache servers 150. Although only a single level of cache server is depicted, there could be a hierarchy of cache servers 150. As is conventional, these proxy cache servers are connected with each other through a local area network (LAN) or a regional area network or intranet 140. Each cache server 150 is also connected to a wide area network (WAN) or the Internet 110. Through the WAN, these proxy cache servers can reach 115 the originating web servers for objects that cannot be found locally on their own caches.

[0027] According to the present invention a logical load monitor 120 includes a load balancing logic 130 for monitoring the load conditions and forwarding frequency (FIG. 2a) of the cooperating cache servers 150 and provides load balancing for them. As will be described below, various load monitor 120 features can: reside in one or more of the cache servers; be duplicated and distributed among the cache servers; or reside in another dedicated system such as a personal computer (PC) server or workstation. In a centralized system configuration, the load monitor 120 can perform a central directory function in directing forwarded requests 125 to the cache servers. One or more browsers 160 can be configured to connect to each cache server 150. Direct requests 155 are sent from the clients such as computers running conventional browsers 160 to the configured cache server 150. If the requested object can be found locally, then it is returned to the browser. Otherwise, the cache server 150 communicates a message to the load monitor 120. Various example implementations of the load monitor 120 will be described in more detail below. If no load imbalance condition or trend exits, the load monitor 120 then forwards the request 125 to the cache server 150 that owns the requested object. The owning cache server then sends the requested object to the requesting cache server, e.g., via the LAN 140.

[0028] If an actual load imbalance is identified, or predicted based on a loading trend, the load monitor 120 initiates a shifting of forwarded requests from the overloaded cache server to one or more underloaded (or less loaded) servers. As will be described in more detail below, the shifting of ownership can be based on the load condition of the servers 150 and the forwarding frequency, as well as other factors.

[0029]FIGS. 2a-b shows examples of data formats of two tables maintained by the load monitor. As depicted, the tables include a load table 102, and a caching table 101. One skilled in the art will appreciate that a single table, or various other data structures could alternatively or equivalently be used. The load table 102 includes the load condition 1021 of each (A,B,C . . . 1022) cache server 150 so that overloaded and underloaded servers can be identified. As is conventional, load conditions 1021 can be updated periodically by probing each cache server. The load of a cache server can be a weighted sum of the number of forwarded requests and the number of direct requests. An overloaded cache server 150 can be identified by any conventional techniques, e.g., the load monitor can compute the mean load of all proxy cache servers in past intervals. Overloaded cache servers can be those with loads exceeding a threshold above the mean load. According to the present invention, load balancing takes into account the amount of overloading as well as the load due to the forwarding frequency 1011 of the cached objects. This way, the load monitor can decide whether or not to continue shifting some or all forwarded requests from an overloaded cache server C 10213 to an underloaded server A 10211. The caching table 1010 includes the forwarding frequency 1011 and ownership 1012 information of an object or a partition of objects. As will be discussed below, the ownership can be single as in A 10122, or shared 10121, 10123 among two or more cooperating cache servers. The forwarding frequency 1011 represents the number of times a request for an object has been forwarded through the load monitor. In addition to the forwarding frequency 1011, the caching table 101 can also maintain a timestamp 1013, indicating the most recent time a request for an object was forwarded. Further, the caching information for an object or a partition 1010 can include a forwarding frequency over a given time period (count/time) for the object ID or partition ID 1010 through the load monitor 120. Object partitions 1010 can alternatively be based on a hash function on object identifiers, or can be based on the directory structures that objects are organized by on the web servers. In the case of a partition, any object belonging to a partition will be forwarded by the load monitor. The shifting of ownership can be based on the load condition of the servers, the forwarding frequency 1011 and other information such as the time stamp information.

[0030]FIG. 3 shows an example of a logic flow for steps taken by the load monitor 120 in response to a request 125 from a cache server 150 because of a cache miss. As depicted, in step 201, it checks to see if the requested object/partition can be found in the caching table. If not, in step 202, a new entry is created for the object/partition and a cache server is assigned as its owner. After the entry is located in the caching table, in step 203, the forwarding frequency 1011 is updated, e.g., incremented by 1. The load monitor then examines the load table 102 to see if the owner is currently overloaded (and that the forwarding frequency 1011 is a significant contributor thereto), in step 204. If yes, in step 205, the load monitor finds an underloaded (or less loaded) cache server and assign it as the new 10122 (or shared) owner 10122 of the requested object. The ownership information 1012 for the object in the caching table 101 is updated accordingly. Those skilled in the art will appreciate that the logic flow could comprise a shared 10123 or hierarchical ownership 1012 in the caching table 101 or other data structure employed. The request (possibly with a copy of the requested object) can then be forwarded 125 to a new sole 10122 (or shared 10123) owner, in step 206. Alternatively, the new owner can be requested to obtain 115 an object copy from the originating object server, e.g., via the Internet 110. Those skilled in the art will appreciate that the load checking step 204 can be performed proactively, i.e., periodically or in response to an identified overload or overload trend 1021—due at least in part to a high forwarding frequency 1011—for a given object id/partition id 1010 and cache server (ownership 1012). If so, then in step 205, the load monitor finds an underloaded (or less loaded) cache server, assigns it as the new (or shared) owner of the requested object, and possibly sends a copy of the object to the new (or shared) owner as above. Conversely, if a shared ownership model is used, in step 208, when the load condition 10211 and forwarding frequency 10111 for a shared ownership object (p 10101) drops below a predetermined threshold, in step 209, the shared ownership (B, A 10121) can be merged to a single ownership and one of the copies purged from one of the cache servers A 10121, e.g., to make room for another hot object.

[0031]FIG. 4 shows an example of a logic flow for a cache server when a request for an object is received, either directly 155 from a browser 160 or forwarded 125 from the load monitor 120. As depicted, in step 301, it first checks to see if the requested object can be found locally in its cache. If yes, in step 302, it returns the object and the process ends, in step 306. Otherwise, in step 303, it checks to see if the request is a direct request or a forwarded request. If it is a direct request, in step 304, the request is sent to the load monitor and the process ends, in step 306. On the other hand, if the request is a forwarded request, in step 305, the cache server will fetch the object from the originating web server and return the object. The process then ends, in step 306.

[0032] Referring now to FIGs. 1a and 2 a-b, assume for example, a browser 160 connecting to a cache server C 10223 requests 155 an object p 10101. From the caching table 101, it can be seen that object p 10101 is not cached on server C, but it is cached on (“owned” by) cache server B (assuming B, A 10121 is initially only solely designated by B). In response to a cache miss on object p, server C 10223 sends a request to the load monitor 120 for object p. Depending on the load condition 10212 and forwarding frequency 1011 of requests for p 10101 on server B, the load monitor may forward the request to server B, asking it to send a copy of object p to server C. Or, if server B is currently overloaded or is trending as such, the load monitor might shift the forwarded request by finding an underloaded (or less loaded) server to serve as a new (or shared as in B, A 10121) owner of object p. The request is then forwarded to the new (or shared e.g., A) owning server for the object. Note that even after the transfer of ownership, a copy of object p is still on server B's cache and can still serve direct requests coming to server B. However, in this example, all future forwarded requests for object p (or perhaps some, in the case of a shared ownership) will be shifted to server A. Alternatively, in the case of shared ownership B, A 10121, future forwarded requests for object p 10101 can be sent to the less loaded server.

[0033] Now that a load balancing method according to the present invention has been described for a collection of proxy cache servers where a logical central directory is used for locating an object, various alternatives will be considered. The present invention can be adapted to achieve load balancing for these systems as well.

[0034] For example, the present invention can be configured to perform load balancing for a collection of cooperating proxy cache servers where each cache server 150 multicasts to a list of cooperating cache servers to locate a copy of a locally missed object. In this case, no specific ownership information need be maintained anywhere in the system. However, there is also no guarantee of finding an object from the cooperating cache servers, either. Assume that a logical load monitor 120 is used to maintain the load conditions 1021 of all proxy cache servers and share this information with each cache server 150. The load balancing can be achieved by excluding overloaded servers from the list of cooperating servers to which a cache server multicasts its request (also called a shift request). As a result, only less loaded cache servers will receive forwarded requests 125.

[0035] Another alternative is a load balancing method for a collection of cooperating proxy cache servers where a hash function is used to locate a copy of a locally missed object. In this case, the object space can be partitioned among the cooperating proxy cache servers 150, with one partition for each cache server. In order to achieve load balancing by shifting forwarded requests, one can change the hash function so that forwarded requests will not go to overloaded servers. One preferred approach is to hash the object space into a large number of buckets, much larger than the total number of proxy cache servers. These hash buckets are then assigned to the cache servers, with the goal of balancing the loads among them. Periodically, one can move one or more hash buckets from one overloaded server to an underloaded server, effectively changing the hash function.

[0036] In either case, the load condition of the cooperating cache server can factor in the forwarding frequency directly into the calculated load condition. For example, the load condition can be a weighted sum of a count of said forwarded requests, and a count of direct requests to said cooperating cache server. Alternatively, the load monitor could separately maintain the overal forwarding frequency for each cooperating cache server.

[0037] Referring now to FIGS. 1b and 2 a-b, yet another alternative is a load monitor 120 that is distributed, i.e., wherein some or all the load monitor is duplicated across the cache servers 150. In one example, the distributed load monitor includes local load condition information 1021 (and as described below, possibly the load conditions of all (A,B,C, . . . 1022)) of the cooperating cache servers 150. The distributed load monitor 120′ preferably also includes the caching table 101 with the forwarding frequency 1011 and ownership 1012 information for each object id/partition id 1010. Alternatively, a hashing function, for example as described above, could be distributed and stored in the cache servers. Load condition information 1021 and/or caching information 101: can be exchanged periodically; when there is a change in status (ownership or significant change in load condition); or piggybacked with cache forwarding requests and responses. Load condition 1021 information could also have a time stamp (not shown) associated with it for tracking or other purposes.

[0038] Here, if a cache server 150 has a cache miss, the local load monitor 120′ looks up the ownership of the requested object in its local caching table 101 and forwards the request, to the owning cache server. Alternatively, the hash function could be applied to a key from the request, such as the URL or the destination IP address, to identify the partition and the request then forwarded to the correct cache server. When the forwarded request (i.e., from a cache server who had a cache miss) is received, the owning cache server identifies it as a forwarded request (e.g., by identifying it as from another cache server as opposed to a client) and updates its forwarding frequency 1011 information as applicable (FIG. 3, step 203). If an overload trend or condition is indicated (step 204), the owning cache server can respond to the requesting cache server with a shift request and a copy of the cached object. Alternatively, the requesting cache server can obtain a copy from the originating object server via an intranet, WAN or Internet 110. In either case, when the forwarding server caches a copy of the object, this server will no longer issue forward requests (steps 301, 302) as long as it remains in the cache, thus proportionally reducing the load on the owning server. In addition, the owning cache server can multicast a shift request message to one or more of the other cooperating cache servers 150 so that subsequent forward requests will be shifted, e.g., by updating their local copy of the caching table or modifying the hash function (step 205). At this point, other cache servers can forward their requests to the new owner (or to the least loaded owner of two or more cache servers 150 if ownership is shared) as indicated in their local copy of the caching table 101. When the original cache owner's load has decreased to an acceptable level (step 204), e.g., as indicated by a threshold, the shared ownership information can be merged to its original state (e.g., B,A 10121-->B).

[0039] In the case that the load condition information 1021 for all cache servers ( A,B,C . . . 1022) is fully distributed, the requesting cache server could proactively check the load condition (and associated time stamp) of the owning server (step 204), i.e., before forwarding the request. If overloaded, the requesting server could request a copy of the object from the owning server (or from the originating server via the intranet or Internet 110) and possibly a load condition confirmation. The owning cache server could update its caching table 101 or modify the hash function to indicate the new shared ownership (step 205). The requesting server (or the owning server) could then multicast a message to all other cache servers 150 indicating the new shared ownership of the object and possibly include an updated load condition. At this point, other cache servers would update their caching tables 101 or modify the hash function to indicate the new shared ownership (step 202), and can forward their requests (step 206) to the least loaded owner of two or more cache servers 150 sharing ownership as indicated in their local copy of the caching table 101. When a shared cache owner's load has decreased to an acceptable level (steps 204 and 208), e.g., as indicated by a threshold, the ownership information can be merged to its original state, in step 209.

[0040] A preferred embodiment of the present invention includes features that can be implemented as software tangibly embodied on a computer program product or program storage device for execution on a processor (not shown) provided with cache server 150 or other computer embodying the load monitor 120, such as in the centralized model described. For example, software implemented in a popular object-oriented computer executable code such as JAVA provides portability across different platforms. Those skilled in the art will appreciate that many other compiled or interpreted, procedure-oriented and/or object-oriented (OO) programming environments, including but not limited to REXX, C, C++ and Smalltalk can also be employed.

[0041] Those skilled in the art will also appreciate that methods of the present invention may be the software may be embodied on a magnetic, electrical, optical, or other persistent program and/or data storage device, including but not limited to: magnetic disks, Direct Access Storage Devices (DASD), bubble memory; tape; optical disk formats such as CD-ROMs and DVD; and other persistent (also called nonvolatile) storage devices such as core, ROM, PROM, flash memory, or battery backed RAM. Those skilled in the art will appreciate that within the spirit and scope of the present invention, one or more of the components instantiated in the memory of the server 120′ could be accessed and maintained directly via disk (not shown), the network, another server, or could be distributed across a plurality of servers.

[0042] While we have described our preferred embodiments of our invention with alternatives, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first disclosed.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6490615 *Nov 20, 1998Dec 3, 2002International Business Machines CorporationScalable cache
US6760765 *Oct 20, 2000Jul 6, 2004Matsushita Electric Industrial Co., Ltd.Cluster server apparatus
US6785707 *Jun 21, 2001Aug 31, 2004Bitfone Corp.Enhanced multimedia mobile content delivery and message system using cache management
US6973536 *Aug 31, 2001Dec 6, 2005Oracle CorporationSelf-adaptive hybrid cache
US6980533 *Aug 29, 2000Dec 27, 2005Lucent Technologies Inc.Load balancing technique for a wireless internet access system
US7062570Aug 3, 2001Jun 13, 2006Avaya Technology, Corp.High performance server farm with tagging and pipelining
US7171469Sep 16, 2002Jan 30, 2007Network Appliance, Inc.Apparatus and method for storing data in a proxy cache in a network
US7177945Aug 3, 2001Feb 13, 2007Avaya Technology Corp.Non-intrusive multiplexed transaction persistency in secure commerce environments
US7188145 *Jan 12, 2001Mar 6, 2007Epicrealm Licensing LlcMethod and system for dynamic distributed data caching
US7191290Apr 25, 2003Mar 13, 2007Network Appliance, Inc.Apparatus and method for tandem operation in a storage network
US7193968 *Feb 8, 2001Mar 20, 2007Cisco Technology, Inc.Sample netflow for network traffic data collection
US7228350 *Aug 3, 2001Jun 5, 2007Avaya Technology Corp.Intelligent demand driven recognition of URL objects in connection oriented transactions
US7263549 *Apr 3, 2003Aug 28, 2007Hitachi, Ltd.Web system using proxy server monitoring server and storage server for efficiently providing web access service to users within passenger transportation environment
US7284030Sep 16, 2002Oct 16, 2007Network Appliance, Inc.Apparatus and method for processing data in a network
US7373644 *Oct 2, 2001May 13, 2008Level 3 Communications, LlcAutomated server replication
US7552223Apr 25, 2003Jun 23, 2009Netapp, Inc.Apparatus and method for data consistency in a proxy cache
US7624168Feb 2, 2006Nov 24, 2009Hostway CorporationMulti-layer system for scalable hosting platform
US7631078Jan 16, 2007Dec 8, 2009Netapp, Inc.Network caching device including translation mechanism to provide indirection between client-side object handles and server-side object handles
US7650376Nov 20, 2000Jan 19, 2010Blumenau Trevor IContent distribution system for distributing content over a network, with particular applicability to distributing high-bandwidth content
US7769823 *Sep 28, 2001Aug 3, 2010F5 Networks, Inc.Method and system for distributing requests for content
US7890701Jun 1, 2010Feb 15, 2011Parallel Networks, LlcMethod and system for dynamic distributed data caching
US7958200 *Aug 14, 2007Jun 7, 2011International Business Machines CorporationMethods, computer program products, and apparatuses for providing remote client access to exported file systems
US7975032Mar 29, 2010Jul 5, 2011Parallel Networks, LlcMethod and system for community data caching
US7996421Jan 3, 2007Aug 9, 2011International Business Machines CorporationMethod, computer program product, and system for coordinating access to locally and remotely exported file systems
US8086674 *Jun 21, 2007Dec 27, 2011Research In Motion LimitedAttachment server network for viewing attachments on a portable electronic device
US8103746Jun 21, 2010Jan 24, 2012F5 Networks, Inc.Method and system for distributing requests for content
US8135812Jul 5, 2011Mar 13, 2012Parallel Networks, LlcMethod and system for community data caching
US8205044Feb 14, 2011Jun 19, 2012Parallel Networks, LlcMethod and system for dynamic distributed data caching
US8217951 *Mar 20, 2008Jul 10, 2012Lg Electronics Inc.Graphic data processing apparatus and method
US8271628Mar 13, 2012Sep 18, 2012Parallel Networks, LlcMethod and system for community data caching
US8352597Dec 30, 2011Jan 8, 2013F5 Networks, Inc.Method and system for distributing requests for content
US8504663Sep 13, 2012Aug 6, 2013Parallel Networks, LlcMethod and system for community data caching
US8516081 *Mar 12, 2010Aug 20, 2013Sony CorporationDelivery server, content delivery method in delivery server and multicast server, content delivery method in multicast server
US8572326Jun 18, 2012Oct 29, 2013Parallel Networks, LlcMethod and system for dynamic distributed data caching when a source of data is not available
US8595239Jan 3, 2012Nov 26, 2013Google Inc.Minimally disruptive hash table
US8676223Mar 20, 2008Mar 18, 2014Qualcomm IncorporatedBackhaul communication for interference management
US8700759 *Jan 19, 2007Apr 15, 2014International Business Machines CorporationAutonomic optimization of presence server performance
US8756130 *Mar 26, 2009Jun 17, 2014Scottrade, Inc.System and method for the automated brokerage of financial instruments
US8768979 *May 25, 2011Jul 1, 2014International Business Machines CorporationIn-memory data grid hash scheme optimization
US8775483 *Mar 5, 2012Jul 8, 2014International Business Machines CorporationIn-memory data grid hash scheme optimization
US20080172451 *Oct 22, 2007Jul 17, 2008Samsung Electronics Co., Ltd.Meta data information providing server, client apparatus, method of providing meta data information, and method of providing content
US20090187502 *Mar 26, 2009Jul 23, 2009Scottrade, Inc.System and Method for the Automated Brokerage of Financial Instruments
US20100257257 *Mar 12, 2010Oct 7, 2010Sony CorporationDelivery server, content delivery method in delivery server and multicast server, content delivery method in multicast server
US20110040893 *Jan 29, 2010Feb 17, 2011Broadcom CorporationDistributed Internet caching via multiple node caching management
US20110225373 *Nov 16, 2010Sep 15, 2011Hitachi, Ltd.Computer system and method of data cache management
US20120054440 *Aug 31, 2010Mar 1, 2012Toby DoigSystems and methods for providing a hierarchy of cache layers of different types for intext advertising
US20120303634 *May 25, 2011Nov 29, 2012International Business Machines CorporationIn-Memory Data Grid Hash Scheme Optimization
US20120303675 *Mar 5, 2012Nov 29, 2012International Business Machines CorporationIn-Memory Data Grid Hash Scheme Optimization
EP1279108A1 *Mar 27, 2001Jan 29, 2003Trevor I. BlumenauContent distribution system for distributing content over a network, with particular applicability to distributing high-bandwidth content
WO2004025429A2 *Sep 16, 2003Mar 25, 2004Network Appliance IncApparatus and method for proxy cache
WO2007092140A1 *Jan 17, 2007Aug 16, 2007Hostway CorpMulti-layer system for scalable hosting platform
Classifications
U.S. Classification711/120, 711/147, 709/203, 711/130, 711/144
International ClassificationG06F13/00, G06F9/50, G06F12/00
Cooperative ClassificationG06F9/505
European ClassificationG06F9/50A6L
Legal Events
DateCodeEventDescription
Jul 11, 2014FPAYFee payment
Year of fee payment: 12
Jul 11, 2014SULPSurcharge for late payment
Year of fee payment: 11
Mar 28, 2014REMIMaintenance fee reminder mailed
Jan 21, 2010FPAYFee payment
Year of fee payment: 8
Nov 18, 2005FPAYFee payment
Year of fee payment: 4
Oct 9, 1998ASAssignment
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JORDAN, KEVIN MICHAEL;WU, KUN-LUNG;YU, PHILIP SHI-LUNG;REEL/FRAME:009517/0848;SIGNING DATES FROM 19981008 TO 19981009