US20020078750A1 - Method and apparatus for diagnosing and remediating language-based learning impairments - Google Patents

Method and apparatus for diagnosing and remediating language-based learning impairments Download PDF

Info

Publication number
US20020078750A1
US20020078750A1 US10/027,518 US2751801A US2002078750A1 US 20020078750 A1 US20020078750 A1 US 20020078750A1 US 2751801 A US2751801 A US 2751801A US 2002078750 A1 US2002078750 A1 US 2002078750A1
Authority
US
United States
Prior art keywords
target
mask
sound stimulus
stimulus
changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/027,518
Other versions
US6457362B1 (en
Inventor
Beverly Wright
Michael Merzenich
Srikantan Nagarajan
Athanassios Protopapas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/027,518 priority Critical patent/US6457362B1/en
Publication of US20020078750A1 publication Critical patent/US20020078750A1/en
Application granted granted Critical
Publication of US6457362B1 publication Critical patent/US6457362B1/en
Assigned to SCIENTIFIC LEARNING CORPORATION reassignment SCIENTIFIC LEARNING CORPORATION RELEASE OF SECURITY INTEREST Assignors: WPV, INC.
Assigned to COMERICA BANK reassignment COMERICA BANK SECURITY AGREEMENT Assignors: SCIENTIFIC LEARNING CORPORATION
Anticipated expiration legal-status Critical
Assigned to SCIENTIFIC LEARNING CORPORATION reassignment SCIENTIFIC LEARNING CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: COMERICA BANK, A TEXAS BANKING ASSOCIATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering

Definitions

  • the temporal threshold is the time separation (interstimulus interval) between two stimuli that are nearby in frequency, and that are of fixed frequency, intensity and duration, at which they can be accurately sequenced by the individual. This method can and has been used as a basis for screening children and adults to identify those with acoustic reception-based language learning problems, and at risk for dyslexia (reading failure).
  • the particular techniques described in the above-identified patent application focus on the difficulty that SLI persons have in discriminating between a pattern of brief sounds that occur in close temporal proximity to each other.
  • the adaptive training methods taught in that patent application ordinarily involve altering the brief sounds, by prolonging them or increasing their level (intensity), and increasing the interstimulus interval (ISI) between the sounds. These changes in the sounds and in their temporal separation makes them more intelligible to the SLI person.
  • the training program typically involves a regimen of repeated presentation of the modified sounds in a controlled pattern to the SLI individual. The individual is asked to identify the short duration sounds. The ISI between the brief sounds is gradually decreased as the individual's ability to identify the sounds improves.
  • the present invention provides a method, and apparatus for screening individuals for specific language impairment (SLI) and for training individuals who suffer from SLI so as to remediate the effects of the impairment.
  • the novel method and apparatus takes into account both the spectral content of interfering sound stimuli and the temporal ordering (or direction) of the interference between the stimuli. It is well known that even persons with normal language ability may have difficulty detecting a target sound in the presence of masking noise with the same frequency (or spectral) content as the target. Experiments have shown, however, that SLI persons often have greater difficulty than persons with normal language ability in detecting a target sound in the presence of a masking noise with a different spectral content than the target.
  • a target stimulus is the target of reception. It is the sound signal component to be identified by the individual under test.
  • a target sound stimulus may be a consonant, a tone, a tonal complex, noise, amplitude modulated noise or a frequency sweep, for example.
  • a mask sound stimulus is a sound that may destructively interfere with the target sound stimulus so as to make the target more difficult to detect in the presence of the mask.
  • a mask sound stimulus may be noise with a prescribed spectral content, a tone, a vowel, a word, a word fragment, a sentence, a sentence fragment the sound of many voices in a crowd, a tone, a tonal complex, noise, amplitude modulated noise or a frequency sweep, for example.
  • many test patterns comprising different combinations of target and mask sound stimuli are used to assess backward masking effects and spectral interference effects in an individual under test.
  • FIG. 1 there is shown an exemplary target-mask sound stimulus pattern which can be used to assess a person for impairment based upon backward masking effects.
  • a series of target-mask stimuli pairs are provided in which individual target stimuli and corresponding mask stimuli are temporally sequenced with the target preceding the corresponding mask.
  • the exemplary pattern includes the target-mask pair T 4 -M 4 , in which the target sound stimulus T 4 precedes the mask sound stimulus M 4 .
  • the pattern also includes target-mask pairs, T 1 -M 1 , T 2 -M 2 and T 3 -M 3 .
  • the time interval between target-mask pairs varies.
  • the time interval t 4 between T 4 and M 4 is greater than the time interval t 3 in T 3 -M 3 or the time interval t 1 in T 1 -M 1 .
  • the time interval t 3 is shorter than the time intervals t 4 , t 2 , or t 1 . In general, the shorter the duration of the target the more pronounced the masking effect.
  • Target durations ranging from almost 0 milliseconds (msc) to about 500 msc generally are employed in the screening and training in accordance with the invention.
  • An individual under test is expected to indicate when he or she perceives a target stimulus.
  • An electronic record is created which records the individual's responses to the various target-mask pairs in the test pattern.
  • the record which may be encoded in electronic media provides a map of the individual's ability to discern target sound stimuli as a function of the temporal spacing between a target sound stimulus and a backward mask sound stimulus.
  • FIG. 2 there is shown an exemplary target-mask sound stimulus pattern that may be used to assess spectral masking effects according to the invention.
  • a series of target-mask stimuli pairs are provided in which individual target stimuli and corresponding mask stimuli occur simultaneously (or overlap in time) and in which the spectral content of the mask varies.
  • mask M 10 lacks a frequency notch.
  • mask M 10 is continuous throughout the range of frequencies provided within M 10 . Consequently, mask M 10 contains frequency components that overlap the frequencies in the target T 10 . See, Patterson, Roy D., “Auditory Filter Shapes Derived With Noise Stimuli”, Journal of the Acoustical Society of America, Volume 59, No.
  • mask M 11 has a spectral notch with a width of delta F 11 ; mask F 12 has a spectral notch of delta F 12 ; and mask has a frequency notch of delta F 13 .
  • the width of the spectral notch in M 12 is greater than the widths of spectral notches in M 11 or M 13 , and that the width of the spectral notch in M 11 is narrower than the width of the spectral notch in M 13 .
  • the wider the frequency notch the easier it will be to detect the target in the presence of the mask.
  • frequency (or spectral) notches of 0, 0.2/(target tone frequency), 0.4/(target tone frequency) and 0.8/(target tone frequency) are employed.
  • An individual under test is expected to indicate when he or she perceives a target stimulus in the presence of each of these separate masks. More specifically, the target sound stimulus intensity level at which the individual detects the target T 10 in the presence of mask M 10 is determined. The target sound stimulus intensity level at which the individual detects the target T 11 in the presence of mask M 11 is determined. The target sound stimulus intensity level at which the individual detects the target T 12 in the presence of mask M 12 is determined. The target sound stimulus intensity level at which the individual detects the target T 13 in the presence of mask M 13 is determined.
  • An electronic record is created which records the individual's responses to the various target-mask pairs in the test pattern.
  • the record which may be encoded in electronic media provides a map of the individual's ability to discern target sound stimuli as a function of spectral interference between a target sound stimulus and a mask sound stimulus.
  • Target-mask patterns in FIGS. 1 and 2 are used to screen for two distinct problems in auditory perception.
  • Target-mask patterns of the general type shown in FIG. 1 in which the interstimulus interval is varied in a backward masking setting are particularly helpful in evaluating the degree to which an individual is unable to detect a target sound stimulus due to backward masking effects.
  • the greater the backward masking effect experienced by a person the wider the time interval must be between target and mask before the person can detect the target in the presence of the following mask.
  • the greater the backward mask effect the louder the target stimulus must be in order to be detectable in the presence of the backward mask stimulus.
  • spectral notch 2 in which the width of a spectral notch is varied are especially useful in assessing the impact of spectral interference upon an individual's ability to detect a target sound stimulus.
  • the exemplary target-mask sound stimulus patterns of FIGS. 1 and 2 are used to evaluate two independent auditory perceptual correlants.
  • the target-mask patterns exemplified in FIG. 1 can be especially useful in identifying persons likely to suffer from SLI.
  • research also shows that SLI persons often experience greater difficulty than the normal (or non-SLI) population in detecting a target sound stimulus in the presence of a mask sound stimulus when the target and mask possess different spectral content.
  • the target-mask patterns exemplified in FIG. 2 can be particularly useful in determining the extent of both simultaneous and non-simultaneous masking in SLI persons.
  • varying the spectral content of the mask can be used to ascertain the severity of the backward mask problem. For instance, a series of target-mask pairs can be provided in which the target is presented before the mask (backward mask scenario); a spectal notch in the mask is varied throughout the pattern while ISI is fixed; and, for each different spectral notch, a determination is made as to the threshold target stimulus level at which an individual can detect the target. In this manner a map of an individual's ability to detect a target in the presence of backward masks having different spectral content can be created.
  • FIG. 1 Average tone level required by 8 language-impaired (filled squares) and 8 control (open squares) children to just detect a long tone temporally centered in a bandpass noise (panel A), or a brief tone presented before, during or after that noise (panel B).
  • panel A bandpass noise
  • panel B brief tone presented before, during or after that noise
  • the error bars indicate plus and minus one standard error of the mean across subjects.
  • the stimuli are illustrated schematically along the abscissa.
  • FIG. 2 Average tone level required by 8 language-impaired (panel A) and 8 control (panel B) children to just detect a brief tone presented before, during or after a bandpass (squares, replotted from Fig. 1B) or notched (triangles) noise.
  • the error bars indicate plus and minus one standard error of the mean across subjects.
  • the stimuli are illustrated schematically at the bottom of the figure.
  • FIG. 1B shows the results of our subsequent measurements in the same children of the detection threshold for a brief tone presented with the bandpass noise at each of four temporal positions illustrated schematically along the abscissa.
  • the performance pattern of control children (open squares) was just as expected based on previous work on normal auditory masking: The tone was easier to detect when it was presented just before or just after, as opposed to during, the noise, and was easiest to detect when it preceded rather then followed the noise.
  • children with specific language impairment filled squares
  • impaired children had as much or more difficulty detecting the tone when it was presented before the noise (the backward-masking condition) as when it was presented during or after the noise. There was no overlap in performance between the two groups in the backward-masking condition.
  • the mean threshold difference between the notched and bandpass noises was smaller for impaired than for control children in both the simultaneous-delay (10.5 dB vs. 18.6 dB) and forward (15.7 dB vs. 20.5 dB) masking conditions. This indicates that impaired children were less able than controls to take advantage of a frequency separation between the tone and noise to aid detection of the tone.
  • Stimuli All stimuli were generated digitally. Tone: 1000 Hz, 20 or 200 ms onset-to-offset. Noises: 600-1400 Hz (bandpass noise) or 400-800 Hz and 1200-1600 Hz (notched noise), 300 ms onset-to-offset, 40 dB SPL spectrum level. Gating envelope: 10-ms cosine squared for all stimuli.
  • the 20-ms tone was turned on at four different times defined relative to the onset of the 300-ms noise: 20 ms (backward masking), 0 ms (simultaneous-onset masking), 200 ms (simultaneous-delay masking), or 300 ms (forward masking).
  • the 200-ms tone was turned on 50 ms after noise onset.
  • Procedure We used a standard, adaptive, two-interval forced-choice procedure to estimate the tone level required for 94% correct detections.
  • the observation intervals were separated by 800 ms.
  • Visual displays on a computer screen marked the observation intervals and gave feedback.
  • Each reported brief-tone threshold was based on the mean of two or three 30-trial measurements per child. Three measurements were always collected, but the most deviant estimate was omitted if the standard deviation of the three was greater than 15 dB. The average within-subject standard error was 3.7 dB for impaired children and 2.5 dB for control children.
  • Table 1 Mean of the standard scores on the Test of Nonverbal Intelligence (TONI-2) 25 and the Clinical Evaluation of Language Fundamentals-Revised (CELF-R) 26 for the 8 specifically language impaired (middle column) and 8 control (right column) children.
  • the mean age (years.months) and sex distribution of both groups is also provided.
  • the standard deviation of each mean value is shown in parentheses. Plus signs indicate values based on the mean of 7 of the 8 impaired children due to missing test results.
  • FIGS. 3 and 3A- 3 C describe the flow of a computer program that can control the generation and presentation of the target-mask stimulus patterns.
  • FIGS. 4 A- 4 C are two dimensional mappings of three different individuals tested in accordance with the invention for the ability to detect a target in a backward masking situation with a 20 msc target length and without a spectal notch in the mask.
  • the filled circles represent data points (mask level and ISI) for which the person under test could detect the target. At a tone level of 0, the target has the same intensity as the mask.
  • the map of FIG. 4A represents result for a normal, non-language impaired person.
  • the map of FIG. 4B represents results for a mildly language impaired person.
  • the map of FIG. 4C represents results for a severely language impaired person.

Abstract

The present invention provides an improved method and apparatus for the identification and treatment of language perception problems in specific language impaired (SLI) individuals. The invention provides a method and apparatus for screening individuals for SLI and training individuals who suffer from SLI to remediate the effects of the impairment by using the spectral content of interfering sound stimuli and the temporal ordering or direction of the interference between the stimuli.

Description

    BACKGROUND OF THE INVENTION
  • Research suggests that between three and six percent of individuals who are otherwise unimpaired have extreme difficulties producing and understanding spoken language. This disorder is typically labeled specific language impairment. Persons diagnosed with specific language impairment (SLI) often have accompanying reading difficulties, but not all children with reading difficulties have specific language impairment. [0001]
  • Current research suggests that many individuals with language learning impairments have a “temporal processing deficit” that can be demonstrated by psychoacoustic measurements of several different types. They have special problems in identifying and therefore correctly sequencing rapidly successive acoustic stimuli because those successive stimuli interfere destructively with one another. This abnormal signal reception is believed to be accounted for by abnormally long integration of acoustic information in the impaired individual's neuronal processing of the sound input stream. On the basis of these findings, procedures have been developed to assess the “temporal threshold” in impaired individuals using a stimulus sequencing task in which pairs of successively presented tonal or vowel-like stimuli were varied in their durations and interstimulus intervals. The temporal threshold is the time separation (interstimulus interval) between two stimuli that are nearby in frequency, and that are of fixed frequency, intensity and duration, at which they can be accurately sequenced by the individual. This method can and has been used as a basis for screening children and adults to identify those with acoustic reception-based language learning problems, and at risk for dyslexia (reading failure). [0002]
  • The abnormal temporal interferences that distinguish the language impaired child appear to underlie the “fuzzy” phonetic reception and “phonological awareness” deficits that also plague them. It has been specifically demonstrated that language impaired children cannot distinguish between specific phonemes (for example, the consonant-vowel contrasts /da/ and /ba/) when the consonant transitions are presented in a fast form, but can identify them if the consonant transition is adequately prolonged in time. This has been interpreted as occurring because in its long form, critical consonant features are represented outside of the domain of destructive interference or integration that destructively alters briefer stimuli. [0003]
  • Studies conducted in animal models and experiments conducted in human subjects performing visual tasks have demonstrated that the correct identification of rapidly successive inputs can be improved markedly with training. On the basis of these new experimental findings and the background perspective on the acoustic reception problems of language impaired individuals described above, a training method was invented to ameliorate the “temporal processing deficits” of language impaired and dyslexic individuals, and to facilitate complex acoustic signal and language processing in general. That training approach is the subject of U.S. patent application Ser. No. 08/351,803, filed Dec. 8, 1994, invented by Tallal et al., entitled, Method and Device for Enhancing the Recognition of Speech Among Speech-Impaired Individuals, which is expressly incorporated herein by this reference. The teachings of that patent application provide a highly effective basis for overcoming, through training, the acoustic sound stream interference problems that limit signal reception in language impaired individuals. With the dramatic “clarification” of speech input that results from such training, children have been found to perform at much higher levels at a wide variety of phonetic reception, speech/language memory, syntactic, semantic, grammatical receptive and expressive language tasks. In general, after training, their language skills are elevated to normal or nearly normal “language quotient” levels. [0004]
  • The particular techniques described in the above-identified patent application focus on the difficulty that SLI persons have in discriminating between a pattern of brief sounds that occur in close temporal proximity to each other. The adaptive training methods taught in that patent application ordinarily involve altering the brief sounds, by prolonging them or increasing their level (intensity), and increasing the interstimulus interval (ISI) between the sounds. These changes in the sounds and in their temporal separation makes them more intelligible to the SLI person. The training program typically involves a regimen of repeated presentation of the modified sounds in a controlled pattern to the SLI individual. The individual is asked to identify the short duration sounds. The ISI between the brief sounds is gradually decreased as the individual's ability to identify the sounds improves. These improvements in the ability of the individual to discriminate between the sounds is monitored throughout the training program. As the perceptual acuity of the person continues to improve, the ISI is decreased even further and the repetition of sounds is repeated with the new ISI. It has been found that, over the course of a training program, an SLI individual's ability to distinguish between brief sounds presented in a rapid sequence may improve significantly. Eventually, as a result of the training, the SLI person may be able to discriminate between substantially unmodified brief sounds, such as consonants, which are temporally separated by an amount typical to a normal speech rate. [0005]
  • While these earlier procedures for the identification and remediation of language perception problems in specific language impaired individuals generally have been highly effective, there exists a need to adopt new procedures consistent with ongoing developments in the understanding of the nature and causes of these perceptual problems. For instance, these earlier treatment methods generally do not consider the potential impact of the ordering of interfering sounds upon the ability of a SLI person to distinguish between the sounds. Additionally, for example, these prior methods do not take into account the possible effects of the spectral content of the interfering sounds upon the ability of a SLI person to differentiate between sounds presented in rapid sequence or simultaneously. Thus, there has been a need to continue to develop improved methods for the identification and treatment of language perception problems in specific language impaired (SLI) individuals based upon other elements of sound patterns such as temporal ordering of the sounds and spectral content of the sounds. The present invention meets this need. [0006]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention provides a method, and apparatus for screening individuals for specific language impairment (SLI) and for training individuals who suffer from SLI so as to remediate the effects of the impairment. The novel method and apparatus takes into account both the spectral content of interfering sound stimuli and the temporal ordering (or direction) of the interference between the stimuli. It is well known that even persons with normal language ability may have difficulty detecting a target sound in the presence of masking noise with the same frequency (or spectral) content as the target. Experiments have shown, however, that SLI persons often have greater difficulty than persons with normal language ability in detecting a target sound in the presence of a masking noise with a different spectral content than the target. Moreover, experiments have shown that although the ability of SLI individuals to detect a target sound in the presence of a masking noise improves as the spectral content of the target and the noise are separated by increasing amounts, the ability of non-language impaired persons to detect the target improves at a faster rate as the spectral separation increases. Experiments also have shown that backward masking often is greater in individuals with SLI than in persons who do not experience SLI. Thus, these experiments suggest that SLI persons have lower resolution frequency discrimination than non-SLI persons. Screening according to a presently preferred embodiment of the invention assesses the severity of backward masking interference and the severity of spectral interference in simultaneous and non-simultaneous masking. Training according to the current embodiment aims to reduce the effects of backward masking and spectral interference in persons with SLI. [0007]
  • Screening of an individual for SLI according to a current embodiment of the invention involves presenting the individual with several different patterns of target sound stimuli and mask sound stimuli. A target stimulus is the target of reception. It is the sound signal component to be identified by the individual under test. A target sound stimulus may be a consonant, a tone, a tonal complex, noise, amplitude modulated noise or a frequency sweep, for example. A mask sound stimulus is a sound that may destructively interfere with the target sound stimulus so as to make the target more difficult to detect in the presence of the mask. A mask sound stimulus may be noise with a prescribed spectral content, a tone, a vowel, a word, a word fragment, a sentence, a sentence fragment the sound of many voices in a crowd, a tone, a tonal complex, noise, amplitude modulated noise or a frequency sweep, for example. In the present implementation of the invention, many test patterns comprising different combinations of target and mask sound stimuli are used to assess backward masking effects and spectral interference effects in an individual under test. [0008]
  • Referring to the illustrative drawings of FIG. 1, there is shown an exemplary target-mask sound stimulus pattern which can be used to assess a person for impairment based upon backward masking effects. A series of target-mask stimuli pairs are provided in which individual target stimuli and corresponding mask stimuli are temporally sequenced with the target preceding the corresponding mask. The exemplary pattern includes the target-mask pair T[0009] 4-M4, in which the target sound stimulus T4 precedes the mask sound stimulus M4. The pattern also includes target-mask pairs, T1-M1, T2-M2 and T3-M3. It will be appreciated that only a few representative target-mask pairs are shown, and that there ordinarily will be many more target-mask pairs in a typical pattern in accordance with the invention. The time interval between target-mask pairs varies. For example, the time interval t4 between T4 and M4 is greater than the time interval t3 in T3-M3 or the time interval t1 in T1-M1. Moreover, the time interval t3 is shorter than the time intervals t4, t2, or t1. In general, the shorter the duration of the target the more pronounced the masking effect. Target durations ranging from almost 0 milliseconds (msc) to about 500 msc generally are employed in the screening and training in accordance with the invention. An individual under test is expected to indicate when he or she perceives a target stimulus. An electronic record is created which records the individual's responses to the various target-mask pairs in the test pattern. The record which may be encoded in electronic media provides a map of the individual's ability to discern target sound stimuli as a function of the temporal spacing between a target sound stimulus and a backward mask sound stimulus.
  • Referring to the illustrative drawings of FIG. 2, there is shown an exemplary target-mask sound stimulus pattern that may be used to assess spectral masking effects according to the invention. A series of target-mask stimuli pairs are provided in which individual target stimuli and corresponding mask stimuli occur simultaneously (or overlap in time) and in which the spectral content of the mask varies. For example, mask M[0010] 10 lacks a frequency notch. In other words, mask M10 is continuous throughout the range of frequencies provided within M10. Consequently, mask M10 contains frequency components that overlap the frequencies in the target T10. See, Patterson, Roy D., “Auditory Filter Shapes Derived With Noise Stimuli”, Journal of the Acoustical Society of America, Volume 59, No. 3, pp. 640-654. In contrast, mask M11 has a spectral notch with a width of delta F11; mask F12 has a spectral notch of delta F12; and mask has a frequency notch of delta F13. It will be appreciated from the illustrative drawings of FIG. 2 that the width of the spectral notch in M12 is greater than the widths of spectral notches in M11 or M13, and that the width of the spectral notch in M11 is narrower than the width of the spectral notch in M13. Ordinarily, the wider the frequency notch the easier it will be to detect the target in the presence of the mask. In a presently preferred embodiment frequency (or spectral) notches of 0, 0.2/(target tone frequency), 0.4/(target tone frequency) and 0.8/(target tone frequency) are employed. An individual under test is expected to indicate when he or she perceives a target stimulus in the presence of each of these separate masks. More specifically, the target sound stimulus intensity level at which the individual detects the target T10 in the presence of mask M10 is determined. The target sound stimulus intensity level at which the individual detects the target T11 in the presence of mask M11 is determined. The target sound stimulus intensity level at which the individual detects the target T12 in the presence of mask M12 is determined. The target sound stimulus intensity level at which the individual detects the target T13 in the presence of mask M13 is determined. See Rosen, Stuart and Baker, Richard J., “Characterizing Auditory Filter Nonlinearity”, Hearing Research, volume 73, 1994, pp.231-243. An electronic record is created which records the individual's responses to the various target-mask pairs in the test pattern. The record which may be encoded in electronic media provides a map of the individual's ability to discern target sound stimuli as a function of spectral interference between a target sound stimulus and a mask sound stimulus.
  • The different target-mask sound stimulus patterns in FIGS. 1 and 2 are used to screen for two distinct problems in auditory perception. Target-mask patterns of the general type shown in FIG. 1 in which the interstimulus interval is varied in a backward masking setting are particularly helpful in evaluating the degree to which an individual is unable to detect a target sound stimulus due to backward masking effects. Usually, the greater the backward masking effect experienced by a person, the wider the time interval must be between target and mask before the person can detect the target in the presence of the following mask. Alternatively, the greater the backward mask effect, the louder the target stimulus must be in order to be detectable in the presence of the backward mask stimulus. Mask patterns of the general type shown in FIG. 2 in which the width of a spectral notch is varied are especially useful in assessing the impact of spectral interference upon an individual's ability to detect a target sound stimulus. Typically, the greater the spectral interference experienced by a person, the wider the spectral notch must be between target and mask before the person can detect the target in the presence of the mask. Therefore, varying the spectrum of the mask can reveal the severity of both simultaneous (overlapping) and non-simultaneous (backward or forward) mask effects. Thus, the exemplary target-mask sound stimulus patterns of FIGS. 1 and 2 are used to evaluate two independent auditory perceptual correlants. [0011]
  • There are significant advantages in screening individuals for SLI in accordance with the present invention. For example, research shows that SLI individuals often experience more severe backward masking effects than the normal (or non-SLI) population. Hence, the target-mask patterns exemplified in FIG. 1 can be especially useful in identifying persons likely to suffer from SLI. Research also shows that SLI persons often experience greater difficulty than the normal (or non-SLI) population in detecting a target sound stimulus in the presence of a mask sound stimulus when the target and mask possess different spectral content. Thus, the target-mask patterns exemplified in FIG. 2 can be particularly useful in determining the extent of both simultaneous and non-simultaneous masking in SLI persons. [0012]
  • It will be appreciated that in backward masking, varying the spectral content of the mask can be used to ascertain the severity of the backward mask problem. For instance, a series of target-mask pairs can be provided in which the target is presented before the mask (backward mask scenario); a spectal notch in the mask is varied throughout the pattern while ISI is fixed; and, for each different spectral notch, a determination is made as to the threshold target stimulus level at which an individual can detect the target. In this manner a map of an individual's ability to detect a target in the presence of backward masks having different spectral content can be created. [0013]
  • Assessment of spectral interference in both non-simultaneous and simultaneous masking are important to develop a more complete understanding of the basis for an SLI person's language impairment. For example, backward masking, a form of non-simultaneous masking, is believed to be an underlying cause of masking of a consonant sound by a following vowel sound. In the fragment /ba/, for instance, it is believed that the consonant /b/ in some cases may be backward masked by the vowel /a/. In contrast, for example, simultaneous masking, in which the target and mask overlap in time, is believed to be an underlying problem in differentiating sounds that are similar or overlapping in spectral content. The short /i/ and the short /a/ sounds, for instance, sometimes may interfere with each other due to simultaneous masking effects. See Stark, Rachel E. and Heinz, John m., “Vowel Perception in Children with and Without Language Impairment”, Journal of Hearing and Speech Research, Volume 39, pp.860-869. Of course, a better understanding of the nature of a person's learning impairment may result in the development of an improved and more realistic course of adaptive training for such individual.[0014]
  • EXAMPLE
  • The following example reports the results of psychophysical tests employing simple tones and noises showing that children with specific language impairment have severe auditory perceptual deficits for brief but not long tones in particular sound contexts. The data supports the view that language difficulties result from problems in auditory perception, and provide further information about the nature of these perceptual problems. [0015]
  • FIG. 1: Average tone level required by 8 language-impaired (filled squares) and 8 control (open squares) children to just detect a long tone temporally centered in a bandpass noise (panel A), or a brief tone presented before, during or after that noise (panel B). The error bars indicate plus and minus one standard error of the mean across subjects. The stimuli are illustrated schematically along the abscissa. [0016]
  • FIG. 2: Average tone level required by 8 language-impaired (panel A) and 8 control (panel B) children to just detect a brief tone presented before, during or after a bandpass (squares, replotted from Fig. 1B) or notched (triangles) noise. The error bars indicate plus and minus one standard error of the mean across subjects. The stimuli are illustrated schematically at the bottom of the figure. [0017]
  • We measured the detection threshold for a brief tone presented before, during or after two different masking noises in 8 children diagnosed with specific language impairment, and in 8 control children with normal language skills who matched the others in age and nonverbal intelligence. Details of the two groups are provided in Table 1. Before beginning the tests with the brief tones, we introduced the children to the listening task by measuring their detection thresholds for a long tone presented in the temporal center of a “bandpass” noise that included frequencies at and near the tone frequency. The points above the schematic illustration of the stimuli in Fig. 1A show that the same mean tone level was required by specifically language impaired (filled squares) and control (open squares) children to detect the long tone in this masking condition [F(1, 14)<1p>0.05]. [0018]
  • FIG. 1B shows the results of our subsequent measurements in the same children of the detection threshold for a brief tone presented with the bandpass noise at each of four temporal positions illustrated schematically along the abscissa. The performance pattern of control children (open squares) was just as expected based on previous work on normal auditory masking: The tone was easier to detect when it was presented just before or just after, as opposed to during, the noise, and was easiest to detect when it preceded rather then followed the noise. In comparison to controls, children with specific language impairment (filled squares) needed a higher tone level for detection in every condition. Most remarkably, impaired children had as much or more difficulty detecting the tone when it was presented before the noise (the backward-masking condition) as when it was presented during or after the noise. There was no overlap in performance between the two groups in the backward-masking condition. [0019]
  • We also measured detection thresholds in the same children for a brief tone presented at each of the four temporal positions in a spectrally “notched” noise that excluded frequencies at and near the tone frequency. The two panels of FIG. 2 show the mean tone thresholds for each group for both the bandpass (squares; replotted from FIG. 1B) and notched (triangles) noises. The conditions are schematically illustrated at the bottom of the figure. For both impaired and control children, the tone was typically easier to detect with the notched than with the bandpass noise. This is expected in normal hearing. However, in contrast to most adults, neither group of children showed a clear threshold difference between the two masker types when the tone and noise started simultaneously. [0020]
  • Two aspects of the performance of impaired children with the notched noise are particularly important. First, language-impaired children were better at hearing the tone presented before (the backward-masking condition) the notched than the bandpass noise. Their severe perceptual deficit for tones presented in this temporal position was worst when the tone and following noise had similar frequencies. Follow-up tests on 4 additional impaired children showed that the detection threshold in the backward masking condition reached control values when the spectral notch in the masker was made sufficiently wide. Thus, impaired children had perceptual difficulties in certain temporal and spectral sound contexts, but did not display a general deficit in the perception of rapidly presented sounds. Second, the mean threshold difference between the notched and bandpass noises was smaller for impaired than for control children in both the simultaneous-delay (10.5 dB vs. 18.6 dB) and forward (15.7 dB vs. 20.5 dB) masking conditions. This indicates that impaired children were less able than controls to take advantage of a frequency separation between the tone and noise to aid detection of the tone. [0021]
  • A 2×2×4 analysis of variance performed on the data in FIG. 2 revealed significant main effects for subject group [F(1, 112) [0022] = 102.70 , p < .0001 ] , noise type [ F ( 1 , 112 ) = 43.94 , p < .0001 ] , and tone position [ F ( 3 , 112 ) = 41.93 , p < .0001 ] . There were also significant interactions between subject group and tone position [ F ( 3 , 112 ) = 16.72 , p < .0001 ] and noise type and tone position [ F ( 3 , 112 ) = 3.53 , p = 017 ] , but not between the subject group and the noise type [ F ( 1 , 112 ) = 0.08 , p > .05 ] , nor among the three factors [ F ( 3 , 112 ) = 1.07 , p > .05 ] . A Scheffe post hoc analysis indicated that the thresholds of the two subject groups differed significantly only in the two backward - masking conditions ( p < .0001 for the bandpass masker and p = .0002 for the notched - noise masker ) .
    Figure US20020078750A1-20020627-M00001
  • In sum, these results suggest that children with specific language impairment are severely impaired in their ability to (1) separate a brief sound from a rapidly following sound of similar frequency, and (2) enhance the detection of a brief tone by exploiting a frequency difference between the tone and a longer co-occurring or preceding masking sound. These auditory perceptual deficits could clearly degrade the perception of the brief acoustic elements of speech. Many individuals with language impairment and other disorders related to spoken language might benefit from diagnoses incorporating the auditory tests used here, and from auditory training that focuses on their most severely impaired abilities. The present auditory tests might also aid in the diagnosis and treatment of persons with reading difficulties. We have preliminary data on 12 such individuals. Five had excessive amounts of auditory backward masking, but none had as much masking as the children with specific language impairment. Our results are in accord with the conclusion of a recent review that some, but not all, children with reading problems have difficulties accurately perceiving rapidly presented stimuli. Our data are also consistent with a previous report showing that children with reading difficulties are particularly poor at discriminating words that differ only in their first sound. Finally, the temporal and spectral specificity of the auditory perceptual deficits reported here may serve to guide the search for the underlying neural bases of language disorders. [0023]
  • METHODS
  • Stimuli: All stimuli were generated digitally. Tone: 1000 Hz, 20 or 200 ms onset-to-offset. Noises: 600-1400 Hz (bandpass noise) or 400-800 Hz and 1200-1600 Hz (notched noise), 300 ms onset-to-offset, 40 dB SPL spectrum level. Gating envelope: 10-ms cosine squared for all stimuli. Masking conditions: The 20-ms tone was turned on at four different times defined relative to the onset of the 300-ms noise: 20 ms (backward masking), 0 ms (simultaneous-onset masking), 200 ms (simultaneous-delay masking), or 300 ms (forward masking). The 200-ms tone was turned on 50 ms after noise onset. [0024]
  • Procedure: We used a standard, adaptive, two-interval forced-choice procedure to estimate the tone level required for 94% correct detections. The observation intervals were separated by 800 ms. Visual displays on a computer screen marked the observation intervals and gave feedback. Each reported brief-tone threshold was based on the mean of two or three 30-trial measurements per child. Three measurements were always collected, but the most deviant estimate was omitted if the standard deviation of the three was greater than 15 dB. The average within-subject standard error was 3.7 dB for impaired children and 2.5 dB for control children. Because the long-tone condition was used to acquaint the children with the task, we report only the last threshold estimate of the one to three obtained from each child in that condition; in total, the 8 impaired children completed 14 threshold estimates and the 8 control children 13 estimates in the long-tone condition. We collected the data with the long tone first, and then presented the four brief-tone conditions in pairs [bandpass then notched noise] in a diagram balanced latin square. We tested each child individually in a soundattenuated room. Stimuli were delivered to the right ear over Sennheiser HD450 headphones. All children were paid for their participation. [0025]
    TABLE 1
    Language Impaired
    MEAN (Sd) Control
    Age  8.1 (6.3)  8.0 (7.1)
    Sex 6 M, 2 F 3 M, 5 F
    TONI-2 101 (5.3) 105.1 (6.5)
    CELF-R:
    Receptive Language  83.4 (6.9)+ 112.5 (7.8)
    Linguistic Concepts  7.4 (1.5)+  10.6 (2.3)
    Sentence Structure  6.9 (1.6)  12.4 (2.0)
    Oral Directions  7.5 (2.1)  13.0 (2.1)
    Expressive Language  70.7 (4.8)+  98.1 (5.2)
    Word Structure  5.5 (1.6)  8.8 (1.6)
    Formulated Sentences  4.9 (1.3)  8.6 (1.1)
    Recalling Sentences  6.3 (2.1)  12.0 (1.3)
    Total Language  75.3 (4.5)+ 105.3 (5.4)
  • Table 1: Mean of the standard scores on the Test of Nonverbal Intelligence (TONI-2)[0026] 25 and the Clinical Evaluation of Language Fundamentals-Revised (CELF-R)26 for the 8 specifically language impaired (middle column) and 8 control (right column) children. The mean age (years.months) and sex distribution of both groups is also provided. The standard deviation of each mean value is shown in parentheses. Plus signs indicate values based on the mean of 7 of the 8 impaired children due to missing test results.
  • Apparatus Set Up and Screening Maps [0027]
  • Screening and training in accordance with the present invention can be performed using a standard personal computer equipped with an input device such as a keyboard or a mouse and headphones to deliver pattern of target-mask pairs to an individual. Conventional signal generation equipment can be used to actually generate the target-mask patterns. The illustrative drawing of FIGS. 3 and 3A-[0028] 3C describe the flow of a computer program that can control the generation and presentation of the target-mask stimulus patterns. The illustrative drawings of FIGS. 4A-4C are two dimensional mappings of three different individuals tested in accordance with the invention for the ability to detect a target in a backward masking situation with a 20 msc target length and without a spectal notch in the mask. The filled circles represent data points (mask level and ISI) for which the person under test could detect the target. At a tone level of 0, the target has the same intensity as the mask. The map of FIG. 4A represents result for a normal, non-language impaired person. The map of FIG. 4B represents results for a mildly language impaired person. The map of FIG. 4C represents results for a severely language impaired person.

Claims (41)

1. A method of screening individuals for audio perception problems, the method comprising the steps of:
a) selecting a target sound stimulus and a mask sound stimulus such that a starting level of the target sound stimulus is sufficiently large relative to a starting level of the mask sound stimulus is sufficient so that individuals with normal audio perception can detect the target sound stimulus in the presence of the mask sound stimulus when the target sound stimulus is separated from the mask sound stimulus by at least a prescribed interstimulus interval (ISI);
b) changing the target sound stimulus level relative to the mask sound stimulus level by a prescribed amount;
c) producing the target sound stimulus and the mask sound stimulus with the changed target sound stimulus level while maintaining the prescribed ISI;
d) determining whether the individual can detect the target sound stimulus;
e) if the individual cannot detect the target sound stimulus signal then repeating the steps b) through d) until the individual can detect the target sound stimulus.
2. The method of claim 1 wherein said step of changing the target sound stimulus level relative to the mask sound stimulus level involves changing the level of the target sound stimulus while maintaining the mask sound stimulus constant.
3. The method of claim 1 wherein said step of changing the target sound stimulus level relative to the mask sound stimulus level involves increasing the level of the target sound stimulus while maintaining the mask sound stimulus constant.
4. The method of claim 1 wherein said step of changing the target sound stimulus level relative to the mask sound stimulus level involve decreasing the level of the mask sound stimulus.
5. A method of screening individuals for audio perception problems, the method comprising the steps of:
a) selecting a target sound stimulus and a mask sound stimulus such that a starting level of the target sound stimulus is sufficiently large relative to a starting level of the mask sound stimulus is sufficient so that individuals with normal audio perception can detect the target sound stimulus in the presence of the mask sound stimulus when the target sound stimulus is separated from the mask sound stimulus by at least a prescribed interstimulus interval (ISI);
b) b) changing the target sound stimulus level relative to the mask sound stimulus level by a prescribed amount;
c) c) producing the target sound stimulus and the mask sound stimulus with the changed target sound stimulus level while maintaining the prescribed ISI;
d) d) determining whether the individual can detect the target sound stimulus; and
e) e) if the individual can detect the target sound stimulus signal then repeating the steps b) through d) until the individual cannot detect the target sound stimulus.
6. The method of claim 5 wherein said step of changing the target sound stimulus level relative to the mask sound stimulus level involves changing the level of the target sound stimulus while maintaining the mask sound stimulus constant.
7. The method of claim 5 wherein said step of changing the target sound stimulus level relative to the mask sound stimulus level involves decreasing the level of the target sound stimulus while maintaining the mask sound stimulus constant.
8. The method of claim 5 wherein said step of changing the target sound stimulus level relative to the mask sound stimulus level involve increasing the level of the mask sound stimulus.
9. A method of screening individuals for audio perception problems, the method comprising the steps of:
a) selecting a target sound stimulus and a mask sound stimulus such that a starting interstimulus interval (ISI) between the beginning of the target and the mask is sufficiently wide such that individuals with normal audio perception can detect the target sound stimulus in the presence of the mask sound stimulus when the target sound stimulus is at a prescribed level relative to a mask sound stimulus level;
b) changing the changing the ISI by a prescribed amount;
c) producing the target sound stimulus and the mask sound stimulus with the changed ISI while maintaining the prescribed relative target stimulus to mask stimulus levels;
d) determining whether the individual can detect the target sound stimulus; and
e) if the individual cannot detect the target sound stimulus signal then repeating the steps b) through d) until the individual can detect the target sound stimulus.
10. The method of claim 9 wherein the step of changing the ISI involves increasing the ISI by a prescribed amount.
11. A method of screening individuals for audio perception problems, the method comprising the steps of:
a) selecting a target sound stimulus and a mask sound stimulus such that a starting interstimulus interval (ISI) between the beginning of the target and the mask is sufficiently wide such that individuals with normal audio perception can detect the target sound stimulus in the presence of the mask sound stimulus when the target sound stimulus is at a prescribed level relative to a mask sound stimulus level;
b) changing the changing the ISI by a prescribed amount;
c) producing the target sound stimulus and the mask sound stimulus with the changed ISI while maintaining the prescribed relative target stimulus to mask stimulus levels;
d) determining whether the individual can detect the target sound stimulus, and
e) if the individual can detect the target sound stimulus signal then repeating the steps b) through d) until the individual cannot detect the target sound stimulus.
12. The method of claim 11 wherein the step of changing the ISI involves decreasing the ISI by a prescribed amount.
13. A method of screening individuals for audio perception problems, the method comprising the steps of: providing multiple respective target-mask sound stimuli combinations in which respective combinations differ in one or more of (a) interstimulus interval (ISI) between target and mask sound stimuli or (b) relative levels of target and mask stimuli or (c) length of target sound stimulus; and determining which combinations of target-mask stimuli are perceived by the individual.
14. The method of claim 13 including the further step of encoding the results of said step of determining in an electronic medium.
15. A method of screening an individual for audio perception problems, the method comprising the steps of: providing multiple respective target-mask sound stimuli combinations, the combinations including, (a) target occurrence before the mask, (b) target occurrence during the mask and (c) target occurrence after the mask; determining which combinations of target-mask stimuli are perceived by the individual.
16. The method of claim 15 including the further step of encoding the results of said step of determining in an electronic medium.
17. A method of screening an individual for audio perception problems, the method comprising the steps of: providing multiple respective target-mask sound stimuli combinations in which respective combinations differ in one or more of (a) interstimulus interval (ISI) between target and mask sound stimuli or (b) relative levels of target and mask stimuli or (c) length of target sound stimulus and (d) temporal ordering of target relative to mask; determining which combinations of target-mask stimuli are perceived by the individual.
18. The method of claim 17 including the further step of encoding the results of said step of determining in an electronic medium.
19. A method of screening an individual for audio perception problems, the method comprising the steps of: providing multiple respective target-mask sound stimuli combinations, the combinations including, the target occurrence before the mask, the target occurrence during the mask and the target occurrence after the mask; determining, for each target-mask combination, the relative target level at which the individual can detect the target sound stimulus.
20. The method of claim 19 including the further step of: changing the interstimulus interval (ISI) between the target and the mask in at least one of the combinations; and repeating the steps of providing and determining with the changed ISI.
21. The method of claim 19 including the further step of: changing the length of the target sound stimulus in at least one of the target-mask combinations; and repeating the steps of providing and determining with the changed target sound stimulus length.
22. The method of claim 19 wherein said step of changing involves prolonging the target sound stimulus in at least one of the target-mask combinations.
23. A method of screening an individual for audio perception problems, the method comprising the steps of: providing multiple respective target-mask sound stimuli combinations in which the target has a prescribed frequency and the mask has a spectral notch at about the prescribed frequency, the combinations including, the target occurrence before the mask, the target occurrence during the mask and the target occurrence after the mask; determining, for each target-mask combination, the relative target level at which the individual can detect the target sound stimulus.
24. The method of claim 23 including the further step of: changing the interstimulus interval (ISI) between the target and the mask in at least one of the combinations; and repeating the steps of providing and determining with the changed ISI.
25. The method of claim 23 including the further step of: changing the length of the target sound stimulus in at least one of the target-mask combinations; and repeating th e steps of providing and determining with the changed target sound stimulus length.
26. The method of claim 25 wherein said step of changing involves prolonging the target sound stimulus in at least one of the target-mask combinations.
27. A method of screening an individual for audio perception problems, the method comprising the steps of:
a) selecting a target sound stimulus having a prescribed frequency;
b) selecting a mask sound stimulus with a spectral notch at about the prescribed frequency of the target sound stimulus;
c) changing the spectral notch by a prescribed amount;
d) providing a target-mask sound stimuli combination in which the target has the prescribed frequency and the mask has the changed spectral notch;
e) determining whether the individual can detect the provided target sound stimulus in the presence of the mask with the changed spectral notch; and
f) repeating the steps c) through e) for a prescribed collection of target-mask sound stimuli combinations
28. The method of claim 27 including the further step of recording the results of said step of determining in electronic media.
29. The method of claim 27 wherein said step of changing the spectral notch involves narrowing the spectral notch.
30. The method of claim 27 wherein said step of changing the spectral notch involves widening the spectral notch.
31. The method of claim 27 wherein said step of providing a target-mask combination involves providing the target sound stimulus before the mask sound stimulus.
32. The method of claim 27 wherein said step of providing a target-mask combination involves providing the target sound stimulus during the mask sound stimulus.
33. The method of claim 27 wherein said step of providing a target-mask combination involves providing the target sound stimulus and the mask sound stimulus with simultaneous onset.
34. The method of claim 27 wherein said step of providing a target-mask combination involves providing the target sound stimulus after the mask sound stimulus.
35. The method of claim 27 including the further steps of: changing the interstimulus interval (ISI) between the target and the mask; and repeating said steps of providing and determining with the changed ISL
36. The method of claim 27 including the further steps of: changing the length of the target sound stimulus in at least one of the target-mask combinations; and repeating said steps of providing and determining with the changed target sound stimulus length.
37. The method of claim 36 wherein said step of changing involves prolonging the target sound stimulus of the target sound stimulus.
38. A method of screening individuals for audio perception problems, the method comprising the steps of:
a) selecting a target sound stimulus having a prescribed frequency;
b) selecting a mask sound stimulus with a spectral notch at about the prescribed frequency of the target sound stimulus;
c) changing the spectral notch by a prescribed amount;
d) providing multiple respective target-mask sound stimuli
e) combinations in which the target has the prescribed frequency and the mask has the changed spectral notch, the combinations including, the target occurrence before the mask, the target occurrence during the mask and the target occurrence after the mask;
f) for each target-mask combination, determining the relative target level at which the individual can detect the target sound stimulus; and
g) repeating the steps c) through e) for a prescribed collection of target-mask sound stimuli combinations.
39. The method of claim 38 including, after step e) and before step f), the further step of:
a) e1) changing the interstimulus interval (ISI) between the target and the mask in at least one of the target-mask combinations; and wherein said step f) includes repeating steps c), d), e) and e1) for a prescribed collection of target-mask sound stimuli combinations and ISIs.
40. The method of claim 39 including, after step e) and before step f), the further step of:
a) e1) changing the length of the target sound stimulus in at least one of the target-mask combinations; and wherein said step f) includes repeating steps c), d), e) and e1 ) for a prescribed collection of target-mask sound stimuli combinations and changed target sound stimulus lengths.
41. The method of claim 40 wherein said step e1) involves prolonging the target sound stimulus of the target sound stimulus.
US10/027,518 1997-05-07 2001-12-20 Method and apparatus for diagnosing and remediating language-based learning impairments Expired - Lifetime US6457362B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/027,518 US6457362B1 (en) 1997-05-07 2001-12-20 Method and apparatus for diagnosing and remediating language-based learning impairments

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/852,651 US6109107A (en) 1997-05-07 1997-05-07 Method and apparatus for diagnosing and remediating language-based learning impairments
US09/617,585 US6349598B1 (en) 1997-05-07 2000-07-18 Method and apparatus for diagnosing and remediating language-based learning impairments
US10/027,518 US6457362B1 (en) 1997-05-07 2001-12-20 Method and apparatus for diagnosing and remediating language-based learning impairments

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/617,585 Division US6349598B1 (en) 1997-05-07 2000-07-18 Method and apparatus for diagnosing and remediating language-based learning impairments

Publications (2)

Publication Number Publication Date
US20020078750A1 true US20020078750A1 (en) 2002-06-27
US6457362B1 US6457362B1 (en) 2002-10-01

Family

ID=25313890

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/852,651 Expired - Fee Related US6109107A (en) 1997-05-07 1997-05-07 Method and apparatus for diagnosing and remediating language-based learning impairments
US09/617,585 Expired - Lifetime US6349598B1 (en) 1997-05-07 2000-07-18 Method and apparatus for diagnosing and remediating language-based learning impairments
US10/027,518 Expired - Lifetime US6457362B1 (en) 1997-05-07 2001-12-20 Method and apparatus for diagnosing and remediating language-based learning impairments

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/852,651 Expired - Fee Related US6109107A (en) 1997-05-07 1997-05-07 Method and apparatus for diagnosing and remediating language-based learning impairments
US09/617,585 Expired - Lifetime US6349598B1 (en) 1997-05-07 2000-07-18 Method and apparatus for diagnosing and remediating language-based learning impairments

Country Status (1)

Country Link
US (3) US6109107A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080015464A1 (en) * 2006-06-27 2008-01-17 Blomberg Leslie D Temporary threshold shift detector
CN1703933B (en) * 2002-10-10 2011-07-13 力丸裕 Hearing aid, training device, game device, and audio output device
US20170171671A1 (en) * 2015-12-09 2017-06-15 Zachary Mark Smith Audio Logging for Protected Privacy
WO2018191729A1 (en) * 2017-04-13 2018-10-18 David Eddins Device for targeted feature-specific sensory therapy
US11632633B2 (en) 2017-04-13 2023-04-18 University Of South Florida Device for targeted feature-specific sensory therapy

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5927988A (en) 1997-12-17 1999-07-27 Jenkins; William M. Method and apparatus for training of sensory and perceptual systems in LLI subjects
US6290504B1 (en) * 1997-12-17 2001-09-18 Scientific Learning Corp. Method and apparatus for reporting progress of a subject using audio/visual adaptive training stimulii
US6582378B1 (en) * 1999-09-29 2003-06-24 Rion Co., Ltd. Method of measuring frequency selectivity, and method and apparatus for estimating auditory filter shape by a frequency selectivity measurement method
US6823312B2 (en) 2001-01-18 2004-11-23 International Business Machines Corporation Personalized system for providing improved understandability of received speech
US6584440B2 (en) 2001-02-02 2003-06-24 Wisconsin Alumni Research Foundation Method and system for rapid and reliable testing of speech intelligibility in children
US7048692B2 (en) * 2002-01-22 2006-05-23 Rion Co., Ltd. Method and apparatus for estimating auditory filter shape
JP4181869B2 (en) * 2002-12-19 2008-11-19 裕 力丸 Diagnostic equipment
US20050142522A1 (en) * 2003-12-31 2005-06-30 Kullok Jose R. System for treating disabilities such as dyslexia by enhancing holistic speech perception
US8210851B2 (en) * 2004-01-13 2012-07-03 Posit Science Corporation Method for modulating listener attention toward synthetic formant transition cues in speech stimuli for training
US20060073452A1 (en) * 2004-01-13 2006-04-06 Posit Science Corporation Method for enhancing memory and cognition in aging adults
US20060105307A1 (en) * 2004-01-13 2006-05-18 Posit Science Corporation Method for enhancing memory and cognition in aging adults
US20070111173A1 (en) * 2004-01-13 2007-05-17 Posit Science Corporation Method for modulating listener attention toward synthetic formant transition cues in speech stimuli for training
US20050175972A1 (en) * 2004-01-13 2005-08-11 Neuroscience Solutions Corporation Method for enhancing memory and cognition in aging adults
US20070020595A1 (en) * 2004-01-13 2007-01-25 Posit Science Corporation Method for enhancing memory and cognition in aging adults
US20070065789A1 (en) * 2004-01-13 2007-03-22 Posit Science Corporation Method for enhancing memory and cognition in aging adults
US20060051727A1 (en) * 2004-01-13 2006-03-09 Posit Science Corporation Method for enhancing memory and cognition in aging adults
US20050153267A1 (en) * 2004-01-13 2005-07-14 Neuroscience Solutions Corporation Rewards method and apparatus for improved neurological training
JP4035113B2 (en) * 2004-03-11 2008-01-16 リオン株式会社 Anti-blurring device
WO2006023964A2 (en) * 2004-08-24 2006-03-02 The Mclean Hospital Corporation Method for assessing auditory attention and vigilance
JP2007017572A (en) * 2005-07-06 2007-01-25 Rion Co Ltd Foreign language learning device and method, and recording media and program for foreign language learning
US20070134635A1 (en) * 2005-12-13 2007-06-14 Posit Science Corporation Cognitive training using formant frequency sweeps
US20100092930A1 (en) * 2008-10-15 2010-04-15 Martin Fletcher System and method for an interactive storytelling game
US20100092933A1 (en) * 2008-10-15 2010-04-15 William Kuchera System and method for an interactive phoneme video game
AU2010225433B2 (en) * 2009-03-20 2015-12-24 Cognisens Inc. Device and method for measuring mild perceptual impairment
US9691289B2 (en) * 2010-12-22 2017-06-27 Brightstar Learning Monotonous game-like task to promote effortless automatic recognition of sight words
EP2847749A1 (en) * 2012-05-09 2015-03-18 Koninklijke Philips N.V. Device and method for supporting a behavior change of a person
CN104956689B (en) 2012-11-30 2017-07-04 Dts(英属维尔京群岛)有限公司 For the method and apparatus of personalized audio virtualization
US9601026B1 (en) 2013-03-07 2017-03-21 Posit Science Corporation Neuroplasticity games for depression
WO2014164361A1 (en) 2013-03-13 2014-10-09 Dts Llc System and methods for processing stereo audio content
US20150031003A1 (en) * 2013-07-24 2015-01-29 Aspen Performance Technologies Neuroperformance
AT516046B1 (en) 2014-12-30 2016-02-15 Audio Lab Swiss Ag METHOD AND DEVICE FOR DETERMINING THE QUALITY OF A TRANSMISSION SYSTEM
US10172022B1 (en) 2017-06-29 2019-01-01 Pearson Education, Inc. Diagnostic analyzer for content receiver using wireless execution device
US11210965B2 (en) * 2018-05-17 2021-12-28 Pearson Education, Inc. Diagnostic analyzer for visual-spatial content

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010557A (en) * 1968-04-05 1977-03-08 D. H. Baldwin Company Music laboratory
US3906158A (en) * 1969-12-29 1975-09-16 James Douglas Lake Method and apparatus for conducting audiometric tests
US3721764A (en) * 1970-01-14 1973-03-20 Us Navy Auditory test facility with multistage single sideband heterodyning
US3816664A (en) * 1971-09-28 1974-06-11 R Koch Signal compression and expansion apparatus with means for preserving or varying pitch
IT995101B (en) * 1972-07-31 1975-11-10 Beller Isi APPARATUS FOR THE TREATMENT OF SPOKEN AND WRITTEN LANGUAGE DISORDERS
US4128737A (en) * 1976-08-16 1978-12-05 Federal Screw Works Voice synthesizer
US4224468A (en) * 1978-10-05 1980-09-23 Calder Jr Howard B Masking level difference adaptor for audiometers
DE2951856A1 (en) * 1979-12-21 1981-07-02 Siemens AG, 1000 Berlin und 8000 München ELECTROACOUSTIC MEASURING DEVICE
CA1149050A (en) * 1980-02-08 1983-06-28 Alfred A.A.A. Tomatis Apparatus for conditioning hearing
US4464119A (en) * 1981-11-10 1984-08-07 Vildgrube Georgy S Method and device for correcting speech
NL8202318A (en) * 1982-06-09 1984-01-02 Koninkl Philips Electronics Nv SYSTEM FOR THE TRANSFER OF VOICE OVER A DISTURBED TRANSMISSION.
US4515169A (en) * 1982-10-12 1985-05-07 Teledyne Industries, Inc. Differential latency audiometer
US4641343A (en) * 1983-02-22 1987-02-03 Iowa State University Research Foundation, Inc. Real time speech formant analyzer and display
JPS59226400A (en) * 1983-06-07 1984-12-19 松下電器産業株式会社 Voice recognition equipment
US4799261A (en) * 1983-11-03 1989-01-17 Texas Instruments Incorporated Low data rate speech encoding employing syllable duration patterns
US4696042A (en) * 1983-11-03 1987-09-22 Texas Instruments Incorporated Syllable boundary recognition from phonological linguistic unit string data
FR2568437B1 (en) * 1984-07-27 1988-10-14 Isi Beller AUDIO FREQUENCY CONVERTER APPARATUS, INSTALLATION FOR THE TREATMENT OF SUBJECTS WITH AUDIO-PHONATORY AND AUDITIVO-VERBAL DISORDERS INCLUDING SUCH APPARATUS AND METHOD USING SUCH AN INSTALLATION
US4821325A (en) * 1984-11-08 1989-04-11 American Telephone And Telegraph Company, At&T Bell Laboratories Endpoint detector
US4586905A (en) * 1985-03-15 1986-05-06 Groff James W Computer-assisted audio/visual teaching system
CA1243779A (en) * 1985-03-20 1988-10-25 Tetsu Taguchi Speech processing system
US4852168A (en) * 1986-11-18 1989-07-25 Sprague Richard P Compression of stored waveforms for artificial speech
US4884972A (en) * 1986-11-26 1989-12-05 Bright Star Technology, Inc. Speech synchronized animation
US4852170A (en) * 1986-12-18 1989-07-25 R & D Associates Real time computer speech recognition system
US4980917A (en) * 1987-11-18 1990-12-25 Emerson & Stern Associates, Inc. Method and apparatus for determining articulatory parameters from speech data
JP2791036B2 (en) * 1988-04-23 1998-08-27 キヤノン株式会社 Audio processing device
US5010495A (en) * 1989-02-02 1991-04-23 American Language Academy Interactive language learning system
NL8901985A (en) * 1989-08-01 1991-03-01 Nl Stichting Voor Het Dove En METHOD AND APPARATUS FOR SCREENING THE HEARING OF A YOUNG CHILD
EP0427953B1 (en) * 1989-10-06 1996-01-17 Matsushita Electric Industrial Co., Ltd. Apparatus and method for speech rate modification
US5143081A (en) * 1990-07-27 1992-09-01 New York University Randomized double pulse stimulus and paired event analysis
JP2609752B2 (en) * 1990-10-09 1997-05-14 三菱電機株式会社 Voice / in-band data identification device
US5215468A (en) * 1991-03-11 1993-06-01 Lauffer Martha A Method and apparatus for introducing subliminal changes to audio stimuli
US5305420A (en) * 1991-09-25 1994-04-19 Nippon Hoso Kyokai Method and apparatus for hearing assistance with speech speed control function
FR2686442B1 (en) * 1992-01-21 1994-04-29 Beller Isi IMPROVED AUDIO FREQUENCY CONVERTER APPARATUS, INSTALLATION FOR THE TREATMENT OF SUBJECTS INCLUDING SUCH APPARATUS AND METHOD USING SUCH AN INSTALLATION.
US5285498A (en) * 1992-03-02 1994-02-08 At&T Bell Laboratories Method and apparatus for coding audio signals based on perceptual model
US5289521A (en) * 1992-03-09 1994-02-22 Coleman Michael J Audio/telecommunications system to assist in speech and cognitive skills development for the verbally handicapped
US5302132A (en) * 1992-04-01 1994-04-12 Corder Paul R Instructional system and method for improving communication skills
US5393236A (en) * 1992-09-25 1995-02-28 Northeastern University Interactive speech pronunciation apparatus and method
US5487671A (en) * 1993-01-21 1996-01-30 Dsp Solutions (International) Computerized system for teaching speech
US5421731A (en) * 1993-05-26 1995-06-06 Walker; Susan M. Method for teaching reading and spelling
US5340316A (en) * 1993-05-28 1994-08-23 Panasonic Technologies, Inc. Synthesis-based speech training system
US5517595A (en) * 1994-02-08 1996-05-14 At&T Corp. Decomposition in noise and periodic signal waveforms in waveform interpolation
US5429513A (en) * 1994-02-10 1995-07-04 Diaz-Plaza; Ruth R. Interactive teaching apparatus and method for teaching graphemes, grapheme names, phonemes, and phonetics
US5540589A (en) * 1994-04-11 1996-07-30 Mitsubishi Electric Information Technology Center Audio interactive tutor
CA2206860A1 (en) * 1994-12-08 1996-06-13 Michael Mathias Merzenich Method and device for enhancing the recognition of speech among speech-impaired individuals
US5927988A (en) * 1997-12-17 1999-07-27 Jenkins; William M. Method and apparatus for training of sensory and perceptual systems in LLI subjects

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703933B (en) * 2002-10-10 2011-07-13 力丸裕 Hearing aid, training device, game device, and audio output device
US20080015464A1 (en) * 2006-06-27 2008-01-17 Blomberg Leslie D Temporary threshold shift detector
US7780609B2 (en) * 2006-06-27 2010-08-24 Leslie David Blomberg Temporary threshold shift detector
US20170171671A1 (en) * 2015-12-09 2017-06-15 Zachary Mark Smith Audio Logging for Protected Privacy
US10237664B2 (en) * 2015-12-09 2019-03-19 Cochlear Limited Audio logging for protected privacy
WO2018191729A1 (en) * 2017-04-13 2018-10-18 David Eddins Device for targeted feature-specific sensory therapy
US11632633B2 (en) 2017-04-13 2023-04-18 University Of South Florida Device for targeted feature-specific sensory therapy

Also Published As

Publication number Publication date
US6109107A (en) 2000-08-29
US6457362B1 (en) 2002-10-01
US6349598B1 (en) 2002-02-26

Similar Documents

Publication Publication Date Title
US6457362B1 (en) Method and apparatus for diagnosing and remediating language-based learning impairments
US5868683A (en) Techniques for predicting reading deficit based on acoustical measurements
Schiavetti Scaling procedures for the measurement of speech intelligibility
Rvachew et al. Perception of voiceless fricatives by children with a functional articulation disorder
Helzer et al. Auditory temporal resolution in specifically language-impaired and age-matched children
Mengler et al. Poor frequency discrimination is related to oral language disorder in children: A psychoacoustic study
Cornelissen et al. Analysis of perceptual confusions between nine sets of consonant-vowel sounds in normal and dyslexic adults
Fischer et al. On the development of low‐level auditory discrimination and deficits in dyslexia
Moberly et al. Word recognition variability with cochlear implants:“perceptual attention” versus “auditory sensitivity”
Halliday et al. Frequency discrimination and literacy skills in children with mild to moderate sensorineural hearing loss
Petinou et al. A preliminary account of phonological and morphophonological perception in young children with and without otitis media
Marler et al. Backward and simultaneous masking measured in children with language-learning impairments who received intervention with Fast ForWord or Laureate Learning Systems software
Slawinski et al. Self-reported hearing problems in daily life throughout adulthood.
Tong et al. Psychophysical and speech perception studies on two multiple channel cochlear implant patients
Basu et al. Backward masking of tones and speech in people who do and do not stutter
Griffiths et al. Auditory temporal order discrimination and backward recognition masking in adults with dyslexia
Cameron et al. The Parsing Syllable Envelopes test for assessment of amplitude modulation discrimination skills in children: development, normative data, and test–retest reliability studies
Rickard et al. Assessment of auditory processing disorder in children using an adaptive filtered speech test
Jerger et al. Visual speech alters the discrimination and identification of non-intact auditory speech in children with hearing loss
Rosen et al. A video-recorded test of lipreading for British English
Lehman et al. Perception/production relationships in the development of the vowel duration cue to final consonant voicing
Preis et al. The relationship between speech reception threshold and the assessment of annoyance caused by different environmental noises
Walker et al. The production of linguistic prosodic structures in subjects with right hemisphere damage
Preis et al. The relationship between speech intelligibility and the assessment of noise annoyance
Cameron et al. The Parsing Syllable Envelopes (ParSE) test for assessment of amplitude modulation discrimination skills in children: Development, normative data and test-retest reliability studies

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: SCIENTIFIC LEARNING CORPORATION, CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:WPV, INC.;REEL/FRAME:019600/0721

Effective date: 20070719

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: COMERICA BANK, MICHIGAN

Free format text: SECURITY AGREEMENT;ASSIGNOR:SCIENTIFIC LEARNING CORPORATION;REEL/FRAME:028801/0078

Effective date: 20120814

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: SCIENTIFIC LEARNING CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK, A TEXAS BANKING ASSOCIATION;REEL/FRAME:053624/0765

Effective date: 20200826