Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20020080894 A1
Publication typeApplication
Application numberUS 09/941,285
Publication dateJun 27, 2002
Filing dateAug 28, 2001
Priority dateOct 7, 1998
Also published asEP0993130A2, EP0993130A3, EP0993130B1, US6424679, US6449314, US6643338, US7200182, US7366266, US7613259, US8107570, US20020090038, US20020191704, US20040086065, US20050111597, US20100014619
Publication number09941285, 941285, US 2002/0080894 A1, US 2002/080894 A1, US 20020080894 A1, US 20020080894A1, US 2002080894 A1, US 2002080894A1, US-A1-20020080894, US-A1-2002080894, US2002/0080894A1, US2002/080894A1, US20020080894 A1, US20020080894A1, US2002080894 A1, US2002080894A1
InventorsAnand Dabak, Rohit Negi
Original AssigneeDabak Anand G., Rohit Negi
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Space time block coded transmit antenna diversity for WCDMA
US 20020080894 A1
Abstract
A mobile communication system is designed with an input circuit coupled to receive a first plurality of signals (rj(i+τj), i=0−N−1) during a first time (T0-T1) from an external source and coupled to receive a second plurality of signals (rj(i+τj), i=N−2N−1) during a second time (T1-T2) from the external source. The input circuit receives each of the first and second plurality of signals along respective first and second paths (j). The input circuit produces a first input signal (Rj l) and a second input signal (Rj 2) from the respective first and second plurality of signals. A correction circuit is coupled to receive a first estimate signal (αj l), a second estimate signal (αj 2) and the first and second input signals. The correction circuit produces a first symbol estimate ({overscore (S)}1) in response to the first and second estimate signals and the first and second input signals. The correction circuit produces a second symbol estimate ({overscore (S)}2) in response to the first and second estimate signals and the first and second input signals.
Images(4)
Previous page
Next page
Claims(22)
What is claimed:
1. A circuit, comprising:
a correction circuit coupled to receive a first estimate signal, a second estimate signal, a first input signal and a second input signal, the correction circuit receiving the first and second input signals from an external source along a respective signal path of a plurality of signal paths, the correction circuit producing a first symbol estimate in response to the first and second estimate signals and the first and second input signals, the correction circuit producing a second symbol estimate in response to the first and second estimate signals and the first and second input signals; and
a combining circuit coupled to receive a plurality of first symbol estimates including the first symbol estimate and coupled to receive a plurality of second symbol estimates including the second symbol estimate, the combining circuit producing a first symbol signal in response to the plurality of first symbol estimates and producing a second symbol signal in response to the plurality of second symbol estimates.
2. A circuit as in claim 1, further comprising an input circuit coupled to receive a first plurality of signals during a first time from the external source and coupled to receive a second plurality of signals during a second time from the external source, the input circuit receiving each of the first and second plurality of signals along respective first and second paths, the input circuit producing the first input signal and the second input signal from the respective first and second plurality of signals.
3. A circuit as in claim 1, further comprising an input circuit coupled to receive a plurality of signals from an external source along a plurality of signal paths, the input circuit producing a plurality of input signals including the first input signal and the second input signal corresponding to a respective signal path of the plurality of signal paths.
4. A circuit as in claim 1, wherein the correction circuit and the combining circuit are formed on a single integrated circuit.
5. A circuit as in claim 1, wherein each of the first and second symbol signals include at least one of a pilot symbol, a transmit power control symbol, a rate information symbol and a data symbol.
6. A circuit as in claim 1, wherein the first time corresponds to a transmission time of one of the first and second symbol signals and wherein the second time corresponds to a transmission time of the other of the first and second symbol signals.
7. A circuit as in claim 1, wherein a total path diversity of each of the first and second symbol signals is at least twice a number of transmitting antennas.
8. A circuit as in claim 1, wherein the first input signal is transmitted by a first antenna and a second antenna and wherein the second input signal is transmitted by the first antenna and the second antenna.
9. A circuit as in claim 8, wherein the first and the second input signal are wideband code division multiple access signals.
10. A circuit as in claim 9, wherein a total path diversity of each of the first and second symbol signals is at least twice a number of transmitting antennas.
11. A method of processing signals in a communication circuit, comprising the steps of:
receiving a plurality of first signals during a first time, each first signal corresponding to a respective signal path;
receiving a plurality of second signals during a second time;
estimating a first Rayleigh fading parameter;
estimating a second Rayleigh fading parameter;
producing a first symbol signal in response to said plurality of first signals, said plurality of second signals and said first and second Rayleigh fading parameters; and
producing a second symbol signal in response to said plurality of first signals, said plurality of second signals and said first and second Rayleigh fading parameters.
12. A method of processing signals as in claim 11, further comprising the steps of:
determining a conjugate of said each first signal;
determining a conjugate of each second signal of said plurality of second signals;
determining a conjugate of each said first Rayleigh fading parameter; and
determining a conjugate of each said second Rayleigh fading parameter.
13. A method of processing signals as in claim 12, further comprising the steps of:
determining an approximate said first symbol by adding a product of said each first signal and each respective said conjugate of each said first Rayleigh fading parameter to a product of said conjugate of said each second signal and each respective said second Rayleigh fading parameter; and
determining an approximate said second symbol by adding a product of a complement of said conjugate of said each first signal and each respective second Rayleigh fading parameter to a product of said each second signal and each respective said conjugate of each said second Rayleigh fading parameter.
14. A mobile communication system, comprising:
a mobile antenna arranged to receive a plurality of signals from an external source along a respective plurality of signal paths;
an input circuit coupled to receive the plurality of signals from the antenna, the input circuit producing a plurality of input signals including a first input signal and a second input signal corresponding to respective signal paths of the plurality of signal paths; and
a correction circuit coupled to receive a first estimate signal, a second estimate signal and the first and second input signals, the correction circuit producing a first symbol estimate in response to the first and second estimate signals and the first and second input signals, the correction circuit producing a second symbol estimate in response to the first and second estimate signals and the first and second input signals.
15. A mobile communication system as in claim 14, further comprising a combining circuit coupled to receive a plurality of first symbol estimates including the first symbol estimate and coupled to receive a plurality of second symbol estimates including the second symbol estimate, the combining circuit producing a first symbol signal in response to the plurality of first symbol estimates and producing a second symbol signal in response to the plurality of second symbol estimates.
16. A mobile communication system as in claim 15, wherein the input circuit, the correction circuit and the combining circuit are formed on a single integrated circuit.
17. A mobile communication system as in claim 15, wherein each of the first and second symbol signals include at least one of a pilot symbol, a transmit power control symbol, a rate information symbol and a data symbol.
18. A mobile communication system as in claim 14, wherein each of the first and second estimate signals is a Rayleigh fading parameter estimate.
19. A mobile communication system as in claim 14, wherein a total path diversity of each of the first and second symbol signals is at least twice a number of transmitting antennas.
20. A mobile communication system as in claim 14, wherein each of the first and second input signals is transmitted by a first antenna and a second antenna.
21. A mobile communication system as in claim 20, wherein each of the first and second input signals is a wideband code division multiple access signal.
22. A mobile communication system as in claim 21, wherein a total path diversity of each of the first and second symbol signals is at least twice a number of transmitting antennas.
Description
    FIELD OF THE INVENTION
  • [0001]
    This invention relates to wideband code division multiple access (WCDMA) for a communication system and more particularly to space time block coded transmit antenna diversity for WCDMA.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Present code division multiple access (CDMA) systems are characterized by simultaneous transmission of different data signals over a common channel by assigning each signal a unique code. This unique code is matched with a code of a selected receiver to determine the proper recipient of a data signal. These different data signals arrive at the receiver via multiple paths due to ground clutter and unpredictable signal reflection. Additive effects of these multiple data signals at the receiver may result in significant fading or variation in received signal strength. In general, this fading due to multiple data paths may be diminished by spreading the transmitted energy over a wide bandwidth. This wide bandwidth results in greatly reduced fading compared to narrow band transmission modes such as frequency division multiple access (FDMA) or time division multiple access (TDMA).
  • [0003]
    New standards are continually emerging for next generation wideband code division multiple access (WCDMA) communication systems as described in Provisional U.S. patent application Ser. No. 60/082,671, filed Apr. 22, 1998, and incorporated herein by reference. These WCDMA systems are coherent communications systems with pilot symbol assisted channel estimation schemes. These pilot symbols are transmitted as quadrature phase shift keyed (QPSK) known data in predetermined time frames to any receivers within range. The frames may propagate in a discontinuous transmission (DTX) mode. For voice traffic, transmission of user data occurs when the user speaks, but no data symbol transmission occurs when the user is silent. Similarly for packet data, the user data may be transmitted only when packets are ready to be sent. The frames include pilot symbols as well as other control symbols such as transmit power control (TPC) symbols and rate information (RI) symbols.
  • [0004]
    These control symbols include multiple bits otherwise known as chips to distinguish them from data bits. The chip transmission time (Tc), therefore, is equal to the symbol time rate (7) divided by the number of chips in the symbol (N).
  • [0005]
    Previous studies have shown that multiple transmit antennas may improve reception by increasing transmit diversity for narrow band communication systems. In their paper New Detection Schemes for Transmit Diversity with no Channel Estimation, Tarokh et al. describe such a transmit diversity scheme for a TDMA system. The same concept is described in A Simple Transmitter Diversity Technique for Wireless Communications by Alamouti. Tarokh et al. and Alamouti, however, fail to teach such a transmit diversity scheme for a WCDNIA communication system.
  • [0006]
    Other studies have investigated open loop transmit diversity schemes such as orthogonal transmit diversity (OTD) and time switched time diversity (TSTD) for WCDMA systems. Both OTD and TSTD systems have similar performance. Both use multiple transmit antennas to provide some diversity against fading, particularly at low Doppler rates and when there are insufficient paths for the rake receiver. Both OTD and TSTD systems, however, fail to exploit the extra path diversity that is possible for open loop systems. For example, the OTD encoder circuit of FIG. 5 receives symbols S1 and S2 on lead 500 and produces output signals on leads 504 and 506 for transmission by first and second antennas, respectively. These transmitted signals are received by a despreader input circuit (FIG. 6). The input circuit receives the ith of N chip signals per symbol together with noise along the jth of L multiple signal paths at a time τj after transmission. Both here and in the following text, noise terms are omitted for simplicity. This received signal rj (i+τj) at lead 600 is multiplied by a channel orthogonal code signal Cm(i+τj) that is unique to the receiver at lead 604. Each chip signal is summed over a respective symbol time by circuit 608 and produced as first and second output signals Rj 1 and Rj 2 on leads 612 and 614 as in equations [1-2], respectively. Delay circuit 610 provides a one-symbol delay T so that the output signals are produced simultaneously. R j 1 = l = 0 N - 1 r j ( i + τ j ) = α j 1 S 1 + α j 2 S 2 [ 1 ] R j 2 = l = N 2 N - 1 r j ( i + τ j ) = α j 1 S 1 - α j 2 S 2 [ 2 ]
  • [0007]
    The OTD phase correction circuit of FIG. 7 receives the signals Rj 1 and Rj 2 as input signals corresponding to the jth of L multiple signal paths. The phase correction circuit produces soft outputs or signal estimates {overscore (S)}1 and {overscore (S)}2 for symbols S1 and S2 at leads 716 and 718 as shown in equations [3-4], respectively. S ~ 1 = j = 1 L ( R j 1 + R j 2 ) α j 1 * = j = 1 L 2 α j 1 2 S 1 [ 3 ] S ~ 2 = j = 1 L ( R j 1 - R j 2 ) α j 2 * = j = 1 L 2 α j 2 2 S 2 [ 4 ]
  • [0008]
    Equations [3-4] show that the OTD method provides a single channel estimate α for each path j. A similar analysis for the TSTD system yields the same result. The OTD and TSTD methods, therefore, are limited to a path diversity of L. This path diversity limitation fails to exploit the extra path diversity that is possible for open loop systems as will be explained in detail.
  • SUMMARY OF THE INVENTION
  • [0009]
    These problems are resolved by a mobile communication system comprising an input circuit coupled to receive a first plurality of signals during a first time from an external source and coupled to receive a second plurality of signals during a second time from the external source. The input circuit receives each of the first and second plurality of signals along respective first and second paths. The input circuit produces a first input signal and a second input signal from the respective first and second plurality of signals. A correction circuit is coupled to receive a first estimate signal, a second estimate signal and the first and second input signals. The correction circuit produces a first symbol estimate in response to the first and second estimate signals and the first and second input signals. The correction circuit produces a second symbol estimate in response to the first and second estimate signals and the first and second input signals.
  • [0010]
    The present invention improves reception by providing at least 2L diversity over time and space. No additional transmit power or bandwidth is required. Power is balanced across multiple antennas.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0011]
    A more complete understanding of the invention may be gained by reading the subsequent detailed description with reference to the drawings wherein:
  • [0012]
    [0012]FIG. 1 is a simplified block diagram of a typical transmitter using Space Time Transit Diversity (STTD) of the present invention;
  • [0013]
    [0013]FIG. 2 is a block diagram showing signal flow in an STTD encoder of the present invention that may be used with the transmitter of FIG. 1;
  • [0014]
    [0014]FIG. 3 is a schematic diagram of a phase correction circuit of the present invention that may be used with a receiver;
  • [0015]
    [0015]FIG. 4A is a simulation showing STTD performance compared to Time Switched Time Diversity (TSTD) for a vehicular rate of 3 kmph;
  • [0016]
    [0016]FIG. 4B is a simulation showing STTD performance compared to TSTD for a vehicular rate of 120 kmph;
  • [0017]
    [0017]FIG. 5 is a block diagram showing signal flow in an OTD encoder of the prior art;
  • [0018]
    [0018]FIG. 6 is a block diagram of a despreader input circuit of the prior art; and
  • [0019]
    [0019]FIG. 7 is a schematic diagram of a phase correction circuit of the prior art.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0020]
    Referring to FIG. 1, there is a simplified block diagram of a typical transmitter using Space Time Transit Diversity (STTD) of the present invention. The transmitter circuit receives pilot symbols. TPC symbols, RI symbols and data symbols on leads 100, 102, 104 and 106, respectively. Each of the symbols is encoded by a respective STTD encoder as will be explained in detail. Each STTD encoder produces two output signals that are applied to multiplex circuit 120. The multiplex circuit 120 produces each encoded symbol in a respective symbol time of a frame. Thus, a serial sequence of symbols in each frame is simultaneously applied to each respective multiplier circuit 124 and 126. A channel orthogonal code Cm is multiplied by each symbol to provide a unique signal for a designated receiver. The STTD encoded frames are then applied to antennas 128 and 130 for transmission.
  • [0021]
    Turning now to FIG. 2, there is a block diagram showing signal flow in an STTD encoder of the present invention that may be used with the transmitter of FIG. 1. The STTD encoder receives symbol S1 at symbol time T and symbol S2 at symbol time 2T on lead 200. The STTD encoder produces symbol S1 on lead 204 and symbol −S2* on lead 206 at symbol time T, where the asterisk indicates a complex conjugate operation. Furthermore, the symbol time indicates a relative position within a transmit frame and not an absolute time. The STTD encoder then produces symbol S1 on lead 204 and symbol S1* on lead 206 at symbol time 2T. The bit or chip signals of these symbols are transmitted serially along respective paths 208 and 210. Rayleigh fading parameters are determined from channel estimates of pilot symbols transmitted from respective antennas at leads 204 and 208. For simplicity of analysis, a Rayleigh fading parameter αj 1 is assumed for a signal transmitted from the first antenna 204 along the jth path. Likewise, a Rayleigh fading parameter αj 2 is assumed for a signal transmitted from the second antenna 206 along the jth path. Each ith chip or bit signal rj(i+τj) of a respective symbol is subsequently received at a remote mobile antenna 212 after a transmit time τj corresponding to the jth path. The signals propagate to a despreader input circuit (FIG. 6) where they are summed over each respective symbol time to produce output signals Rj 1 and Rj 2 corresponding to the jth L multiple signal paths as previously described.
  • [0022]
    Referring now to FIG. 3, there is a schematic diagram of a phase correction circuit of the present invention that may be used with a remote mobile receiver. This phase correction circuit receives signals Rj 1 and Rj 2 as input signals on leads 610 and 614 as shown in equations [5-6], respectively. R j 1 = i = 0 N - 1 r j ( i + τ j ) = α j 1 S 1 - α j 2 S 2 * [ 5 ] R j 2 = i = N 2 N - 1 r j ( i + τ j ) = α j 1 S 1 + α j 2 S 1 * [ 6 ]
  • [0023]
    The phase correction circuit receives a complex conjugate of a channel estimate of a Rayleigh fading parameter αj 1* corresponding to the first antenna on lead 302 and a channel estimate of another Rayleigh fading parameter αj 2 corresponding to the second antenna on lead 306. Complex conjugates of the input signals are produced by circuits 308 and 330 at leads 310 and 322, respectively. These input signals and their complex conjugates are multiplied by Rayleigh fading parameter estimate signals and summed as indicated to produce path-specific first and second symbol estimates at respective output leads 318 and 322 as in equations [7-8].
  • R j 1αj 1 * +R j 2j 2=(|αj 1| 2 +|αj 2| 2 )S 1  [7]
  • R j 1j 2 +R j 2αj 1*=(|αj 1| 2 +|αj 2| 2 )S 2  [8]
  • [0024]
    These path-specific symbol estimates are then applied to a rake combiner circuit to sum individual path-specific symbol estimates, thereby providing net soft symbols as in equations [9-10]. S ~ 1 = j = 1 L R j 1 α j 1 * + R j 2 * α j 2 [ 9 ] S ~ 2 = j = 1 L - R j 1 * α j 2 + R j 2 α j 1 * [ 10 ]
  • [0025]
    These soft symbols or estimates provide a path diversity L and a transmit diversity 2. Thus, the total diversity of the STTD system is 2L. This increased diversity is highly advantageous in providing a reduced bit error rate. The simulation result of FIG. 4 compares a bit error rate (BER) of STTD with TSTD for various ratios of energy per bit (Eb) to noise (No) at a relative speed of 3 Kmph. The OTD and TSTD systems were found to be the same in other simulations. The simulation shows that a 7.5 dB ratio Eb/No corresponds to a BER of 2.0E-3 for TSTD. The same BER, however, is achieved with a 7.2 dB ratio Eb/No. Thus, STTD produces approximately 0.3 dB improvement over TSTD. The simulation of FIG. 5 compares the BER of STTD with TSTD for various values of Eb/No at a relative speed of 120 Kmph. This simulation shows a typical 0.25 dB improvement for STTD over TSTD even for high Doppler rates. By way of comparison, STTD demonstrates a 1.0 dB advantage over the simulated curve of FIG. 5 without diversity at a BER of 2.6E-3. This substantial advantage further demonstrates the effectiveness of the present invention.
  • [0026]
    Although the invention has been described in detail with reference to its preferred embodiment, it is to be understood that this description is by way of example only and is not to be construed in a limiting sense. For example, several variations in the order of symbol transmission would provide the same 2L diversity. Moreover, the exemplary diversity of the present invention may be increased with a greater number of transmit or receive antennas. Furthermore, novel concepts of the present invention are not limited to exemplary circuitry, but may also be realized by digital signal processing as will be appreciated by those of ordinary skill in the art with access to the instant specification.
  • [0027]
    It is to be further understood that numerous changes in the details of the embodiments of the invention will be apparent to persons of ordinary skill in the art having reference to this description. It is contemplated that such changes and additional embodiments are within the spirit and true scope of the invention as claimed below.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7099644Dec 28, 2001Aug 29, 2006Visteon Global Technologies, Inc.Beamsteering control system for a vehicle radio receiver
US7444161Mar 22, 2002Oct 28, 2008Huawei Technologies Co., Ltd.Self & minus; adaptive weighted space time transmitting diversity method and system thereof
US7471734 *Apr 24, 2002Dec 30, 2008Motorola, Inc.Space-time transmit diversity scheme for time-dispersive propagation media
US8311492 *Nov 30, 2009Nov 13, 2012Interdigital Technology CorporationSimple block space time transmit diversity using multiple spreading codes
US20020181430 *Apr 24, 2002Dec 5, 2002Joseph ThomasSpace-time transmit diversity scheme for time-dispersive propagation media
US20030125003 *Dec 28, 2001Jul 3, 2003Whikehart J. WilliamBeamsteering control system for a vehicle radio receiver
US20050181736 *Mar 22, 2002Aug 18, 2005Aijun CaoSelf & minus; adaptive weighted space time transmitting diversity method and system thereof
US20100074242 *Nov 30, 2009Mar 25, 2010Interdigital Technology CorporationSimple block space time transmit diversity using multiple spreading codes
Classifications
U.S. Classification375/316
International ClassificationH04L1/00, H04L1/02, H04B7/26, H04J13/00, H04L1/06, H04B7/06, H04B7/02
Cooperative ClassificationH04L1/0065, H04L1/0618, H04B7/0669, H04L1/0631, H04L1/0071
European ClassificationH04B7/06C2C, H04L1/06T, H04L1/00B7V, H04L1/00B7K1, H04L1/06T5
Legal Events
DateCodeEventDescription
Feb 28, 2006FPAYFee payment
Year of fee payment: 4
Feb 19, 2010FPAYFee payment
Year of fee payment: 8
Feb 25, 2014FPAYFee payment
Year of fee payment: 12
Jan 19, 2017ASAssignment
Owner name: INTEL CORPORATION, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEXAS INSTRUMENTS INCORPORATED;REEL/FRAME:041383/0040
Effective date: 20161223