US20020061416A1 - Thermal barrier coating having high phase stability - Google Patents

Thermal barrier coating having high phase stability Download PDF

Info

Publication number
US20020061416A1
US20020061416A1 US09/884,601 US88460101A US2002061416A1 US 20020061416 A1 US20020061416 A1 US 20020061416A1 US 88460101 A US88460101 A US 88460101A US 2002061416 A1 US2002061416 A1 US 2002061416A1
Authority
US
United States
Prior art keywords
thermal barrier
substrate
ceramic thermal
ceramic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/884,601
Other versions
US6387539B1 (en
Inventor
Ramesh Subramanian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Inc
Original Assignee
Ramesh Subramanian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ramesh Subramanian filed Critical Ramesh Subramanian
Priority to US09/884,601 priority Critical patent/US6387539B1/en
Priority to US10/144,111 priority patent/US6835465B2/en
Application granted granted Critical
Publication of US6387539B1 publication Critical patent/US6387539B1/en
Publication of US20020061416A1 publication Critical patent/US20020061416A1/en
Assigned to SIEMENS POWER GENERATION, INC. reassignment SIEMENS POWER GENERATION, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS WESTINGHOUSE POWER CORPORATION
Assigned to SIEMENS ENERGY, INC. reassignment SIEMENS ENERGY, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS POWER GENERATION, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • Y10T428/12549Adjacent to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12889Au-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • This invention relates generally to the field of thermal barrier coatings, and more particularly to a thermal barrier coating for very high temperature applications, such as in a combustion turbine engine.
  • this invention relates to the field of ceramic thermal barrier coatings having high phase stability at 1400° C. and higher, which are resistant to sintering damage, for coating superalloy or ceramic components in the hot sections of a combustion turbine, such as turbine blades and vanes, transitions, ring segments and combustors.
  • TBC columns had a composition of (A,B) x O y and were covered by a sheath of a composition of C z O w , where A,B and C were selected from Al, Ca, Mg, Zr, Y, Sc and rare earth equal to La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb.
  • a reaction between C z O w and (A,B) x O y was key to obtain a multiphase TBC system which was expected to be sinter resistant and strain tolerant up to 1400° and higher.
  • T298-010, ESCM 283139-00076 TBC layers of LaAlO 3 , NdAlO 3 , La 2 Hf 2 O 7 , Dy 3 Al 5 O 12 , Ho 3 Al 5 O 12 , ErAlO 3 , GdAlO 3 , Yb 2 Ti 2 O 7 , LaYbO 3 , Gd 2 Hf 2 O 7 , and Y 3 Al 5 O 12 were generally described. These were compounds capable for TBC application, due to their inherently superior sintering resistance and phase stability.
  • a solid, vapor deposition material useful for the EB-PVD method to provide heat resistant coatings in aircraft engines and the like, where excellent heat resistance and thermal shock resistance is required is taught by U.S. Pat. No. 5,789,330 (Kondo, et al).
  • the material is sintered zirconia, containing a special stabilizer selected from yttria, magnesium oxide, calcium oxide, scandium oxide, or oxides of rare earth elements equal to La, Ce, Pr, Nd, Pm, Sm, Eu, Hd, Tb, Dy, fermium, Wr, thulium, Yb and ruthenium in the range of 0.1 wt percent to 40 wt percent of the material.
  • the sintered material has 25% to 70% monoclinic phase and up to 3% tetragonal chase, with the rest as cubic phase.
  • Some high temperature resistant coatings as in U.S. Pat. No. 5,304,519 (Jackson, et al), have utilized thermal spraying of zircon plus zirconia particles (ZrSiO 4 and ZrO 2 respectively) partially stabilized with an oxide selected from CaO, Y 2 O 3 , MgO, CeO 2 , HfO 2 or rare earth oxide, where rare earth equal La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. These materials are used as refractory, thermal shock resistant coatings for hearth rolls for annealing steel, stainless steel and silicon steel sheet at furnace temperatures between 820° C. and 1100° C.
  • La 2 Zr 2 O 7 a new candidate for thermal barrier coatings
  • P. Va ⁇ en, X. Cao, F. Tietz, G. Kerkhoff, D. Stöver, United Thermal Spray Conference, 17.-19.3.99, Düsseldorf, Hrsg. E. Lugscheider, P. A. Kammer, Verlag Canal Schwei ⁇ en und Verwandtemaschine, Düsseldorf, 1999, p. 830-034 plasma sprayed TBC coatings of one specific compound, La 2 Zr 2 O 7 , were discussed. Although this material is of the pyrochlore structure, as shown in their FIG. 2, our own results in the Example, below, show this specific compound is not good as a TBC. However, introduction of cation excess/defects or oxygen defects change the sintering properties and this is not suggested in the paper.
  • TBC coating for a device, where the coating will remain thermally stable, protective, strain compliant, and resistant to substantial sintering of gaps in its grain structure, for use in long-term, high temperature turbine applications at temperatures up to 1400° C.
  • the TBC will be a new material which itself meets the above criteria without the need for extra processing steps or additional coating.
  • compositions will be extremely stable even under long term exposure to temperatures up to about 1500° C. and can be deposited by well known plasma spray, EB-PVD, and D-gun techniques, HVOF (high velocity oxygen fuel deposition) techniques, inductively coupled deposition processes, and electron beam directed vapor deposition techniques.
  • plasma spray EB-PVD, and D-gun techniques
  • HVOF high velocity oxygen fuel deposition
  • inductively coupled deposition processes inductively coupled deposition processes
  • electron beam directed vapor deposition techniques electron beam directed vapor deposition techniques.
  • FIG. 1 is a perspective view of a device, such as a turbine blade coated with a bond coat layer and then a ceramic thermal barrier layer in order to better resist heat, oxidation, and erosion in a thermally stressed operating environment;
  • FIG. 2 which best shows the invention, is an idealized fragmented sectional view through a device, such as a turbine component, for example, a turbine blade showing the top thermal barrier layer of this invention with other optional protective layers between it and the bottom substrate;
  • a device such as a turbine component, for example, a turbine blade showing the top thermal barrier layer of this invention with other optional protective layers between it and the bottom substrate;
  • FIG. 3 shows a fluorite crystal structure for prior art YSZ (yttria-stabilized zirconia) thermal barrier layers
  • FIGS. 4 ( a ) and 4 ( b ) show the pyrochlore crystal structures of this invention including their oxygen vacancies;
  • FIG. 5 shows x-ray diffraction data showing a pyrochlore structure of a deposited Sm 2 Zr 2 O 7 TBC coating
  • FIG. 6 shows an idealized fragmented sectional view through a turbine component showing a Sm 2 Zr 2 O 7 TBC deposited on a layer of yttria-stabilized zirconia.
  • a basecoat (or bond coat) could cover the body of the turbine blade, which basecoat (or bond coat) could be covered by a thermal barrier coating 20 .
  • the barrier layer of this invention, as well as the base coat (or bond coat) and other protective coating can be used on a wide variety of other components of turbines, such as, turbine vanes, turbine transitions, or the like, which may be large and of complex geometry, or upon any substrate made of, for example, metal or ceramic, where thermal protection is required.
  • FIG. 2 shows one example of possible thermal barrier coating system for the protection of a turbine component substrate 22 such as the superalloy core of a turbine blade.
  • a basecoat 24 of a MCrAlY-type alloy can be used as a protection layer, as shown, where M (metal) in the alloy is usually selected from the group consisting of Ni, Co, Fe and their mixtures and Y is here defined as included yttrium, Y, as well as La, and Hf.
  • This layer can be deposited by sputtering, electron beam vapor deposition or one of a number of thermal spray processes including low pressure plasma spraying, high velocity oxygen fuel (HVOF), and the like to provide a relatively uniform layer about 0.0025 cm to 0.050 cm (0.001 inch to 0.020 inch) thick.
  • One purpose of this layer is to provide, upon heat treatment, an oxide scale 26 , predominately aluminum oxide, about 0.3 micrometers to 5 micrometers thick, in order to further protect the substrate 22 from oxidative attack.
  • a current state-of-the-art TBC 20 is yttria-stabilized zirconia (YSZ) deposited by electron beam physical vapor deposition (EB-PVD).
  • YSZ yttria-stabilized zirconia
  • EB-PVD electron beam physical vapor deposition
  • YSZ yttria-stabilized zirconia
  • 8YSZ 8 wt. % YSZ
  • YSZ can be described by the unit cell of ZrO 2 shown in FIG. 3.
  • the ZrO 2 crystal structure is depicted by the arrangement of the cations Zr and the anions O, as shown. It consists of a face-centered arrangement of Zr ions, shown as black circles. The anions are in the tetrahedral sites within the cube.
  • Yttrium ions are not shown for clarity.
  • a key feature of YSZ is that yttrium ions are randomly distributed in the Zr sites, resulting in oxygen vacancies in the ZrO 2 lattice structure. These vacancies are also randomly distributed, and are not shown in the figure. This is a well known crystal structure.
  • FIG. 4( a ) shows the structure, without oxygen present, consisting of two ZrO 2 unit cells, one on top of the other, A 4 B 4 O 16 (shown for the sake of clarity to identify A and B anions).
  • FIG. 4( b ) shows the entire pyrochlore structure, with oxygen atoms shown as white circles and oxygen vacancies shown as circles with a Y inside them and labeled 10 .
  • the pyrochlore structure of FIG. 4( b ) consists of missing oxygen atoms (of which there are two) in specific locations. Therefore, this results in a formula of A 4 B 4 O 14 —or, actually, A 2 B 2 O 7 —a common formula for a pyrochlore structure.
  • a n+ and B m+ are the ions in the formula A 2 ⁇ x B 2+x O 7 ⁇ y . This non-stoichiometry can result in significant increases in sintering resistance.
  • the preferred materials result when A is Sm and B is Zr.
  • the main advantages of the pyrochlore structure over the fluorite structure are: (1) the atomic oxygen defects are key for a low thermal conductivity, since the defects result in phonon scattering during thermal conduction; (2) the presence of defects also results in a higher thermal expansion, a feature important for reducing thermal expansion mismatch between the substrate and the ceramic coating; (3) the similarity of the pyrochlore crystal structure to the fluorite crystal structure is also key for the growth of single crystal columns during EB-PVD growth (as the growth of single crystal columns is directly related to the crystal structure); (4) the crystal structure could also be important for the formation of the vertical columns due to solidification within the splat in APS coatings; (5) the pyrochlore structure is a stable crystal structure without crystallographic transformations with changes in temperature; and (6) sintering resistance of the pyrochlores could also be higher than that of YSZ (in YSZ, the oxygen defects are very mobile and can contribute to sintering, whereas in the pyr
  • These TBC coatings can be applied by APS and/or EB-PVD.
  • This ceramic TBC coating can be applied as a top coat to an MCrAlY or other bond coat, diffusion coating; or directly to the substrate material; or to a standard base TBC as a top TBC coating.
  • These ceramic thermal barrier coatings can be used on rotating components, such as blades, and stationary components, such as vanes, in gas turbine engines to maintain the underlying metallic components below a critical temperature. Utilization of this thermal barrier coating will also reduce the cooling air requirements and subsequently increase the engine efficiency.
  • These materials are complete replacements for YSZ TBCs and, in columnar form, need not be coated with any other material to maintain their resistance to sintering.
  • a sample of Sm 2 Zr 2 O 7 powder (Sm 2 O 3 +2ZrO 2 ) was made and analyzed to insure that the sample had a pyrochlore structure.
  • a graph of the x-ray diffraction data for the sample is shown in FIG. 5.
  • a first layer of fluorite crystal, 8 wt. % yttria-stabilized zirconia (8YSZ) was deposited, shown as 40 in FIG. 6, on top of a superalloy substrate 22 having a MCrAlY basecoat 24 and oxide scale 26 .
  • the 8YSZ had a well known columnar structure and was deposited by well known electron beam physical vapor deposition (EB-PVD) techniques and was about 225 micrometers thick.
  • EB-PVD electron beam physical vapor deposition
  • a top TBC columnar layer 30 of Sm 2 Zr 2 O 7 was also deposited by well known EB-PVD technologies. This provided a dual TBC system. X-ray diffraction data confirmed that the coating had a pyrochlore crystal structure, with a result similar to that shown in FIG. 5.
  • the TBC layers both provided a columnar TBC with minute microcracks or gaps between the columns.
  • the successful Sm 2 Zr 2 O 7 sample contained about 33 mole % Sm 2 O 3 . It is expected that a range described by the values of x and y are all preferred within the pyrochlore structure.
  • powder compacts of 8YSZ were compared to powder compacts of La 2 Zr 2 O 7 after sinter aging the powder compacts at 1400° C. for 1 and 10 days. Photomicrographs showed that, after 10 days, BYSZ still had a significant amount of porosity, however La 2 Zr 2 O 7 had almost no porosity remaining. This suggests that the specific La 2 Zr 2 O 7 compound cannot withstand high temperatures and is very likely to lose its strain tolerance. It should be noted that stoichiometric La 2 Zr 2 O 7 was utilized in this comparison. If cation excess/vacancies or oxygen excess/vacancies were introduced, they could significantly change the sintering properties.

Abstract

A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating layer (20) characterized by a microstructure having gaps (28) where the thermal barrier coating (20) consists essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of An+ 2−xBm+ 2+xO7−y, where A is selected from the group of elements selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements selected from Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively, and for −0.5≦x≦0.5, y = 7 - ( ( 2 - x ) n + ( 2 + x ) m ) 2 ,
Figure US20020061416A1-20020523-M00001
and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti. The preferred pyrochlore crystal structure is Sm2Zr2O7, which is stable over the range of operating temperatures of the device (10) up to at least above 1400° C., and where the thermal barrier coating (30) can be deposited over a separate bottom fluorite thermal barrier coating.

Description

  • [0001] This invention was made with United States Government support under contract number DE-AC05-95OR22242 awarded by the Department of Energy. The Government has certain rights in this invention.
  • FIELD OF THE INVENTION
  • This invention relates generally to the field of thermal barrier coatings, and more particularly to a thermal barrier coating for very high temperature applications, such as in a combustion turbine engine. In particular, this invention relates to the field of ceramic thermal barrier coatings having high phase stability at 1400° C. and higher, which are resistant to sintering damage, for coating superalloy or ceramic components in the hot sections of a combustion turbine, such as turbine blades and vanes, transitions, ring segments and combustors. [0002]
  • BACKGROUND OF THE INVENTION
  • The demand for continued improvement in the efficiency of combustion turbine and combined cycle power plants has driven the designers of these systems to specify increasingly higher turbine inlet temperatures. Although nickel and cobalt based superalloy materials are now used for components in the hot gas flow path, such as combustor transition pieces and turbine rotating and stationary blades, even these superalloy materials are not capable of surviving long term operation at temperatures sometimes as high as 1400° C. [0003]
  • It is known in the art to coat a superalloy metal component with an insulating ceramic material to improve its ability to survive high operating temperatures, for example U.S. Pat. No. 4,321,310 (Ulion et al). It is also known to coat the insulating ceramic material with an erosion resistant material to reduce its susceptibility to wear caused by the impact of particles carried within the hot gas flow path; for example, U.S. Pat. Nos. 5,683,825 and 5,562,998 (Bruce, et al. and Strangman, respectively). [0004]
  • Much of the development in this field of technology has been driven by the aircraft engine industry, where turbine engines are required to operate at high temperatures, and are also subjected to frequent temperature transients as the power level of the engine is varied. A combustion turbine engine installed in a land-based power generating plant is also subjected to high operating temperatures and temperature transients, but it may also be required to operate at full power and at its highest temperatures for very long periods of time, such as for days or even weeks at a time. Prior art insulating systems are susceptible to degradation under such conditions at the elevated temperatures demanded in the most modern combustion turbine systems. [0005]
  • U.S. Ser. No. 09/245262, filed on Feb. 2, 1999 (Subramanian, et al.; Docket No. T298-022, ESCM 283139-00491), also related to columnar thermal barrier coatings (TBCs), usually of yttria-stabilized zirconia (YSZ), deposited by electron beam physical vapor deposition (EB-PVD) with a sintering resistant layer of aluminum oxide or yttrium aluminum oxide, deposited as a continuous or discontinuous layer between submicron gaps in the TBC columns. This material was thermally stable up to about 1200° C. Other columnar TBC coatings are described in U.S. Ser. No. 09/393,415, filed on Sep. 10, 1999, (Subramanian; Docket No. T298-024, ESCM 283139-00224), where TBC columns had a composition of (A,B)[0006] xOy and were covered by a sheath of a composition of CzOw, where A,B and C were selected from Al, Ca, Mg, Zr, Y, Sc and rare earth equal to La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. In this application, a reaction between CzOw and (A,B)xOy was key to obtain a multiphase TBC system which was expected to be sinter resistant and strain tolerant up to 1400° and higher. The same materials were used as an (A,B)xOy planar based TBC coated with a CzOw overlay in U.S. Ser. No. 09/393,417, filed on Sep. 10, 1999, (Subramanian; Docket No. T298-025, ESCM 283139-00223). In this application also, a reaction between CzOw and (A,B)xOy was key to obtain a multiphase TBC system which was expected to be sinter resistant and strain tolerant up to 1400° and higher. Specific compounds capable for application as TBCs are described in U.S. Ser. No. 09/405,498, filed on Sep. 24, 1999 (Subramanian, et al.; Docket No. T298-010, ESCM 283139-00076). There, TBC layers of LaAlO3, NdAlO3, La2Hf2O7, Dy3Al5O12, Ho3Al5O12, ErAlO3, GdAlO3, Yb2Ti2O7, LaYbO3, Gd2Hf2O7, and Y3Al5O12 were generally described. These were compounds capable for TBC application, due to their inherently superior sintering resistance and phase stability.
  • A solid, vapor deposition material useful for the EB-PVD method to provide heat resistant coatings in aircraft engines and the like, where excellent heat resistance and thermal shock resistance is required, is taught by U.S. Pat. No. 5,789,330 (Kondo, et al). There, the material is sintered zirconia, containing a special stabilizer selected from yttria, magnesium oxide, calcium oxide, scandium oxide, or oxides of rare earth elements equal to La, Ce, Pr, Nd, Pm, Sm, Eu, Hd, Tb, Dy, fermium, Wr, thulium, Yb and ruthenium in the range of 0.1 wt percent to 40 wt percent of the material. The sintered material has 25% to 70% monoclinic phase and up to 3% tetragonal chase, with the rest as cubic phase. [0007]
  • Some high temperature resistant coatings, as in U.S. Pat. No. 5,304,519 (Jackson, et al), have utilized thermal spraying of zircon plus zirconia particles (ZrSiO[0008] 4 and ZrO2 respectively) partially stabilized with an oxide selected from CaO, Y2O3, MgO, CeO2, HfO2 or rare earth oxide, where rare earth equal La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. These materials are used as refractory, thermal shock resistant coatings for hearth rolls for annealing steel, stainless steel and silicon steel sheet at furnace temperatures between 820° C. and 1100° C.
  • Data regarding sintering rates of single oxides A[0009] xOy are available but only a few publications discuss sintering rates of multicomponent oxides. One such publication is by Shinozaki, et al. 1981, (9), pp. 1454-1461, where the sintering tendencies of a solid solution of mixed Sm2O3-ZrO2 were discussed in The Chemical Society of Japan, “Sintering Sm2O3-ZrO2 Solid Solution.” There, tablets of the mixed component oxides at various mole % were sintered at from 1200° C. to 1600° C. and isothermal linear shrinkage was measured. The least amount of sintering, 3% to 10% at 1400° C., was found at ranges of 5 mole % to 50 mole % Sm2O3.
  • In “La[0010] 2Zr2O7 —a new candidate for thermal barrier coatings”, P. Vaβen, X. Cao, F. Tietz, G. Kerkhoff, D. Stöver, United Thermal Spray Conference, 17.-19.3.99, Düsseldorf, Hrsg. E. Lugscheider, P. A. Kammer, Verlag Für Schweiβen und Verwandte Verfahren, Düsseldorf, 1999, p. 830-034, plasma sprayed TBC coatings of one specific compound, La2Zr2O7, were discussed. Although this material is of the pyrochlore structure, as shown in their FIG. 2, our own results in the Example, below, show this specific compound is not good as a TBC. However, introduction of cation excess/defects or oxygen defects change the sintering properties and this is not suggested in the paper.
  • What is needed is a TBC coating for a device, where the coating will remain thermally stable, protective, strain compliant, and resistant to substantial sintering of gaps in its grain structure, for use in long-term, high temperature turbine applications at temperatures up to 1400° C. Preferably the TBC will be a new material which itself meets the above criteria without the need for extra processing steps or additional coating. [0011]
  • It is a main object of this invention to provide a device which is capable of operating at temperatures up to about 1400° C. for extended periods of time with reduced component degradation. It is a further object of this invention to provide a method of producing such a device that utilizes commercially available materials processing steps. [0012]
  • SUMMARY OF THE INVENTION
  • These and other objects of the invention are accomplished by providing a device for operating over a range of temperatures, having a deposited thermal barrier coating on at least a portion of its surface, the device comprising a substrate with a bond coat; and then a deposited ceramic thermal barrier layer, the ceramic layer consisting essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of A[0013] n+ 2−xBm+ 2+xO7−y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements consisting of Zr, Hf, Ti, and mixtures thereof; n and m are the valence of A and B respectively; and for −0.5≧x≧0.5, y=7−([(2−x)n+(2+x)m]/2) or y=7−(((2−x)n+(2+x)m)/2), that is: y = 7 - [ ( 2 - x ) n + ( 2 + x ) m ] 2 ,
    Figure US20020061416A1-20020523-M00002
  • and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti, which describe the following excluded compounds: La[0014] 2Zr2O7, La2Hf2O7, Gd2Hf2O7, and Yb2Ti2O7. The preferred combinations for this invention are A=Sm and B=Zr; A=Eu and B=Zr; A=Gd and B=Zr; with the first combination being the most preferred.
  • Further, a method according to this invention, for producing a device operable over a range of temperatures, includes the steps of: providing a substrate; depositing a bond coat and then depositing a ceramic thermal barrier layer over the bond coat in a manner that provides a deposited ceramic layer consisting essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of A[0015] n+ 2−xBm+ 2+xO7−y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively; and for −0.5≧x≧0.5, y = 7 - [ ( 2 - x ) n + ( 2 + x ) m ] 2 ,
    Figure US20020061416A1-20020523-M00003
  • and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti. [0016]
  • These compositions will be extremely stable even under long term exposure to temperatures up to about 1500° C. and can be deposited by well known plasma spray, EB-PVD, and D-gun techniques, HVOF (high velocity oxygen fuel deposition) techniques, inductively coupled deposition processes, and electron beam directed vapor deposition techniques.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other advantages of the invention will be more apparent from the following description in view of the drawings which show: [0018]
  • FIG. 1 is a perspective view of a device, such as a turbine blade coated with a bond coat layer and then a ceramic thermal barrier layer in order to better resist heat, oxidation, and erosion in a thermally stressed operating environment; [0019]
  • FIG. 2, which best shows the invention, is an idealized fragmented sectional view through a device, such as a turbine component, for example, a turbine blade showing the top thermal barrier layer of this invention with other optional protective layers between it and the bottom substrate; [0020]
  • FIG. 3 shows a fluorite crystal structure for prior art YSZ (yttria-stabilized zirconia) thermal barrier layers; [0021]
  • FIGS. [0022] 4(a) and 4(b) show the pyrochlore crystal structures of this invention including their oxygen vacancies;
  • FIG. 5 shows x-ray diffraction data showing a pyrochlore structure of a deposited Sm[0023] 2Zr2O7 TBC coating; and
  • FIG. 6 shows an idealized fragmented sectional view through a turbine component showing a Sm[0024] 2Zr2O7 TBC deposited on a layer of yttria-stabilized zirconia.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to FIG. 1, one component device of a turbine is shown. [0025] Turbine blade 10 has a leading edge 12 and an airfoil section 14, against which hot combustion gases are directed during operation of the turbine, and which is subject to severe thermal stresses, oxidation and corrosion. The root end 16 of the blade anchors the blade. Cooling passages 18 may be present through the blade to allow cooling air to transfer heat from the blade. The blade itself can be made from a high temperature resistant nickel or cobalt based superalloy, such as, a combination of Ni·Cr·Al·Co·Ta·Mo·W.
  • A basecoat (or bond coat) could cover the body of the turbine blade, which basecoat (or bond coat) could be covered by a [0026] thermal barrier coating 20. The barrier layer of this invention, as well as the base coat (or bond coat) and other protective coating can be used on a wide variety of other components of turbines, such as, turbine vanes, turbine transitions, or the like, which may be large and of complex geometry, or upon any substrate made of, for example, metal or ceramic, where thermal protection is required.
  • FIG. 2 shows one example of possible thermal barrier coating system for the protection of a [0027] turbine component substrate 22 such as the superalloy core of a turbine blade. A basecoat 24 of a MCrAlY-type alloy can be used as a protection layer, as shown, where M (metal) in the alloy is usually selected from the group consisting of Ni, Co, Fe and their mixtures and Y is here defined as included yttrium, Y, as well as La, and Hf. This layer can be deposited by sputtering, electron beam vapor deposition or one of a number of thermal spray processes including low pressure plasma spraying, high velocity oxygen fuel (HVOF), and the like to provide a relatively uniform layer about 0.0025 cm to 0.050 cm (0.001 inch to 0.020 inch) thick. One purpose of this layer is to provide, upon heat treatment, an oxide scale 26, predominately aluminum oxide, about 0.3 micrometers to 5 micrometers thick, in order to further protect the substrate 22 from oxidative attack.
  • When prior art thermal barrier coating systems are exposed to the high temperature environment of the hot gas flow path of a land-based combustion turbine power plant, one of the reasons for failure of the thermal barrier coating (TBC) is sintering and loss in strain tolerance of the TBC. A current state-of-the-[0028] art TBC 20 is yttria-stabilized zirconia (YSZ) deposited by electron beam physical vapor deposition (EB-PVD). The EB-PVD process provides the YSZ coating with a columnar microstructure having sub-micron sized gaps 28 between adjacent columns of YSZ normal (90°) angle to the substrate material. Alternatively, the YSZ may be applied by air plasma spraying (APS), which consists of a series of sub-micron sized cracks, also here considered gaps, within the YSZ layer and predominantly parallel to the substrate. The gaps provide a mechanical flexibility to the TBC layer. During operation at high temperatures, these gaps have a tendency to close, and if the device is maintained at the elevated temperature, usually above 1200° for 8YSZ, for a sufficient length of time, the adjacent sides of the gaps will bond together by sintering. The bonding of the ceramic material across the gaps reduces the strain compliance of the TBC coating, thereby contributing to the potential for failure of the TBC during subsequent thermal transients.
  • The [0029] new TBC coating 20 disclosed here is a pyrochlore crystal structure having a chemical formula consisting essentially of An+ 2−xBm+ 2+xO7−y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively; and, for −0.5≦x≦0.5, y = 7 - [ ( 2 - x ) n + ( 2 + x ) m ] 2 ,
    Figure US20020061416A1-20020523-M00004
  • and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti. [0030]
  • In the above formula, the values “n” and “m” in the brackets are the charge of the A and B elements; for example, if A=Sm[0031] 3+ and B=Zr4+, n=3 and m=4, then the value of y is: y = 7 - [ ( 2 - x ) 3 + ( 2 + x ) 4 ] 2 ,
    Figure US20020061416A1-20020523-M00005
  • The above ranges of x and y clearly indicate that a defective pyrochlore structure is also a candidate for a TBC. For example, for A=Sm, B=Zr and x=0, y is equivalent to 0 and the formula reduces to Sm[0032] 2Zr2O7, a preferred embodiment. For x=0.1, y is equivalent to −0.05 and the formula is Sm1.9Zr2.1O7.05, also a preferred embodiment. A listing of other preferred materials follows for −0.5≦x≦0.5 and y = 7 - [ ( 2 - x ) n + ( 2 + x ) m ] 2 :
    Figure US20020061416A1-20020523-M00006
  • A=Eu and B=Zr; and A=Gd and B=Zr. [0033]
  • These materials are stable upon long-term exposure at high temperatures. Due to their phase stability and high sintering resistance, they are potential candidates for thermal barrier coating applications. As mentioned previously, conventional TBC coatings are yttria-stabilized zirconia (YSZ), preferably 8 wt. % YSZ (8YSZ). YSZ can be described by the unit cell of ZrO[0034] 2 shown in FIG. 3. The ZrO2 crystal structure is depicted by the arrangement of the cations Zr and the anions O, as shown. It consists of a face-centered arrangement of Zr ions, shown as black circles. The anions are in the tetrahedral sites within the cube. There are eight oxygen atoms, shown as white circles for clarity, and 4 Zr atoms, resulting in ZrO2. Yttrium ions are not shown for clarity. A key feature of YSZ is that yttrium ions are randomly distributed in the Zr sites, resulting in oxygen vacancies in the ZrO2 lattice structure. These vacancies are also randomly distributed, and are not shown in the figure. This is a well known crystal structure.
  • Materials with a pyrochlore structure are discussed in detail by M. A. Subramanian, et al., in “Oxide Pyrochlores—A Review,” [0035] Prog. Solid State Chem., vol. 15, pp. 55,143, (1983). There, on page 65, a pyrochlore structure derived from a fluorite lattice was shown. While this paper discusses the crystal structure, no reference is made to TBC applications.
  • The pyrochlore structure can be described as a structure with ordered oxygen vacancies (as distinguished from the random oxygen vacancies of YSZ) located in a crystal structure. The pyrochlore structure can, in principle, be shown to be a derivative of the ZrO[0036] 2 crystal structure. Since the pyrochlore structure is a derivative of the ZrO2 structure, several of the same advantageous properties—such as low thermal conductivity, high thermal expansion, and deposition of single crystalline columns—are expected.
  • This paragraph will now describe, in a simple manner, the relationship of the pyrochlore structure to the fluorite, ZrO[0037] 2 structure. Doubling the Zr4O8 unit cell results in a “Zr8O16” unit cell, where the Zr sites are now occupied by equal amounts of A and B cations to form A4B4O16. The A and B cations are arranged in an ordered manner; the relationship of the arrangement of these cations to that of the ZrO2 crystal structure is shown in FIGS. 4(a) and 4(b). FIG. 4(a) shows the structure, without oxygen present, consisting of two ZrO2 unit cells, one on top of the other, A4B4O16 (shown for the sake of clarity to identify A and B anions). FIG. 4(b) shows the entire pyrochlore structure, with oxygen atoms shown as white circles and oxygen vacancies shown as circles with a Y inside them and labeled 10. The pyrochlore structure of FIG. 4(b) consists of missing oxygen atoms (of which there are two) in specific locations. Therefore, this results in a formula of A4B4O14—or, actually, A2B2O7—a common formula for a pyrochlore structure. This crystal structure could be maintained with more oxygen vacancies/excess, in combination with A and B cation excess/vacancies. These defects can be represented by A2−xB2+x,O7−y where x can range from 0.5 to −0.5 and y depends on x as follows: y = 7 - [ ( 2 - x ) n + ( 2 + x ) m ] 2
    Figure US20020061416A1-20020523-M00007
  • where A[0038] n+ and Bm+ are the ions in the formula A2−xB2+xO7−y. This non-stoichiometry can result in significant increases in sintering resistance. The preferred materials result when A is Sm and B is Zr.
  • The main advantages of the pyrochlore structure over the fluorite structure are: (1) the atomic oxygen defects are key for a low thermal conductivity, since the defects result in phonon scattering during thermal conduction; (2) the presence of defects also results in a higher thermal expansion, a feature important for reducing thermal expansion mismatch between the substrate and the ceramic coating; (3) the similarity of the pyrochlore crystal structure to the fluorite crystal structure is also key for the growth of single crystal columns during EB-PVD growth (as the growth of single crystal columns is directly related to the crystal structure); (4) the crystal structure could also be important for the formation of the vertical columns due to solidification within the splat in APS coatings; (5) the pyrochlore structure is a stable crystal structure without crystallographic transformations with changes in temperature; and (6) sintering resistance of the pyrochlores could also be higher than that of YSZ (in YSZ, the oxygen defects are very mobile and can contribute to sintering, whereas in the pyrochlore structure, the oxygen defects are ordered and, hence, can be more resistant to sintering). [0039]
  • These TBC coatings can be applied by APS and/or EB-PVD. This ceramic TBC coating can be applied as a top coat to an MCrAlY or other bond coat, diffusion coating; or directly to the substrate material; or to a standard base TBC as a top TBC coating. These ceramic thermal barrier coatings can be used on rotating components, such as blades, and stationary components, such as vanes, in gas turbine engines to maintain the underlying metallic components below a critical temperature. Utilization of this thermal barrier coating will also reduce the cooling air requirements and subsequently increase the engine efficiency. These materials are complete replacements for YSZ TBCs and, in columnar form, need not be coated with any other material to maintain their resistance to sintering. [0040]
  • The following example is presented to help illustrate the invention, and should not be considered in any way limiting. [0041]
  • EXAMPLE
  • A sample of Sm[0042] 2Zr2O7 powder (Sm2O3+2ZrO2) was made and analyzed to insure that the sample had a pyrochlore structure. A graph of the x-ray diffraction data for the sample is shown in FIG. 5. A first layer of fluorite crystal, 8 wt. % yttria-stabilized zirconia (8YSZ), was deposited, shown as 40 in FIG. 6, on top of a superalloy substrate 22 having a MCrAlY basecoat 24 and oxide scale 26. The 8YSZ had a well known columnar structure and was deposited by well known electron beam physical vapor deposition (EB-PVD) techniques and was about 225 micrometers thick. Using the top 42 of the 8YSZ to provide nucleation sites, a top TBC columnar layer 30 of Sm2Zr2O7, about 225 micrometers thick, was also deposited by well known EB-PVD technologies. This provided a dual TBC system. X-ray diffraction data confirmed that the coating had a pyrochlore crystal structure, with a result similar to that shown in FIG. 5. The TBC layers both provided a columnar TBC with minute microcracks or gaps between the columns.
  • With a limited amount of material and a goal of thermal stability at 1400° C., the sample was placed in an oven at 1400° C. for 500 hours. The Sm[0043] 2Zr2O7 layer resisted substantial sintering and there was no loss of inter-columnar spaces.
  • The successful Sm[0044] 2Zr2O7 sample contained about 33 mole % Sm2O3. It is expected that a range described by the values of x and y are all preferred within the pyrochlore structure. As a comparative sample, powder compacts of 8YSZ were compared to powder compacts of La2Zr2O7 after sinter aging the powder compacts at 1400° C. for 1 and 10 days. Photomicrographs showed that, after 10 days, BYSZ still had a significant amount of porosity, however La2Zr2O7 had almost no porosity remaining. This suggests that the specific La2Zr2O7 compound cannot withstand high temperatures and is very likely to lose its strain tolerance. It should be noted that stoichiometric La2Zr2O7 was utilized in this comparison. If cation excess/vacancies or oxygen excess/vacancies were introduced, they could significantly change the sintering properties.
  • The present invention may be embodied in other forms without departing from the spirit or essential attributes thereof, and accordingly, reference should be made to both the appended claims and the foregoing specification as indicating the scope of the invention. [0045]

Claims (18)

We claim as our invention:
1. A device operating over a range of temperatures and having a deposited thermal barrier coating on at least a portion of its surface, the device comprising:
a substrate with a base coat; and then
a deposited ceramic thermal barrier layer, said ceramic thermal barrier layer consisting essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of An+ 2−xBm+ 2+xO7−y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively; and for −0.5≦x≦0.5,
y = 7 - ( ( 2 - x ) n + ( 2 + x ) m ) 2 ,
Figure US20020061416A1-20020523-M00008
and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.
2. The device of claim 1, wherein the microstructure of the thermal barrier layer is characterized by a plurality of gaps extending through the thickness.
3. The device of claim 1, wherein said ceramic thermal barrier is stable over a range of temperatures up to about 1500° C.
4. The device of claim 1, wherein said ceramic thermal barrier coating consists essentially of Sm2−xZr2+xO7−y where −0.5≦X≦0.5 and
y = 7 - ( ( 2 - x ) 3 + ( 2 + x ) 4 ) 2 .
Figure US20020061416A1-20020523-M00009
5. The device of claim 1, wherein said ceramic thermal barrier is resistant to sintering.
6. The device of claim 1, wherein said ceramic thermal barrier is resistant to sintering and contains gaps within its structure generally parallel to the substrate surface.
7. The device of claim 1, wherein said ceramic thermal barrier consists of a material selected from the group consisting essentially of A=Sm and B=Zr; A=Eu and B=Zr; and A=Gd and B=Zr.
8. The device of claim 1, wherein said ceramic thermal barrier consists essentially of Sm2Zr2O7.
9. The device of claim 1, wherein said substrate is a turbine component.
10. The device of claim 1 wherein said substrate is selected from turbine blades, turbine vanes and turbine transitions.
11. The device of claim 1 also containing a MCrAlY type alloy base coat layer between the substrate and the ceramic thermal barrier layer, and where the substrate is selected from the group consisting of metallic superalloy materials and ceramic materials.
12. The device of claim 1, operating in a turbine at temperatures up to 1500° C.
13. A method for producing a device operable over a range of temperatures, the method comprising the steps of:
providing a substrate; and
depositing a ceramic thermal barrier layer over the substrate in a manner that provides a deposited ceramic layer consisting essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of An+ 2−xBm+ 2+xO7−y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively; and for −0.5≦x≦0.5,
y = 7 - ( ( 2 - x ) n + ( 2 + x ) m ) 2 ,
Figure US20020061416A1-20020523-M00010
and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.
14. The method of claim 13, where the microstructure of the thermal barrier layer is characterized by a plurality of gaps of the thermal barrier layer is extending through the thickness.
15. The method of claim 13, wherein the step of depositing further comprises the step of depositing a MCrAlY-type alloy base coat layer on the substrate before depositing the ceramic thermal barrier layer.
16. The method of claim 13, wherein the step of depositing the thermal barrier coating is selected from plasma spray techniques, electron beam physical vapor deposition, D-gun techniques, high velocity oxygen fuel deposition techniques, inductively coupled deposition processes, and electron beam directed vapor deposition techniques.
17. The method of claim 13, wherein said ceramic thermal barrier coating consists essentially of Sm2−xZr2+xO7−y where −0.5≦X≦0.5 and
y = 7 - ( ( 2 - x ) 3 + ( 2 + x ) 4 ) 2
Figure US20020061416A1-20020523-M00011
18. The method of claim 13, wherein said ceramic thermal barrier consists essentially of Sm2Zr2O7 deposited as an admixture of Sm2O3 plus ZrO2 where the mole % of Sm2O3 ranges from about 15 mole % to about 40 mole %.
US09/884,601 1996-12-10 2001-06-18 Thermal barrier coating having high phase stability Expired - Lifetime US6387539B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/884,601 US6387539B1 (en) 2000-08-17 2001-06-18 Thermal barrier coating having high phase stability
US10/144,111 US6835465B2 (en) 1996-12-10 2002-05-13 Thermal barrier layer and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/640,575 US6258467B1 (en) 2000-08-17 2000-08-17 Thermal barrier coating having high phase stability
US09/884,601 US6387539B1 (en) 2000-08-17 2001-06-18 Thermal barrier coating having high phase stability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/640,575 Continuation US6258467B1 (en) 1996-12-10 2000-08-17 Thermal barrier coating having high phase stability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/144,111 Continuation-In-Part US6835465B2 (en) 1996-12-10 2002-05-13 Thermal barrier layer and process for producing the same

Publications (2)

Publication Number Publication Date
US6387539B1 US6387539B1 (en) 2002-05-14
US20020061416A1 true US20020061416A1 (en) 2002-05-23

Family

ID=24568802

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/640,575 Expired - Lifetime US6258467B1 (en) 1996-12-10 2000-08-17 Thermal barrier coating having high phase stability
US09/884,601 Expired - Lifetime US6387539B1 (en) 1996-12-10 2001-06-18 Thermal barrier coating having high phase stability

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/640,575 Expired - Lifetime US6258467B1 (en) 1996-12-10 2000-08-17 Thermal barrier coating having high phase stability

Country Status (5)

Country Link
US (2) US6258467B1 (en)
EP (1) EP1309738B1 (en)
CA (1) CA2417212C (en)
DE (1) DE60103904T2 (en)
WO (1) WO2002014580A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680126B1 (en) 2000-04-27 2004-01-20 Applied Thin Films, Inc. Highly anisotropic ceramic thermal barrier coating materials and related composites
US20050153160A1 (en) * 2004-01-12 2005-07-14 Yourong Liu Durable thermal barrier coating having low thermal conductivity
US20060151856A1 (en) * 2004-12-14 2006-07-13 Taiji Torigoe Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
CN1329551C (en) * 2003-12-16 2007-08-01 中国科学院长春应用化学研究所 Novel heat barrier coating material
US20080131608A1 (en) * 2004-12-14 2008-06-05 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
US20080292859A1 (en) * 2007-05-07 2008-11-27 Siemens Aktiengesellschaft Ceramic powder, ceramic layer and layer system having gadolinium/mixed crystal pyrochlore phases and oxides
US20120012787A1 (en) * 2008-12-30 2012-01-19 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintilator body and scintillation device
US20160017726A1 (en) * 2013-03-15 2016-01-21 United Technologies Corporation Coated Articles and Manufacture Methods
US20160076136A1 (en) * 2013-03-15 2016-03-17 United Technologies Corporation Coated Articles and Manufacture Methods
WO2019179722A1 (en) * 2018-03-23 2019-09-26 Siemens Aktiengesellschaft Ceramic material based on zirconium oxide with further oxides
US11015252B2 (en) * 2018-04-27 2021-05-25 Applied Materials, Inc. Protection of components from corrosion

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946208B2 (en) 1996-12-10 2005-09-20 Siemens Westinghouse Power Corporation Sinter resistant abradable thermal barrier coating
US6835465B2 (en) * 1996-12-10 2004-12-28 Siemens Westinghouse Power Corporation Thermal barrier layer and process for producing the same
US6930066B2 (en) * 2001-12-06 2005-08-16 Siemens Westinghouse Power Corporation Highly defective oxides as sinter resistant thermal barrier coating
DE59801471D1 (en) 1997-11-03 2001-10-18 Siemens Ag PRODUCT, IN PARTICULAR COMPONENT OF A GAS TURBINE, WITH CERAMIC THERMAL INSULATION LAYER, AND METHOD FOR THE PRODUCTION THEREOF
US7005404B2 (en) * 2000-12-20 2006-02-28 Honda Motor Co., Ltd. Substrates with small particle size metal oxide and noble metal catalyst coatings and thermal spraying methods for producing the same
IL140990A0 (en) * 2001-01-18 2002-02-10 Univ Ben Gurion Thick film compositions containing pyrochlore-related compounds
US20040101699A1 (en) * 2001-04-03 2004-05-27 Robert Vassen Heat insulating layer based on la2zr2o7 for high temperatures
US6656600B2 (en) * 2001-08-16 2003-12-02 Honeywell International Inc. Carbon deposit inhibiting thermal barrier coating for combustors
AU2002356523A1 (en) * 2001-09-10 2003-04-14 University Of Virginia Patent Foundation Method and apparatus application of metallic alloy coatings
NO318580B1 (en) * 2001-10-19 2005-04-11 Norsk Hydro As Ceramic heat exchanger
US6821641B2 (en) 2001-10-22 2004-11-23 General Electric Company Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication
US6730918B2 (en) 2001-12-20 2004-05-04 General Electric Company Apparatus for determining past-service conditions and remaining life of thermal barrier coatings and components having such coatings
DE10200803A1 (en) * 2002-01-11 2003-07-31 Forschungszentrum Juelich Gmbh Production of a ceramic material for a thermal insulation layer and a thermal insulation layer containing the material
US20030152814A1 (en) 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same
US6759151B1 (en) 2002-05-22 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article characterized by low coefficient of thermal expansion outer layer
US6733908B1 (en) 2002-07-08 2004-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article having stabilized zirconia outer layer and chemical barrier layer
AU2003256723A1 (en) * 2002-07-25 2004-02-16 University Of Virginia Patent Foundation Method and apparatus for dispersion strengthened bond coats for thermal barrier coatings
US7226672B2 (en) 2002-08-21 2007-06-05 United Technologies Corporation Turbine components with thermal barrier coatings
PL361760A1 (en) * 2002-08-21 2004-02-23 United Technologies Corporation Heat barrier forming coat featuring low thermal conductivity
US6730422B2 (en) * 2002-08-21 2004-05-04 United Technologies Corporation Thermal barrier coatings with low thermal conductivity
US6984592B2 (en) * 2002-08-28 2006-01-10 Micron Technology, Inc. Systems and methods for forming metal-doped alumina
US7253122B2 (en) * 2002-08-28 2007-08-07 Micron Technology, Inc. Systems and methods for forming metal oxides using metal diketonates and/or ketoimines
US7087481B2 (en) * 2002-08-28 2006-08-08 Micron Technology, Inc. Systems and methods for forming metal oxides using metal compounds containing aminosilane ligands
US6890668B2 (en) * 2002-08-30 2005-05-10 General Electric Company Thermal barrier coating material
JP4481027B2 (en) 2003-02-17 2010-06-16 財団法人ファインセラミックスセンター Thermal barrier coating member and manufacturing method thereof
DE10307117A1 (en) * 2003-02-19 2004-09-02 Merck Patent Gmbh Evaporation material for the production of high refractive index optical layers
DE10307095A1 (en) * 2003-02-19 2004-09-02 Merck Patent Gmbh Evaporation material for the production of high refractive index optical layers
US6803135B2 (en) 2003-02-24 2004-10-12 Chromalloy Gas Turbine Corporation Thermal barrier coating having low thermal conductivity
CN100376505C (en) * 2003-03-26 2008-03-26 三菱重工业株式会社 Material for thermal barrier coating
JP2005154885A (en) * 2003-03-26 2005-06-16 Mitsubishi Heavy Ind Ltd Material for thermal barrier coating
US20080131611A1 (en) * 2003-07-29 2008-06-05 Hass Derek D Method for Application of a Thermal Barrier Coating and Resultant Structure Thereof
US20060177676A1 (en) * 2003-08-13 2006-08-10 Ulrich Bast Heat-insulation material and arrangement of a heat-insulation layer containing said heat-insulation material
US20050129849A1 (en) * 2003-12-12 2005-06-16 General Electric Company Article protected by a thermal barrier coating having a cerium oxide-enriched surface produced by precursor infiltration
US20050129869A1 (en) * 2003-12-12 2005-06-16 General Electric Company Article protected by a thermal barrier coating having a group 2 or 3/group 5 stabilization-composition-enriched surface
US7326470B2 (en) * 2004-04-28 2008-02-05 United Technologies Corporation Thin 7YSZ, interfacial layer as cyclic durability (spallation) life enhancement for low conductivity TBCs
US7306860B2 (en) * 2004-07-30 2007-12-11 Honeywell International, Inc. Protective coating for oxide ceramic based composites
US7364807B2 (en) * 2004-12-06 2008-04-29 General Electric Company Thermal barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability
US7476453B2 (en) * 2004-12-06 2009-01-13 General Electric Company Low thermal conductivity thermal barrier coating system and method therefor
US7429424B2 (en) * 2004-12-06 2008-09-30 General Electric Company Sintering resistant, low conductivity, high stability thermal barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability
JP4969094B2 (en) * 2004-12-14 2012-07-04 三菱重工業株式会社 Thermal barrier coating member and production thereof, and gas turbine
EP1707653B1 (en) * 2005-04-01 2010-06-16 Siemens Aktiengesellschaft Coating system
CN100391896C (en) * 2005-05-13 2008-06-04 中国科学院上海硅酸盐研究所 Hafnium oxide-gadolinium oxide solid solution transparent ceramic glaring material and its preparation method and uses
US20070292624A1 (en) * 2005-06-28 2007-12-20 General Electric Company Low conductivity, thermal barrier coating system for ceramic matrix composite (CMC) articles
US20080166561A1 (en) * 2005-08-16 2008-07-10 Honeywell International, Inc. Multilayered erosion resistant coating for gas turbines
EP1783248A1 (en) * 2005-11-04 2007-05-09 Siemens Aktiengesellschaft Two-layer thermal barrier coating system containing a pyrochlore phase
EP1790754A1 (en) * 2005-11-24 2007-05-30 Siemens Aktiengesellschaft Coating system including a mixed Gadolinium pyrochlor phase.
US20070160859A1 (en) * 2006-01-06 2007-07-12 General Electric Company Layered thermal barrier coatings containing lanthanide series oxides for improved resistance to CMAS degradation
US7622195B2 (en) * 2006-01-10 2009-11-24 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
DE102006013215A1 (en) * 2006-03-22 2007-10-04 Siemens Ag Thermal barrier coating system
JP4959213B2 (en) * 2006-03-31 2012-06-20 三菱重工業株式会社 Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
EP1852519B1 (en) * 2006-05-05 2013-08-28 Sulzer Metco AG (Switzerland) Method for manufacturing a coating
CA2582312C (en) * 2006-05-05 2014-05-13 Sulzer Metco Ag A method for the manufacture of a coating
ATE505818T1 (en) * 2006-05-18 2011-04-15 Nexans CONDUCTOR COATED WITH A POLYCRYSTALLINE FILM USABLE FOR PRODUCING HIGH TEMPERATURE SUPERCONDUCTIVE LAYERS
GB2439312A (en) * 2006-06-20 2007-12-27 Siemens Ag Protective coating for turbine components
EP1908859A1 (en) * 2006-10-02 2008-04-09 Siemens Aktiengesellschaft Pyrochlore materials and a thermal barrier coating with these pyrochlore materials
US20080145643A1 (en) * 2006-12-15 2008-06-19 United Technologies Corporation Thermal barrier coating
EP1990328B1 (en) * 2007-05-07 2011-10-26 Siemens Aktiengesellschaft Ceramic powder, ceramic layer and layer system with two pyrochlorphases and oxides
JP5647762B2 (en) * 2007-05-07 2015-01-07 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Layer structure comprising an outer ceramic layer having a pyrochlore phase and a secondary oxide
US20090123722A1 (en) * 2007-11-08 2009-05-14 Allen David B Coating system
GB0806614D0 (en) * 2008-04-11 2008-05-14 Southside Thermal Sciences Sts Composite structures for improved thermal stability/durability
US8382436B2 (en) * 2009-01-06 2013-02-26 General Electric Company Non-integral turbine blade platforms and systems
US8541115B2 (en) * 2009-01-30 2013-09-24 United Technologies Corporation Oxide coating foundation for promoting TBC adherence
US8262345B2 (en) * 2009-02-06 2012-09-11 General Electric Company Ceramic matrix composite turbine engine
EP2230329A1 (en) * 2009-03-18 2010-09-22 Siemens Aktiengesellschaft Dual layer porous coating system with pyrochlorine phase
US8172519B2 (en) * 2009-05-06 2012-05-08 General Electric Company Abradable seals
US20110116912A1 (en) * 2009-11-13 2011-05-19 Mccall Thomas Zoned discontinuous coating for high pressure turbine component
CN102070335B (en) * 2009-11-25 2013-09-18 中国科学院上海硅酸盐研究所 Pyrochlore structural rare-earth zirconate material and preparation method and application thereof
US9051652B2 (en) * 2009-12-07 2015-06-09 United Technologies Corporation Article having thermal barrier coating
EP2354275A1 (en) * 2009-12-29 2011-08-10 Siemens Aktiengesellschaft Multiple layer system consisting of metallic layer and ceramic layer
JP5320352B2 (en) * 2010-07-15 2013-10-23 三菱重工業株式会社 Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
US8347636B2 (en) 2010-09-24 2013-01-08 General Electric Company Turbomachine including a ceramic matrix composite (CMC) bridge
KR20140102203A (en) * 2011-11-10 2014-08-21 알스톰 테크놀러지 리미티드 High temperature thermal barrier coating
CN103172371B (en) * 2011-12-23 2014-10-29 北京有色金属研究总院 Method for preparing La2O3 and Yb2O3 stabilized ZrO2 thermal barrier coating material
TWI451905B (en) * 2013-01-25 2014-09-11 Univ Nat Chiao Tung Ethanol reforming catalyst composition and preparation method of ethanol reforming catalyst
CN103434209B (en) * 2013-09-04 2016-01-13 华北电力大学 A kind of novel lower thermal conductivity and high temperature heat-resistant barrier coating and preparation method thereof
US11479846B2 (en) 2014-01-07 2022-10-25 Honeywell International Inc. Thermal barrier coatings for turbine engine components
EP3018292B1 (en) * 2014-11-10 2020-08-12 Ansaldo Energia Switzerland AG Turbine blade and corresponding gas turbine and manufacturing method
DE102015206321A1 (en) * 2015-04-09 2016-10-13 Siemens Aktiengesellschaft Two-layer ceramic thermal barrier coating with transition zone
CN105859286A (en) * 2016-05-25 2016-08-17 桂林理工大学 Ceramic Ba3Zr4Ta4O21 with low heat conductivity and preparation method thereof
CN106045507A (en) * 2016-05-25 2016-10-26 桂林理工大学 Thermal-barrier-coating ceramics Ca3Sn4Ta4O21 and preparation method therefor
CN106083042A (en) * 2016-06-11 2016-11-09 桂林理工大学 A kind of lower thermal conductivity pottery Sr6zrTa4o18and preparation method thereof
CN106045512A (en) * 2016-06-11 2016-10-26 桂林理工大学 Ceramic Sr6ZrNb4O18 with low thermal conductivity and preparation method of ceramic Sr6ZrNb4O18
CN106045510A (en) * 2016-06-11 2016-10-26 桂林理工大学 Ceramic Ca6ZrTa4O18 with low thermal conductivity and preparation method of ceramic Ca6ZrTa4O18
CN105859287A (en) * 2016-06-11 2016-08-17 桂林理工大学 Low-heat-conductivity ceramic Sr6SnTa4O18 and preparation method thereof
CN106045511A (en) * 2016-06-11 2016-10-26 桂林理工大学 Ceramic Ca6SnTa4O18 with low thermal conductivity and preparation method of ceramic Ca6SnTa4O18
CN106083041A (en) * 2016-06-11 2016-11-09 桂林理工大学 A kind of lower thermal conductivity pottery Mg6zrTa4o18and preparation method thereof
DE102018215223A1 (en) * 2018-09-07 2020-03-12 Siemens Aktiengesellschaft Ceramic material based on zirconium oxide with additional oxides and layer system
US20210154732A1 (en) 2019-11-21 2021-05-27 Norsk Titanium As Distortion mitigation in directed energy deposition
CN110983229A (en) * 2019-12-12 2020-04-10 中国建筑材料科学研究总院有限公司 Coating for thermal protection of nickel-based superalloy and preparation method thereof
CN113045312B (en) * 2021-03-23 2022-05-27 陕西科技大学 High-entropy yttrium pyrochlore ceramic with glass-like thermal conductivity and preparation method thereof
CN113403580A (en) * 2021-05-14 2021-09-17 中国航发北京航空材料研究院 Gadolinium samarium zirconium oxygen thermal barrier coating material and preparation method of coating
CA3220777A1 (en) 2021-05-21 2022-11-24 Norsk Titanium As Mount system, pin support system and a method of directed energy deposition for producing a metal workpiece to mitigate distortion
CN114478005B (en) * 2022-03-02 2023-02-21 北京理工大学 Tetragonal phase thermal barrier coating material and preparation method thereof
CN116377372A (en) * 2023-03-30 2023-07-04 广东省科学院新材料研究所 High-entropy ceramic thermal barrier coating and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1176687A (en) * 1967-01-26 1970-01-07 Gen Electric & English Elect Improvements in or relating to Apparatus for use in contact with Corrosive Fluids.
US4321310A (en) 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings on polished substrates
US5304519A (en) 1992-10-28 1994-04-19 Praxair S.T. Technology, Inc. Powder feed composition for forming a refraction oxide coating, process used and article so produced
US5562998A (en) * 1994-11-18 1996-10-08 Alliedsignal Inc. Durable thermal barrier coating
US5683825A (en) 1996-01-02 1997-11-04 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter
DE69700448T2 (en) 1996-06-13 2000-01-13 Tosoh Corp Vapor deposition material
DE69615412T2 (en) * 1996-07-25 2002-06-20 Siemens Ag METAL ITEM WITH OXIDE LAYER AND AN IMPROVED ADHESIVE LAYER
DE59703975D1 (en) * 1996-12-10 2001-08-09 Siemens Ag PRODUCT WHICH IS EXPOSIBLE TO A HOT GAS, WITH A THERMAL INSULATION LAYER AND METHOD FOR THE PRODUCTION THEREOF
US6117560A (en) * 1996-12-12 2000-09-12 United Technologies Corporation Thermal barrier coating systems and materials
US6177200B1 (en) * 1996-12-12 2001-01-23 United Technologies Corporation Thermal barrier coating systems and materials

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838121B1 (en) 2000-04-27 2010-11-23 Applied Thin Films, Inc. Highly anisotropic ceramic thermal barrier coating materials and related composites
US20040151924A1 (en) * 2000-04-27 2004-08-05 Sankar Sambasivan Highly anisotropic ceramic thermal barrier coating materials and related composites
US6680126B1 (en) 2000-04-27 2004-01-20 Applied Thin Films, Inc. Highly anisotropic ceramic thermal barrier coating materials and related composites
US7507288B1 (en) 2000-04-27 2009-03-24 Applied Thin Films, Inc. Highly anisotropic ceramic thermal barrier coating materials and related composites
US7090723B2 (en) 2000-04-27 2006-08-15 Applied Thin Films, Inc. Highly anisotropic ceramic thermal barrier coating materials and related composites
CN1329551C (en) * 2003-12-16 2007-08-01 中国科学院长春应用化学研究所 Novel heat barrier coating material
US7041383B2 (en) 2004-01-12 2006-05-09 Chromalloy Gas Turbine Corporation Durable thermal barrier coating having low thermal conductivity
US20050153160A1 (en) * 2004-01-12 2005-07-14 Yourong Liu Durable thermal barrier coating having low thermal conductivity
EP1959099A3 (en) * 2004-12-14 2008-10-22 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
US20080131608A1 (en) * 2004-12-14 2008-06-05 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
EP1674663A3 (en) * 2004-12-14 2006-07-19 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
US20060151856A1 (en) * 2004-12-14 2006-07-13 Taiji Torigoe Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
US7859100B2 (en) * 2004-12-14 2010-12-28 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
US20080292859A1 (en) * 2007-05-07 2008-11-27 Siemens Aktiengesellschaft Ceramic powder, ceramic layer and layer system having gadolinium/mixed crystal pyrochlore phases and oxides
US8114800B2 (en) * 2007-05-07 2012-02-14 Siemens Aktiengesellschaft Ceramic powder, ceramic layer and layer system having gadolinium/mixed crystal pyrochlore phases and oxides
US20120012787A1 (en) * 2008-12-30 2012-01-19 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintilator body and scintillation device
US9183962B2 (en) * 2008-12-30 2015-11-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
US9581032B2 (en) * 2013-03-15 2017-02-28 United Technologies Corporation Coated articles and manufacture methods
US20160076136A1 (en) * 2013-03-15 2016-03-17 United Technologies Corporation Coated Articles and Manufacture Methods
US20160017726A1 (en) * 2013-03-15 2016-01-21 United Technologies Corporation Coated Articles and Manufacture Methods
US9677167B2 (en) * 2013-03-15 2017-06-13 United Technologies Corporation Coated articles and manufacture methods
WO2019179722A1 (en) * 2018-03-23 2019-09-26 Siemens Aktiengesellschaft Ceramic material based on zirconium oxide with further oxides
US11015252B2 (en) * 2018-04-27 2021-05-25 Applied Materials, Inc. Protection of components from corrosion
US20210254222A1 (en) * 2018-04-27 2021-08-19 Applied Materials, Inc. Protection of components from corrosion
US20210262099A1 (en) * 2018-04-27 2021-08-26 Applied Materials, Inc. Protection of components from corrosion
US11753726B2 (en) * 2018-04-27 2023-09-12 Applied Materials, Inc. Protection of components from corrosion
US11761094B2 (en) * 2018-04-27 2023-09-19 Applied Materials, Inc. Protection of components from corrosion

Also Published As

Publication number Publication date
CA2417212A1 (en) 2002-02-21
EP1309738A2 (en) 2003-05-14
WO2002014580A3 (en) 2002-08-08
DE60103904D1 (en) 2004-07-22
US6258467B1 (en) 2001-07-10
US6387539B1 (en) 2002-05-14
WO2002014580A2 (en) 2002-02-21
DE60103904T2 (en) 2005-07-28
CA2417212C (en) 2007-07-03
EP1309738B1 (en) 2004-06-16

Similar Documents

Publication Publication Date Title
US6258467B1 (en) Thermal barrier coating having high phase stability
US6440575B1 (en) Ceramic thermal barrier layer for gas turbine engine component
EP0848077B1 (en) Thermal barrier coating systems and materials
US6365281B1 (en) Thermal barrier coatings for turbine components
EP1218564B1 (en) In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components
US8420238B2 (en) Use of a tungsten bronze structured material and turbine component with a thermal barrier coating
US6296945B1 (en) In-situ formation of multiphase electron beam physical vapor deposited barrier coatings for turbine components
US7060365B2 (en) Thermal barrier coating material
EP1318215B1 (en) Highly defective oxides as sinter resistant thermal barrier coating
US6015630A (en) Ceramic materials for thermal barrier coatings
EP1400611A1 (en) Thermal barrier coating material comprising rare earth oxides
US20100196615A1 (en) Method for forming an oxidation-resistant film
US7537806B2 (en) Method for producing a thermal barrier coating on a substrate
EP1177330B1 (en) Thermal barrier coating
EP2767525B1 (en) Ceramic powders and methods therefor
US6686060B2 (en) Thermal barrier coating material
US7507482B2 (en) Ceramic coating material
Vakilifard et al. High Entropy Oxides as Promising Materials for Thermal Barrier Topcoats—A Review
Subramanian et al. Advanced thermal barrier coating systems for the ATS engine

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SIEMENS POWER GENERATION, INC., FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS WESTINGHOUSE POWER CORPORATION;REEL/FRAME:016996/0491

Effective date: 20050801

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: SIEMENS ENERGY, INC., FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS POWER GENERATION, INC.;REEL/FRAME:022482/0740

Effective date: 20081001

Owner name: SIEMENS ENERGY, INC.,FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS POWER GENERATION, INC.;REEL/FRAME:022482/0740

Effective date: 20081001

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12