US20020081077A1 - Tunable fiber optic connector and method for assembling - Google Patents

Tunable fiber optic connector and method for assembling Download PDF

Info

Publication number
US20020081077A1
US20020081077A1 US09/749,223 US74922300A US2002081077A1 US 20020081077 A1 US20020081077 A1 US 20020081077A1 US 74922300 A US74922300 A US 74922300A US 2002081077 A1 US2002081077 A1 US 2002081077A1
Authority
US
United States
Prior art keywords
housing
front housing
connector
rear housing
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/749,223
Other versions
US6428215B1 (en
Inventor
Patrick Nault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commscope EMEA Ltd
Commscope Technologies LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/749,223 priority Critical patent/US6428215B1/en
Assigned to ADC TELECOMMUNICATIONS, INC. reassignment ADC TELECOMMUNICATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAULT, PATRICK JUDE
Priority to AT01988324T priority patent/ATE428125T1/en
Priority to DE60138304T priority patent/DE60138304D1/en
Priority to MXPA03005823A priority patent/MXPA03005823A/en
Priority to PCT/US2001/048708 priority patent/WO2002052310A2/en
Priority to EP01988324A priority patent/EP1348142B1/en
Priority to AU2002241641A priority patent/AU2002241641A1/en
Priority to CNB018220452A priority patent/CN1220902C/en
Priority to TW090132390A priority patent/TW530172B/en
Priority to ARP010106027A priority patent/AR031971A1/en
Publication of US20020081077A1 publication Critical patent/US20020081077A1/en
Priority to US10/211,998 priority patent/US6695489B2/en
Publication of US6428215B1 publication Critical patent/US6428215B1/en
Application granted granted Critical
Priority to HK04107515A priority patent/HK1064743A1/en
Assigned to TYCO ELECTRONICS SERVICES GMBH reassignment TYCO ELECTRONICS SERVICES GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADC TELECOMMUNICATIONS, INC.
Assigned to COMMSCOPE EMEA LIMITED reassignment COMMSCOPE EMEA LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TYCO ELECTRONICS SERVICES GMBH
Assigned to COMMSCOPE TECHNOLOGIES LLC reassignment COMMSCOPE TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COMMSCOPE EMEA LIMITED
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT (TERM) Assignors: COMMSCOPE TECHNOLOGIES LLC
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT (ABL) Assignors: COMMSCOPE TECHNOLOGIES LLC
Assigned to COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, ANDREW LLC, ALLEN TELECOM LLC, REDWOOD SYSTEMS, INC. reassignment COMMSCOPE TECHNOLOGIES LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to REDWOOD SYSTEMS, INC., COMMSCOPE TECHNOLOGIES LLC, ANDREW LLC, COMMSCOPE, INC. OF NORTH CAROLINA, ALLEN TELECOM LLC reassignment REDWOOD SYSTEMS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. TERM LOAN SECURITY AGREEMENT Assignors: ARRIS ENTERPRISES LLC, ARRIS SOLUTIONS, INC., ARRIS TECHNOLOGY, INC., COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, RUCKUS WIRELESS, INC.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. ABL SECURITY AGREEMENT Assignors: ARRIS ENTERPRISES LLC, ARRIS SOLUTIONS, INC., ARRIS TECHNOLOGY, INC., COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, RUCKUS WIRELESS, INC.
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: COMMSCOPE TECHNOLOGIES LLC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3869Mounting ferrules to connector body, i.e. plugs
    • G02B6/3871Ferrule rotatable with respect to plug body, e.g. for setting rotational position ; Fixation of ferrules after rotation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3843Means for centering or aligning the light guide within the ferrule with auxiliary facilities for movably aligning or adjusting the fibre within its ferrule, e.g. measuring position or eccentricity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3869Mounting ferrules to connector body, i.e. plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • G02B6/266Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3818Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type
    • G02B6/3821Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type with axial spring biasing or loading means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/389Dismountable connectors, i.e. comprising plugs characterised by the method of fastening connecting plugs and sockets, e.g. screw- or nut-lock, snap-in, bayonet type
    • G02B6/3893Push-pull type, e.g. snap-in, push-on

Definitions

  • the present invention relates to tunable fiber optic connectors for use in optical fiber signal transmission systems, and to methods for assembling such fiber optic connectors.
  • Fiber optic cables are used in the telecommunication industry to transmit light signals in high speed data and communication systems.
  • a standard fiber optic cable includes a fiber with an inner light transmitting optical core. Surrounding the fiber typically is a reinforcing layer and an outer protective casing.
  • a fiber terminates at a fiber optic connector.
  • Connectors are frequently used to non-permanently connect and disconnect optical elements in a fiber optic transmission system.
  • Other types of connectors include ST and D4-type connectors.
  • a typical SC fiber optic connector includes a housing having a front end positioned opposite from a rear end.
  • the front end of the SC connector housing is commonly configured to be inserted within an adapter.
  • An example adapter is shown in U.S. Pat. No. 5,317,663, the disclosure of which is incorporated by reference.
  • the SC connector typically further includes a ferrule that is positioned within the front and rear ends of the housing, and adjacent the front end. The ferrule is axially moveable relative to the housing, and is spring biased toward the front of the connector.
  • the fiber optic cable has an end that is stripped. The stripped end includes a bare fiber that extends into the connector and through the ferrule.
  • a connector such as the connector described above, is mated to another connector within an adapter like the adapter of U.S. Pat. No. 5,317,663.
  • a first connector is received within the front portion of the adapter, and a second fiber is received within the rear portion of the adapter.
  • the connector includes a ferrule that is retainably engaged within a hub.
  • the connector further includes a rear housing and a front housing.
  • the rear housing is sized to receive and rotationally retain the hub.
  • the front housing has a bore that receives and engages the exterior surface of the rear housing.
  • the front and rear housing include engagement members that allow the rear housing to be retained within the front housing and rotated relative to the front housing between discrete positions.
  • Another aspect of the present invention relates to a method for assembling a fiber optic connector.
  • the method includes providing a ferrule retainably engaging a hub. This assembly is then positioned within the bore of a rear housing with the hub rotationally retained within the bore. Next, the rear housing is inserted into the bore of a front housing, and the rear housing is then rotated within the front housing between discrete positions.
  • FIG. 1 is a side view of an SC-type connector constructed in accordance with the principles of the present invention without the grip;
  • FIG. 2 is a partial cross-sectional side view taken longitudinally through the connector of FIG. 1 between line 2 - 2 without the boot;
  • FIG. 3 is a cross-sectional side view of the connector of FIG. 1 fully assembled including the grip mounted over the front of the connector and a fiber optic cable attached to the connector;
  • FIG. 4 is a cross-sectional side view of the fully assembled connector shown in FIG. 3 rotated 90 degrees to a second orientation about the longitudinal axis;
  • FIG. 5 is a cross-sectional end view taken along line 5 - 5 in FIG. 4;
  • FIG. 6 is a further cross-sectional end view taken along line 6 - 6 in FIG. 4;
  • FIG. 7 is an exploded perspective view of the SC-type connector of the present invention.
  • FIG. 8 is a cross-sectional side view of the hub with connected ferrule used in the SC-type connector of the present invention.
  • FIG. 9 is a cross-sectional side view of the front housing piece of the SC-type connector of the present invention.
  • FIG. 10 is an enlarged cross-sectional side view showing a portion of the collar on the rear housing piece of the SC-type connector engaging one of the slots in the front housing piece.
  • FIG. 1 illustrates an SC-type connector 20 constructed in accordance with the principles of the present invention.
  • the connector 20 includes a housing 22 having a front housing 24 that connects to a rear housing 26 .
  • a boot 28 is mounted at the rear end 23 of the connector 20 .
  • the front portion 49 of a ferrule 48 is shown extending out the front end 25 of the connector 20 .
  • the ferrule 48 is mounted to a hub 44 (not shown in FIG. 1) which together are slidably mounted within the connector 20 .
  • the rear housing 26 is a unitary piece. However, it could alternatively be a constructed of more than one piece such as the two-piece construction shown and described in pending application Ser. No. 09/459,968, filed Dec. 13, 1999, the disclosure of which is expressly incorporated by reference herein.
  • FIG. 1 does not include the slidable outer grip located at the front of the housing that is typically found on an SC-type connector.
  • the grip and the cable are shown on other figures and will be described later in the specification in connection with the description of those other figures.
  • the front housing 24 of the connector 20 extends along a longitudinal axis 30 and includes a front end 32 positioned opposite from a rear end 34 .
  • the front housing 24 also defines a front chamber 36 and a rear chamber 38 .
  • a transverse wall 40 separates the front and rear chambers 36 and 38 .
  • An opening 42 centered about the longitudinal axis 30 is defined by the transverse wall 40 .
  • the front and rear ends 32 and 34 of the front housing piece 24 are open with a bore 33 (see FIG. 4) formed therebetween extending along longitudinal axis 30 .
  • the connector 20 also includes a hub 44 positioned within the connector 20 .
  • the hub 44 is mounted to slide longitudinally along the axis 30 relative to the front housing piece 24 .
  • the hub 44 has openings 45 and 47 at its front and rear portions 55 and 57 with a bore 53 extending between the openings.
  • the hub 44 secures a ferrule 48 .
  • the ferrule 48 includes a rear portion 51 mounted within the front opening 45 defined by the hub 44 .
  • the ferrule 48 may be secured to the hub 44 using a conventional fastening technique, such as an epoxy adhesive.
  • the hub 44 can also be mounted to the ferrule 48 with an interference fit or it can be molded around the ferrule 48 .
  • the ferrule 48 includes a bore 59 for receiving a bare optical fiber.
  • the ferrule 48 extends along the longitudinal axis 30 from the hub 44 toward the front end 32 of the front housing piece 24 .
  • the ferrule 48 extends through the central opening 42 of the transverse wall 40 between the front and rear chambers 36 and 38 of the front housing piece 24 , and protrudes out from the front end 23 of the connector 20 .
  • the connector 20 further includes a coil spring 56 positioned within the rear chamber 38 .
  • the coil spring 56 surrounds the rear portion 57 of the hub 44 and is captured between a forwardly facing shoulder 58 formed by the rear housing piece 26 and a rearwardly facing shoulder 60 formed by the hub 44 .
  • the spring 56 functions to bias the hub 44 toward the front end 32 of the front housing piece 24 . Because the ferrule 48 is connected to the hub 44 , the spring 56 also functions to bias the ferrule 48 in a forward direction.
  • the rear housing 26 also extends along longitudinal axis 30 and includes a front end 62 positioned opposite from a rear end 64 .
  • the hub 44 and surrounding spring 56 slide into the opening 27 at the front end 62 of the rear housing 26 .
  • the hub 44 and spring 56 are not mechanically fastened to the rear housing 26 , and thus are free to move longitudinally along axis 30 with respect to the rear housing 26 .
  • the only limit placed on the rearward movement of the hub 44 and spring 56 into the rear housing 26 is the forward facing shoulder 58 on the rear housing 26 which, as mentioned above, engages the spring 56 .
  • the engagement of the spring 56 to the shoulder 58 functions to bias the hub 44 and connected ferrule 48 outward from the opening 27 at the front end 62 of the rear housing 26 .
  • the front portion 55 of the hub 44 and the opening 27 at the front end 62 of the rear housing 26 are sized so that the hub 44 , when received within the rear housing 26 , cannot be rotated within the rear housing 26 .
  • the ferrule 48 which is secured to the hub 44 , does not rotate relative to the rear housing 26 when the hub 44 is fully inserted therein.
  • This can be achieved by having a non-circularly shaped hub 44 and a corresponding non-circularly shaped opening 27 at the front end 62 of the rear housing 26 .
  • the hub 44 and the opening 27 to the rear housing 26 have the same non-noncircular shape so that the hub 44 can only be received within the opening 27 in one orientation. As shown in FIG.
  • the rear portion 34 of the front housing 24 includes two extensions 66 and 68 that define the opening 29 at the rear portion 34 .
  • the extensions 66 and 68 also define two tapered cut-outs 70 that extend longitudinally toward the front end 32 of the front housing 24 on two of the sides of the front housing 24 (see FIG. 7 showing one of the tapered cut-outs 70 on the top-facing side of the front housing 24 ).
  • the cut-outs 70 give the extensions 66 and 68 a resiliency allowing them to be deflected outward when suitable pressure is applied from within the opening 29 .
  • each of the resilient extensions 66 and 68 proximate the opening 29 at the rear end 34 are a pair of projections, or teeth 74 and 76 , extending into the bore 33 of the front housing 24 (see FIG. 5).
  • Each of the pairs of teeth 74 and 76 defines a recess 78 therebetween.
  • Adjacent the pairs of teeth 74 and 76 are slots 80 formed within the resilient extensions 66 and 68 .
  • the front housing 24 connects to the rear housing 26 .
  • the front end 62 of rear housing 26 is received into the opening 29 at the rear end 34 of the front housing 24 .
  • a collar 82 extends around the external surface of the rear housing 26 .
  • the collar 82 presses up against the pairs of teeth 74 and 76 that project into the bore 33 of the front housing 24 , inhibiting further insertion of the rear housing 26 into the front housing 24 .
  • the resilient extensions 66 and 68 are deflected outward which increases the opening 29 slightly to allow the collar 82 to pass over the pairs of teeth 74 and 76 .
  • the front and rear housings 24 and 26 further include structure that inhibits rotational movement of the rear housing 26 when it is snapped into the front housing 24 .
  • Adjacent the collar 82 on the rear housing 26 is a ring of projections, or teeth 90 , that extend outward around the circumference of the rear housing 26 .
  • the exemplary embodiment shown includes twelve evenly spaced teeth 90 formed around the circumference of the rear housing 26 . These projections 90 are seen most clearly in FIGS. 5 and 7.
  • the connector housing 22 could include other types of external keys.
  • the external surface of the grip 92 includes a key 94 (seen in FIGS. 4 and 7) that is sized to be received into a slot of an adaptor (not shown), such as the adapter of U.S. Pat. No. 5,317,663, where the connector mates with a second SC-type connector.
  • an adaptor not shown
  • the connector 20 can be tuned and the front and rear housings 24 and 26 rotated relative to one another to align with a key on the connector housing 22 .
  • the present invention is further directed to a method for assembling the SC-type connector described above.
  • the ferrule 48 is first mounted within the opening 45 formed in the front portion 55 of the hub 44 .
  • a cross-sectional side viewing of this arrangement is shown in FIG. 8.
  • the spring 56 is then positioned over the rear portion 57 of the hub 44 , and together these are inserted into the front end 62 of the rear housing 26 .
  • the front portion 55 of the hub 44 is sized so that when it is inserted into the rear housing 26 the hub 44 (and connected ferrule 48 ) cannot rotate relative to the rear housing 26 .
  • the rear housing 26 is snapped into the front housing 24 , thereby retaining the hub 44 and ferrule 48 (and spring 56 ) within the connected housing 22 .
  • This connection is made to prevent longitudinal movement of the rear housing 26 relative to the front housing 24 .
  • the engagement does not prevent rotational movement between the two housings 24 and 26 .
  • the front housing 24 has a shape that permits insertion of it into a grip 92 in only one orientation.
  • the grip 92 includes tabs 95 and 97 that block access of the connector housing 22 into the grip 92 if the housing 22 is improperly orientated.
  • the discrete position is selected to align with the orientation in which the connector 20 is to be inserted within the grip 92 .
  • the configuration of the housing serves as a key to which the selectable discrete position is aligned.
  • Other alternative keys could be included on the housing to align with the selectable discrete position.
  • connector 20 is inserted within a grip 92 .
  • the grip 92 prevents the extensions 66 and 68 from deflecting outward, and thus rotationally locks the rear housing 26 to the front housing 24 at the previously-selected discrete position.
  • the connector 20 can then be inserted into an adaptor (not shown) for mating with a second SC-type connector.

Abstract

A tunable connector and method for assembling a tunable connector. The connector includes a ferrule that is retainably engaged within a hub. The connector further includes a rear housing and a front housing. The rear housing is sized to receive and rotationally retain the hub. The front housing has a bore that receives and engages the exterior surface of the rear housing. The front and rear housing include engagement members that allow the rear housing to be retained within the front housing and rotated relative to the front housing between discrete positions.

Description

    FIELD OF THE INVENTION
  • The present invention relates to tunable fiber optic connectors for use in optical fiber signal transmission systems, and to methods for assembling such fiber optic connectors. [0001]
  • BACKGROUND OF THE INVENTION
  • Fiber optic cables are used in the telecommunication industry to transmit light signals in high speed data and communication systems. A standard fiber optic cable includes a fiber with an inner light transmitting optical core. Surrounding the fiber typically is a reinforcing layer and an outer protective casing. [0002]
  • A fiber terminates at a fiber optic connector. Connectors are frequently used to non-permanently connect and disconnect optical elements in a fiber optic transmission system. There are many different fiber optic connector types. Some of the more common connectors are FC and SC connectors. Other types of connectors include ST and D4-type connectors. [0003]
  • A typical SC fiber optic connector includes a housing having a front end positioned opposite from a rear end. The front end of the SC connector housing is commonly configured to be inserted within an adapter. An example adapter is shown in U.S. Pat. No. 5,317,663, the disclosure of which is incorporated by reference. The SC connector typically further includes a ferrule that is positioned within the front and rear ends of the housing, and adjacent the front end. The ferrule is axially moveable relative to the housing, and is spring biased toward the front of the connector. The fiber optic cable has an end that is stripped. The stripped end includes a bare fiber that extends into the connector and through the ferrule. [0004]
  • A connector, such as the connector described above, is mated to another connector within an adapter like the adapter of U.S. Pat. No. 5,317,663. A first connector is received within the front portion of the adapter, and a second fiber is received within the rear portion of the adapter. When two connectors are fully received within an adapter, the ferrules (and hence the fibers internal to the ferrule) contact or are in close proximity to each other to provide for signal transmission between the fibers. [0005]
  • Signal losses within a system often occur within the connection between two optical fiber cores. Due to manufacturing tolerances of the ferrule outer diameter to inner diameter concentricity, ferrule inner diameter hole size and fiber outer diameter, and fiber core to fiber outer diameter concentricity, when the fiber is inserted into the ferrule the core of a fiber may not and typically does not end up perfectly centered relative to the ferrule outer diameter. If one or both of the fibers are off center, when they are connected within an adapter, the fibers will not be aligned and thus there will be a signal loss when the signal is transmitted between the two fibers. It is therefore desirable to have a tunable connector that can provide for optimal alignment with another connector so as to minimize signal loss. [0006]
  • SUMMARY OF THE INVENTION
  • One aspect of the present invention relates to a fiber optic connector. The connector includes a ferrule that is retainably engaged within a hub. The connector further includes a rear housing and a front housing. The rear housing is sized to receive and rotationally retain the hub. The front housing has a bore that receives and engages the exterior surface of the rear housing. The front and rear housing include engagement members that allow the rear housing to be retained within the front housing and rotated relative to the front housing between discrete positions. [0007]
  • Another aspect of the present invention relates to a method for assembling a fiber optic connector. The method includes providing a ferrule retainably engaging a hub. This assembly is then positioned within the bore of a rear housing with the hub rotationally retained within the bore. Next, the rear housing is inserted into the bore of a front housing, and the rear housing is then rotated within the front housing between discrete positions. [0008]
  • A variety of advantages of the invention will be set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practicing the invention. It is to be understood that both the foregoing general description and the following detailed description are explanatory only and are not restrictive of the invention as claimed.[0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate several aspects of the invention and together with the description, serve to explain the principles of the invention. A brief description of the drawings is as follows: [0010]
  • FIG. 1 is a side view of an SC-type connector constructed in accordance with the principles of the present invention without the grip; [0011]
  • FIG. 2 is a partial cross-sectional side view taken longitudinally through the connector of FIG. 1 between line [0012] 2-2 without the boot;
  • FIG. 3 is a cross-sectional side view of the connector of FIG. 1 fully assembled including the grip mounted over the front of the connector and a fiber optic cable attached to the connector; [0013]
  • FIG. 4 is a cross-sectional side view of the fully assembled connector shown in FIG. 3 rotated 90 degrees to a second orientation about the longitudinal axis; [0014]
  • FIG. 5 is a cross-sectional end view taken along line [0015] 5-5 in FIG. 4;
  • FIG. 6 is a further cross-sectional end view taken along line [0016] 6-6 in FIG. 4;
  • FIG. 7 is an exploded perspective view of the SC-type connector of the present invention; [0017]
  • FIG. 8 is a cross-sectional side view of the hub with connected ferrule used in the SC-type connector of the present invention; [0018]
  • FIG. 9 is a cross-sectional side view of the front housing piece of the SC-type connector of the present invention; and [0019]
  • FIG. 10 is an enlarged cross-sectional side view showing a portion of the collar on the rear housing piece of the SC-type connector engaging one of the slots in the front housing piece.[0020]
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to exemplary aspects of the present invention that are illustrated in the accompanying drawings. Where ever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. [0021]
  • FIG. 1 illustrates an SC-[0022] type connector 20 constructed in accordance with the principles of the present invention. The connector 20 includes a housing 22 having a front housing 24 that connects to a rear housing 26. A boot 28 is mounted at the rear end 23 of the connector 20. The front portion 49 of a ferrule 48 is shown extending out the front end 25 of the connector 20. The ferrule 48 is mounted to a hub 44 (not shown in FIG. 1) which together are slidably mounted within the connector 20. As shown, the rear housing 26 is a unitary piece. However, it could alternatively be a constructed of more than one piece such as the two-piece construction shown and described in pending application Ser. No. 09/459,968, filed Dec. 13, 1999, the disclosure of which is expressly incorporated by reference herein.
  • For clarity, no fiber optic cable is shown in FIG. 1. Also for clarity, FIG. 1 does not include the slidable outer grip located at the front of the housing that is typically found on an SC-type connector. However, the grip and the cable are shown on other figures and will be described later in the specification in connection with the description of those other figures. [0023]
  • Referring to FIG. 2, the [0024] front housing 24 of the connector 20 extends along a longitudinal axis 30 and includes a front end 32 positioned opposite from a rear end 34. The front housing 24 also defines a front chamber 36 and a rear chamber 38. A transverse wall 40 separates the front and rear chambers 36 and 38. An opening 42 centered about the longitudinal axis 30 is defined by the transverse wall 40. The front and rear ends 32 and 34 of the front housing piece 24 are open with a bore 33 (see FIG. 4) formed therebetween extending along longitudinal axis 30.
  • The [0025] connector 20 also includes a hub 44 positioned within the connector 20. The hub 44 is mounted to slide longitudinally along the axis 30 relative to the front housing piece 24. The hub 44 has openings 45 and 47 at its front and rear portions 55 and 57 with a bore 53 extending between the openings.
  • The [0026] hub 44 secures a ferrule 48. The ferrule 48 includes a rear portion 51 mounted within the front opening 45 defined by the hub 44. The ferrule 48 may be secured to the hub 44 using a conventional fastening technique, such as an epoxy adhesive. The hub 44 can also be mounted to the ferrule 48 with an interference fit or it can be molded around the ferrule 48. The ferrule 48 includes a bore 59 for receiving a bare optical fiber. The ferrule 48 extends along the longitudinal axis 30 from the hub 44 toward the front end 32 of the front housing piece 24. The ferrule 48 extends through the central opening 42 of the transverse wall 40 between the front and rear chambers 36 and 38 of the front housing piece 24, and protrudes out from the front end 23 of the connector 20.
  • The [0027] connector 20 further includes a coil spring 56 positioned within the rear chamber 38. The coil spring 56 surrounds the rear portion 57 of the hub 44 and is captured between a forwardly facing shoulder 58 formed by the rear housing piece 26 and a rearwardly facing shoulder 60 formed by the hub 44. The spring 56 functions to bias the hub 44 toward the front end 32 of the front housing piece 24. Because the ferrule 48 is connected to the hub 44, the spring 56 also functions to bias the ferrule 48 in a forward direction.
  • The [0028] rear housing 26 also extends along longitudinal axis 30 and includes a front end 62 positioned opposite from a rear end 64. The hub 44 and surrounding spring 56 slide into the opening 27 at the front end 62 of the rear housing 26. The hub 44 and spring 56, however, are not mechanically fastened to the rear housing 26, and thus are free to move longitudinally along axis 30 with respect to the rear housing 26. The only limit placed on the rearward movement of the hub 44 and spring 56 into the rear housing 26 is the forward facing shoulder 58 on the rear housing 26 which, as mentioned above, engages the spring 56. The engagement of the spring 56 to the shoulder 58 functions to bias the hub 44 and connected ferrule 48 outward from the opening 27 at the front end 62 of the rear housing 26.
  • The [0029] front portion 55 of the hub 44 and the opening 27 at the front end 62 of the rear housing 26 are sized so that the hub 44, when received within the rear housing 26, cannot be rotated within the rear housing 26. Likewise, the ferrule 48, which is secured to the hub 44, does not rotate relative to the rear housing 26 when the hub 44 is fully inserted therein. This can be achieved by having a non-circularly shaped hub 44 and a corresponding non-circularly shaped opening 27 at the front end 62 of the rear housing 26. In the embodiment shown, the hub 44 and the opening 27 to the rear housing 26 have the same non-noncircular shape so that the hub 44 can only be received within the opening 27 in one orientation. As shown in FIG. 7, the outer circumference of the hub 44 and opening in the rear housing 26 are each defined by three planar sides 100 and an arched side 103. This configuration permits the hub 44 to be received within the rear housing 26 in only one orientation, and once received within the opening, the hub 44 (and ferrule 48) is not rotatable relative to the rear housing 26. It can be appreciated that other configurations could be used which allow the hub 44 to be inserted into the rear housing 26 in multiple orientations but not be rotatable once the hub 44 is received within the rear housing 26.
  • Further details of the [0030] front housing 24 can be seen in FIGS. 7 and 9. The rear portion 34 of the front housing 24 includes two extensions 66 and 68 that define the opening 29 at the rear portion 34. The extensions 66 and 68 also define two tapered cut-outs 70 that extend longitudinally toward the front end 32 of the front housing 24 on two of the sides of the front housing 24 (see FIG. 7 showing one of the tapered cut-outs 70 on the top-facing side of the front housing 24). The cut-outs 70 give the extensions 66 and 68 a resiliency allowing them to be deflected outward when suitable pressure is applied from within the opening 29. On the inside of each of the resilient extensions 66 and 68 proximate the opening 29 at the rear end 34 are a pair of projections, or teeth 74 and 76, extending into the bore 33 of the front housing 24 (see FIG. 5). Each of the pairs of teeth 74 and 76 defines a recess 78 therebetween. Adjacent the pairs of teeth 74 and 76 are slots 80 formed within the resilient extensions 66 and 68.
  • As noted above, the [0031] front housing 24 connects to the rear housing 26. The front end 62 of rear housing 26 is received into the opening 29 at the rear end 34 of the front housing 24. A collar 82 extends around the external surface of the rear housing 26. When the rear housing 26 is inserted into the opening 29 of the front housing 24, the collar 82 presses up against the pairs of teeth 74 and 76 that project into the bore 33 of the front housing 24, inhibiting further insertion of the rear housing 26 into the front housing 24. However, when added longitudinal pressure is applied by the rear housing 26 against the front housing 24, the resilient extensions 66 and 68 are deflected outward which increases the opening 29 slightly to allow the collar 82 to pass over the pairs of teeth 74 and 76. Immediately after passing over the two pairs of teeth 74 and 76, the collar 82 snaps into the adjacent slots 80 formed in the front housing 24. When that occurs, the resilient extensions 66 and 68 quickly return to their natural positions, which secures the rear housing 26 to the front housing 24. FIG. 10 shows a cross-sectional view of the collar 82 retained within one of the slots 80. Forward and backward facing shoulders 86 and 88 on the front housing 24, which define the slot 80, prevent longitudinal movement of the mounted rear housing 26 relative to the front housing 24 when the collar 82 is positioned within the slots 80.
  • The front and [0032] rear housings 24 and 26 further include structure that inhibits rotational movement of the rear housing 26 when it is snapped into the front housing 24. Adjacent the collar 82 on the rear housing 26 is a ring of projections, or teeth 90, that extend outward around the circumference of the rear housing 26. The exemplary embodiment shown includes twelve evenly spaced teeth 90 formed around the circumference of the rear housing 26. These projections 90 are seen most clearly in FIGS. 5 and 7. When the collar 82 snaps into the slots 80 on the front housing 24, as described above, the ring of teeth 90 on the external surface of the rear housing 26 at the same time engages and is aligned with the pairs of internally projecting teeth 74 and 76 within the bore 33 of the front housing 24. Each of the teeth 90 on the rear housing 26 are sized to be received within the recesses 78 formed between the pairs of teeth 74 and 76. As such when the rear housing 26 is snapped into the front housing 24, two of the teeth 90 on directly opposite sides are forced into the recesses 78 formed on the opposing resilient extensions 66 and 68 of the front housing 24. This engagement is shown in FIG. 5. With this arrangement, the rear housing 26 is not freely rotatable within the front housing 24, but is held at a discrete position. However, if the rear housing 26 is twisted relative to the front housing 24 with sufficient rotational pressure, the resilient extensions 66 and 68 will deflect outward slightly, allowing the rear housing 26 to be rotated within the front housing 24 to a second position with a new set of opposing teeth 90 on the rear housing 26 engaging the recesses 78. Because there are twelve different teeth 90 on the rear housing 26 in the exemplary embodiment, there are twelve different discrete rotational positions that can be selected when rotationally positioning the rear housing 26 within the front housing 24. It is understood that the number and configuration of the projections on the front and rear housings 24 and 26 could be altered without departing from the scope of the present invention. Other structure for providing the selection of discrete rotational positions of the inserted rear housing 26 with respect to the front housing 24 could also be used that are consistent with the teachings of this invention.
  • The [0033] connector 20 further includes a grip 92. The connector housing 22 inserts into a bore 93 formed within the grip 92. The front housing 24 includes structure that mounts the connector housing 22 within the grip 92. When the connector housing 22 is positioned within the grip 92, the grip 92 restrains the resilient extensions 66 and 68, preventing them from deflecting outward. As such, rotational alignment between the front and rear housings 24 and 26, via the interlocking teeth on the housings, cannot be further altered once the grip 92 is positioned over the connector housing 22. The external surface of the connector housing 22 and the bore 93 of the grip 92 are configured such that the connector housing 22 can be fully inserted into the grip 92 in only one orientation. Alternatively, the connector housing 22 could include other types of external keys. The external surface of the grip 92 includes a key 94 (seen in FIGS. 4 and 7) that is sized to be received into a slot of an adaptor (not shown), such as the adapter of U.S. Pat. No. 5,317,663, where the connector mates with a second SC-type connector. As described in the method of assembly below, with this configuration, prior to locking the rotational orientation of the connector housing 22, the connector 20 can be tuned and the front and rear housings 24 and 26 rotated relative to one another to align with a key on the connector housing 22.
  • The present invention is further directed to a method for assembling the SC-type connector described above. The [0034] ferrule 48 is first mounted within the opening 45 formed in the front portion 55 of the hub 44. A cross-sectional side viewing of this arrangement is shown in FIG. 8. The spring 56 is then positioned over the rear portion 57 of the hub 44, and together these are inserted into the front end 62 of the rear housing 26. As mentioned above, the front portion 55 of the hub 44 is sized so that when it is inserted into the rear housing 26 the hub 44 (and connected ferrule 48) cannot rotate relative to the rear housing 26.
  • Next, the [0035] rear housing 26 is snapped into the front housing 24, thereby retaining the hub 44 and ferrule 48 (and spring 56) within the connected housing 22. This connection is made to prevent longitudinal movement of the rear housing 26 relative to the front housing 24. However, the engagement does not prevent rotational movement between the two housings 24 and 26.
  • At this point, a [0036] fiber optic cable 96, having a central fiber 98, is attached to the connector 20 using conventional techniques well known in the art. This includes stripping the end of the cable 96 to expose the fiber 98. The fiber 98 is then fed into the connector 20 all the way through the bore 59 in the ferrule 48. The fiber may be either mechanically or adhesively retained within the ferrule 48. A reinforcement layer of the fiber optic cable 96 is crimped with a crimp sleeve 71. The boot 28 is positioned over the crimp 71 and helps provide strain relief. The exposed bare fiber at the front end 49 of the ferrule 48 may then be polished.
  • The [0037] connector 20 is then tuned. This includes measuring the eccentricity with appropriate test equipment to identify, for example, any offset of the optical core within the fiber 98 or offset of the fiber 98 within the ferrule 48. After determining the direction of any such offset, the rear housing 26 is rotated within the front housing 24 to one of the selectable discrete positions. Those positions are defined by the rotational positions of the projections 90 on the external surface of the rear housing 26 that engage a corresponding alignment feature, such as a recess 78 between a pair of projections (e.g., pairs of teeth 74 and 76), on the internal surface of the front housing 24. A position is selected that will minimize signal loss when the connector 20 is mated with another connector within an adaptor. As mentioned, the front housing 24 has a shape that permits insertion of it into a grip 92 in only one orientation. As shown in FIG. 6, the grip 92 includes tabs 95 and 97 that block access of the connector housing 22 into the grip 92 if the housing 22 is improperly orientated. Thus, the discrete position is selected to align with the orientation in which the connector 20 is to be inserted within the grip 92. In this way, the configuration of the housing serves as a key to which the selectable discrete position is aligned. Other alternative keys could be included on the housing to align with the selectable discrete position.
  • Finally, once the proper rotational position is selected, [0038] connector 20 is inserted within a grip 92. The grip 92 prevents the extensions 66 and 68 from deflecting outward, and thus rotationally locks the rear housing 26 to the front housing 24 at the previously-selected discrete position. The connector 20 can then be inserted into an adaptor (not shown) for mating with a second SC-type connector.
  • With regard to the foregoing description, it is to be understood that changes may be made in detail, especially in matters of the construction materials employed and the shape, size and arrangement of the parts without departing from the scope of the present invention. It is intended that the specification and depicted aspects be considered exemplary only, with a true scope and spirit of the invention being indicated by the broad meaning of the following claims. [0039]

Claims (39)

What is claimed is as follows:
1. A fiber optic connector comprising:
a ferrule;
a hub retainably engaging the ferrule;
a rear housing having an external surface and a bore for receiving the hub, the rear housing rotationally retaining the hub;
a front housing having a bore with an internal surface for receiving and engaging the external surface of the rear housing; and
an engagement member on each of the front and rear housings, wherein the rear housing is rotatable within the front housing between selectable discrete positions defined by the engagement members.
2. The connector of claim 1, wherein the connector is an SC-type connector.
3. The connector of claim 1, wherein the bore of the rear housing has a noncircular configuration, and the hub has an external surface with a corresponding noncircular configuration.
4. The connector of claim 3, wherein the hub inserts into the rear housing in only one orientation.
5. The connector of claim 1, wherein the rear housing includes a plurality of engagement members extending around a circumference of the external surface of the rear housing, and the internal surface of the front housing further includes a corresponding engagement member, wherein rotation of the rear housing within the bore of the front housing sequentially engages each of the plurality of engagement members with the corresponding engagement member, each sequential engagement defining a selectable discrete position.
6. The connector of claim 1, wherein the engagement member on the rear housing includes a plurality of teeth extending from the external surface around a circumference of the rear housing, and wherein the engagement member on the front housing includes a recess, the recess defined by a first tooth and a second tooth extending from the internal surface of the front housing into the bore of the front housing, wherein rotation of the rear housing within the front housing sequentially engages each of the plurality of teeth within the recess, the engagement of each of the plurality of teeth within the recess defining a selectable discrete position.
7. The connector of claim 6, wherein the engagement member on the front housing further includes a second recess defined by a third tooth and a fourth tooth extending from the internal surface of the front housing into the bore of the front housing, the second recess engaging one of the plurality of teeth at each of the selectable discrete positions.
8. The connector of claim 1, wherein the front housing has a key element, and wherein the connector further includes a grip with a corresponding key element mating with the front housing key element.
9. The connector of claim 8, wherein the rear housing includes a plurality of engagement members extending around a circumference of the external surface of the rear housing, and the internal surface of the front housing further includes a corresponding engagement member, wherein rotation of the rear housing within the bore of the front housing sequentially engages each of the plurality of engagement members with the corresponding engagement member, each sequential engagement defining a selectable discrete position.
10. The connector of claim 8, wherein the engagement member on the rear housing includes a plurality of teeth extending from the external surface around a circumference of the rear housing, and wherein the engagement member on the front housing includes a recess, the recess defined by a first tooth and a second tooth extending from the internal surface of the front housing into the bore of the front housing, wherein rotation of the rear housing within the front housing sequentially engages each of the plurality of teeth within the recess, the engagement of each of the plurality of teeth within the recess defining a selectable discrete position.
11. The connector of claim 10, wherein the engagement member on the front housing further includes a second recess defined by a third tooth and a fourth tooth extending from the internal surface of the front housing into the bore of the front housing, the second recess engaging one of the plurality of teeth at each of the selectable discrete positions.
12. The connector of claim 1, further including a grip engaging the front housing, the grip locking the front housing to the rear housing at one of the selectable discrete positions.
13. The connector of claim 12, wherein the rear housing includes a plurality of engagement members extending around a circumference of the external surface of the rear housing, and the internal surface of the front housing further includes a corresponding engagement member, wherein rotation of the rear housing within the bore of the front housing sequentially engages each of the plurality of engagement members with the corresponding engagement member, each sequential engagement defining a selectable discrete position.
14. The connector of claim 12, wherein the engagement member on the rear housing includes a plurality of teeth extending from the external surface around a circumference of the rear housing, and wherein the engagement member on the front housing includes a recess, the recess defined by a first tooth and a second tooth extending from the internal surface of the front housing into the bore of the front housing, wherein rotation of the rear housing within the front housing sequentially engages each of the plurality of teeth within the recess, the engagement of each of the plurality of teeth within the recess defining a selectable discrete position.
15. The connector of claim 14, wherein the engagement member on the front housing further includes a second recess defined by a third tooth and a fourth tooth extending from the internal surface of the front housing into the bore of the front housing, the second recess engaging one of the plurality of teeth at each of the selectable discrete positions.
16. A fiber optic connector comprising:
a ferrule;
a hub retainably engaging the ferrule;
a rear housing having an external surface and a bore for rotationally retaining the hub;
a front housing having a bore with an internal surface for receiving and engaging the external surface of the rear housing; and
retention means on each of the front and rear housings for rotationally engaging the front housing to the rear housing at one of selectable discrete positions defined by the retention means.
17. The connector of claim 16, wherein the connector is an SC-type connector.
18. The connector of claim 16, wherein the retention means on the rear housing includes a plurality of teeth extending from the external surface around a circumference of the rear housing, and wherein the retention means on the front housing includes a recess, the recess defined by a first tooth and a second tooth extending from the internal surface of the front housing into the bore of the front housing, wherein rotation of the rear housing within the front housing sequentially engages each of the plurality of teeth within the recess, the engagement of each of the plurality of teeth within the recess defining a selectable discrete position.
19. The connector of claim 18, wherein the retention means on the front housing further includes a second recess defined by a third tooth and a fourth tooth extending from the internal surface of the front housing into the bore of the front housing, the second recess engaging one of the plurality of teeth at each of the selectable discrete positions.
20. A fiber optic connector comprising:
a ferrule having a front end and an opposite rear end;
a hub retainably engaging the ferrule;
an inner housing having a first part and a second part, wherein the hub is rotationally retained by the first part, and the second part is rotatable relative to the first part between selectable discrete positions, the inner housing having a front end and a rear end, the front end of the ferrule positioned adjacent the front end of the inner housing, the hub longitudinally movable relative to the inner housing;
a spring biasing the hub toward the front end of the inner housing; and
an outer housing engageable with the inner housing, wherein the outer housing locks the second part to the first part at one of the selectable discrete positions.
21. The connector of claim 20, wherein each of the first and second parts includes an engagement member, and wherein the selectable discrete positions are defined by engagement between the engagement member on the first part and the engagement member on the second part.
22. The connector of claim 21, wherein the first part includes an external surface and a plurality of engagement members extending around a circumference of the external surface, and the second part includes an internal surface having a corresponding engagement member, wherein the first part is rotatable within the second part, and wherein the rotation of the first part within the second part sequentially engages each of the plurality of engagement members with the corresponding engagement member, each sequential engagement defining a selectable discrete position.
23. The connector of claim 21, the first part further includes an external surface, wherein the engagement member on the first part includes a plurality of teeth extending from the external surface around a circumference of the first part, and wherein the engagement member on the second part includes a recess, the recess defined by a first tooth and a second tooth extending from an internal surface of the second part, wherein the first part is rotatable within the second part, and wherein rotation of the first part within the second part sequentially engages each of the plurality of teeth within the recess, the engagement of each of the plurality of teeth within the recess defining a selectable discrete position.
24. The connector of claim 23, wherein the engagement member on the second part further includes a second recess defined by a third tooth and a fourth tooth extending from the internal surface of the second part, the second recess engaging one of the plurality of teeth at each of the selectable discrete positions.
25. A method of assembling a fiber optic connector, the method comprising the steps of:
providing a ferrule extending from a hub, the hub retainably engaging the ferrule;
positioning the hub within a bore of a rear housing to prevent rotational movement of the hub with respect to the rear housing;
inserting the rear housing into a bore of a front housing; and
rotating the rear housing within the front housing between selectable discrete positions.
26. The method of claim 25, wherein the connector is an SC-type connector.
27. The method of claim 25, further including the step of inserting the front housing within a grip, wherein the grip locks the rear housing to the front housing at one of the selectable discrete positions.
28. The method of claim 25, wherein the rear housing includes an external surface with a plurality of engagement members circumferentially positioned on the external surface, and the front housing includes a bore with a corresponding engagement member, wherein rotating the rear housing within the bore of the front housing sequentially engages each of the plurality of engagement members with the corresponding engagement member, each sequential engagement defining a selectable discrete position.
29. The method of claim 28, wherein the engagement members include a plurality of teeth, and the corresponding engagement member on the front housing is a recess defined by a first tooth and a second tooth, wherein each of the plurality of teeth sequentially engages the recess when the rear housing is rotated within the front housing.
30. The method of claim 25, further including the step of locking the front housing to the rear housing at one of the selectable discrete positions.
31. The method of claim 30, wherein the rear housing includes an external surface with a plurality of engagement members circumferentially positioned on the external surface, and the front housing includes a bore with a corresponding engagement member, wherein rotating the rear housing within the bore of the front housing sequentially engages each of the plurality of engagement members with the corresponding engagement member, each sequential engagement defining a selectable discrete position.
32. The method of claim 31, wherein the engagement members include a plurality of teeth, and the corresponding engagement member on the front housing is a recess defined by a first tooth and a second tooth, wherein each of the plurality of teeth sequentially engages the recess when the rear housing is rotated within the front housing.
33. A fiber optic device comprising:
a connector having a hub retainably engaging a ferrule, a rear housing rotationally retaining the hub, a front housing having a bore for receiving and engaging the rear housing, and an engagement mechanism between the front and rear housing matable in a plurality of selectable discrete positions, wherein the rear housing is rotatable within the bore of the front housing between the selectable discrete positions; and
a fiber optic cable connected to the connector, the cable including a fiber extending through the connector.
34. The device of claim 33, wherein the connector is an SC-type connector.
35. The device of claim 33, wherein the rear housing has an external surface and a plurality of engagement members extending around a circumference of the external surface, and the front housing has an internal surface including a corresponding engagement member, wherein rotation of the rear housing within the bore of the front housing sequentially engages each of the plurality of engagement members with the corresponding engagement feature, each sequential engagement defining a selectable discrete position.
36. The device of claim 35, wherein the plurality of engagement members on the rear housing are teeth, and the corresponding engagement member is a recess defined by a first tooth and a second tooth, wherein rotation of the rear housing within the front housing sequentially engages each of the plurality of teeth within the recess, each engagement defining one of the selectable discrete positions.
37. The device of claim 33, further including a grip engaging the front housing, the grip locking the front housing to the rear housing at one of the selectable discrete positions.
38. The device of claim 37, wherein the rear housing has an external surface and a plurality of engagement members extending around a circumference of the external surface, and the front housing has an internal surface including a corresponding engagement member, wherein rotation of the rear housing within the bore of the front housing sequentially engages each of the plurality of engagement members with the corresponding engagement feature, each sequential engagement defining a selectable discrete position.
39. The device of claim 38, wherein the plurality of engagement members on the rear housing are teeth, and the corresponding engagement member is a recess defined by a first tooth and a second tooth, wherein rotation of the rear housing within the front housing sequentially engages each of the plurality of teeth within the recess, each engagement defining one of the selectable discrete positions.
US09/749,223 2000-12-27 2000-12-27 Tunable fiber optic connector and method for assembling Expired - Lifetime US6428215B1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US09/749,223 US6428215B1 (en) 2000-12-27 2000-12-27 Tunable fiber optic connector and method for assembling
AT01988324T ATE428125T1 (en) 2000-12-27 2001-12-14 ADJUSTABLE FIBER OPTICAL CONNECTOR AND METHOD OF INSTALLING
DE60138304T DE60138304D1 (en) 2000-12-27 2001-12-14 Adjustable fiber optic connector and method for mounting
MXPA03005823A MXPA03005823A (en) 2000-12-27 2001-12-14 Tunable fiber optic connector and method for assembling.
PCT/US2001/048708 WO2002052310A2 (en) 2000-12-27 2001-12-14 Tunable fiber optic connector and method for assembling
EP01988324A EP1348142B1 (en) 2000-12-27 2001-12-14 Tunable fiber optic connector and method for assembling
AU2002241641A AU2002241641A1 (en) 2000-12-27 2001-12-14 Tunable fiber optic connector and method for assembling
CNB018220452A CN1220902C (en) 2000-12-27 2001-12-14 Tunable fiber optic connector and method for assembling
TW090132390A TW530172B (en) 2000-12-27 2001-12-26 Tunable fiber optic connector and method for assembling
ARP010106027A AR031971A1 (en) 2000-12-27 2001-12-26 CONNECTOR OF OPTICAL FIBERS, TUNING, AND METHOD FOR ASSEMBLY
US10/211,998 US6695489B2 (en) 2000-12-27 2002-08-01 Tunable fiber optic connector and method for assembling
HK04107515A HK1064743A1 (en) 2000-12-27 2004-09-30 Tunable fiber optic connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/749,223 US6428215B1 (en) 2000-12-27 2000-12-27 Tunable fiber optic connector and method for assembling

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/211,998 Continuation US6695489B2 (en) 2000-12-27 2002-08-01 Tunable fiber optic connector and method for assembling

Publications (2)

Publication Number Publication Date
US20020081077A1 true US20020081077A1 (en) 2002-06-27
US6428215B1 US6428215B1 (en) 2002-08-06

Family

ID=25012800

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/749,223 Expired - Lifetime US6428215B1 (en) 2000-12-27 2000-12-27 Tunable fiber optic connector and method for assembling
US10/211,998 Expired - Lifetime US6695489B2 (en) 2000-12-27 2002-08-01 Tunable fiber optic connector and method for assembling

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/211,998 Expired - Lifetime US6695489B2 (en) 2000-12-27 2002-08-01 Tunable fiber optic connector and method for assembling

Country Status (11)

Country Link
US (2) US6428215B1 (en)
EP (1) EP1348142B1 (en)
CN (1) CN1220902C (en)
AR (1) AR031971A1 (en)
AT (1) ATE428125T1 (en)
AU (1) AU2002241641A1 (en)
DE (1) DE60138304D1 (en)
HK (1) HK1064743A1 (en)
MX (1) MXPA03005823A (en)
TW (1) TW530172B (en)
WO (1) WO2002052310A2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572276B1 (en) * 2000-11-21 2003-06-03 Euromicron Werkezeuge Gmbh Plug for fiber optic cables with a plug housing
US20050013549A1 (en) * 2003-07-15 2005-01-20 Seikoh Giken Co., Ltd. Optical connector plug and method for assembling same
EP1680697A1 (en) * 2003-10-28 2006-07-19 Euromicron Werkzeuge GmbH Fibre-optical connector, and single and double coupler for receiving one such connector
US20080175546A1 (en) * 2007-01-24 2008-07-24 Yu Lu Fiber optic connector mechanical interface converter
US20080175542A1 (en) * 2007-01-24 2008-07-24 Yu Lu Hardened fiber optic adapter
US20080273840A1 (en) * 2007-05-06 2008-11-06 Yu Lu Interface converter for sc fiber optic connectors
US20080310796A1 (en) * 2007-06-18 2008-12-18 Yu Lu Hardened Female Fiber Optic Connector
US20090003772A1 (en) * 2007-05-06 2009-01-01 Yu Lu Mechanical interface converter for making non-ruggedized fiber optic connectors compatible with a ruggedized fiber optic adapter
US20090148102A1 (en) * 2007-12-11 2009-06-11 Yu Lu Hardened Fiber Optic Connector Compatible with Hardened and Non-Hardened Fiber Optic Adapters
US20090162016A1 (en) * 2007-01-24 2009-06-25 Adc Telecommunications, Inc. Hardened fiber optic connector
EP2171512A1 (en) * 2007-07-17 2010-04-07 Euromicron Werkzeuge GmbH Plug for termination of optical transmission media
WO2010118031A1 (en) * 2009-04-06 2010-10-14 Adc Telecommunications, Inc. Fiber optic connector and method for assembling
USRE42522E1 (en) 2003-09-08 2011-07-05 Adc Telecommunications, Inc. Ruggedized fiber optic connection
WO2012041840A1 (en) 2010-10-01 2012-04-05 Huber+Suhner Ag Plug-in connector
US20160025936A1 (en) * 2014-07-25 2016-01-28 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Optical fiber connector
EP2920626A4 (en) * 2012-11-16 2016-03-02 Biolitec Pharma Marketing Ltd Fiber optic connector for laser sources
CN107111068A (en) * 2014-12-24 2017-08-29 日本航空电子工业株式会社 Plug built in connector
WO2017155097A1 (en) * 2016-03-11 2017-09-14 オリンパス株式会社 Optical connector
WO2018005093A1 (en) * 2016-06-29 2018-01-04 Corning Optical Communications LLC Improved tunable optical fiber connectors and connector and cable sub-assemblies and assemblies
US20190086616A1 (en) * 2012-09-12 2019-03-21 Commscope Technologies Llc Tuned Fiber Optic Connectors
US10444443B2 (en) 2013-06-27 2019-10-15 CommScope Connectivity Belgium BVBA Fiber optic cable anchoring device for use with fiber optic connectors and methods of using the same
US10451811B2 (en) * 2014-12-19 2019-10-22 Adc Telecommunications (Shanghai) Distribution Co., Ltd. Hardened fiber optic connector with pre-compressed spring
US20190339461A1 (en) * 2017-06-28 2019-11-07 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US10768382B2 (en) 2018-11-29 2020-09-08 Corning Research & Development Corporation Multiport assemblies including access apertures and a release tool
US10809463B2 (en) 2017-06-28 2020-10-20 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US10830963B2 (en) * 2017-11-17 2020-11-10 Commscope Technologies Llc Fiber optic connector locking feature
US11187859B2 (en) 2017-06-28 2021-11-30 Corning Research & Development Corporation Fiber optic connectors and methods of making the same
CN114286957A (en) * 2019-07-17 2022-04-05 康普技术有限责任公司 Fiber optic connector with anti-wicking epoxy tube
US11294133B2 (en) 2019-07-31 2022-04-05 Corning Research & Development Corporation Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation
US11300746B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Fiber optic port module inserts, assemblies and methods of making the same
US11487073B2 (en) 2019-09-30 2022-11-01 Corning Research & Development Corporation Cable input devices having an integrated locking feature and assemblies using the cable input devices
US11536921B2 (en) 2020-02-11 2022-12-27 Corning Research & Development Corporation Fiber optic terminals having one or more loopback assemblies
US11604320B2 (en) 2020-09-30 2023-03-14 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
WO2023062934A1 (en) * 2021-10-13 2023-04-20 住友電気工業株式会社 Optical connector
US11650388B2 (en) 2019-11-14 2023-05-16 Corning Research & Development Corporation Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal
US11668890B2 (en) 2017-06-28 2023-06-06 Corning Research & Development Corporation Multiports and other devices having optical connection ports with securing features and methods of making the same
US11686913B2 (en) 2020-11-30 2023-06-27 Corning Research & Development Corporation Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same
US11846811B2 (en) 2019-07-17 2023-12-19 Commscope Technologies Llc Tuned fiber optic connector
US11880076B2 (en) 2020-11-30 2024-01-23 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release housing
US11886010B2 (en) 2019-10-07 2024-01-30 Corning Research & Development Corporation Fiber optic terminals and fiber optic networks having variable ratio couplers
US11927810B2 (en) 2020-11-30 2024-03-12 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release member
US11947167B2 (en) 2021-05-26 2024-04-02 Corning Research & Development Corporation Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal
US11960126B2 (en) 2023-01-09 2024-04-16 Commscope Technologies Llc Fiber optic connector locking feature

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852386B2 (en) * 2001-03-08 2005-02-08 Norbord Inc. Composite board with OSB faces
US7052188B2 (en) * 2001-04-02 2006-05-30 Randy Marshall Manning Optical fiber assembly with adjustable fiber radial orientation
US6493493B1 (en) * 2001-06-13 2002-12-10 Intel Corporation Eccentricity detect and alignment for fiberoptic bundle
JP2005091379A (en) * 2001-10-09 2005-04-07 Suncall Corp Optical fiber connector
US6916120B2 (en) * 2002-01-30 2005-07-12 Adc Telecommunications, Inc. Fiber optic connector and method
US6655851B1 (en) * 2002-05-22 2003-12-02 Fiberon Technolgies, Inc. Optical fiber connector
US6783281B2 (en) * 2002-08-13 2004-08-31 Hon Hai Precision Ind. Co., Ltd. Optical fiber converter retaining different sized ferrules
US6913396B2 (en) * 2002-11-01 2005-07-05 Adc Telecommunications, Inc. Tunable fiber optic connector and device and method for tuning a connector
US6918704B2 (en) * 2003-01-30 2005-07-19 Panduit Corp. Tunable fiber optic connector
US6918816B2 (en) * 2003-01-31 2005-07-19 Adc Telecommunications, Inc. Apparatus and method for polishing a fiber optic connector
US6883974B2 (en) * 2003-02-21 2005-04-26 Itt Manufacturing Enterprises, Inc. Optic fiber connector with spring in a self-contained cartridge
US7674046B2 (en) * 2003-09-22 2010-03-09 Belden Cdt (Canada) Inc. Fibre optic connector keying system
US7201518B2 (en) * 2004-04-14 2007-04-10 Adc Telecommunications, Inc. Fiber optic connector and method
US7209629B2 (en) * 2004-06-14 2007-04-24 Adc Telecommunications, Inc. System and method for processing fiber optic connectors
US7068906B2 (en) * 2004-06-14 2006-06-27 Adc Telecommunications, Inc. Fixture for system for processing fiber optic connectors
US7352938B2 (en) * 2004-06-14 2008-04-01 Adc Telecommunications, Inc. Drive for system for processing fiber optic connectors
WO2005124413A2 (en) * 2004-06-14 2005-12-29 Adc Telecommunications, Inc. System and method for processing fiber optic connectors
JP4416591B2 (en) * 2004-07-16 2010-02-17 スリーエム イノベイティブ プロパティズ カンパニー Optical connector and optical fiber connection system
US7284912B2 (en) 2005-01-12 2007-10-23 Illum Technologies, Inc. Multi fiber optical interconnect system, with push—push type insertion/withdrawal mechanism, MT-type connector and shuttered adapter and method for using same
US7261472B2 (en) * 2005-01-12 2007-08-28 Illum Technologies, Inc. Ultra-small, form factor single fiber optical interconnect system, with push-push type insertion/withdrawal mechanism and shuttered modular connector and shuttered adapter and method for using same
US8422835B2 (en) * 2005-06-30 2013-04-16 Weatherford/Lamb, Inc. Optical waveguide feedthrough assembly
JP4244998B2 (en) * 2006-02-08 2009-03-25 日本電気硝子株式会社 Method for manufacturing capillary tube for fixing optical fiber
US7534050B2 (en) 2007-04-13 2009-05-19 Adc Telecommunications, Inc. Field terminatable fiber optic connector assembly
US7806599B2 (en) * 2007-05-04 2010-10-05 Illum Technologies, Inc. Super miniature, single fiber optical interconnect system with parallel slider push-push type insertion/withdrawal mechanism and method for using same
GB2448935B8 (en) 2007-05-04 2010-08-25 Miniflex Ltd Opticle fibre connector
GB2468442B (en) * 2007-05-04 2011-01-19 Miniflex Ltd Method of installing a push/pull type optical fibre connector
US7717625B2 (en) * 2007-08-13 2010-05-18 Illum Technologies, Inc. High density fiber optic interconnect system with push-release mechanism and method for using same
US7785017B2 (en) * 2007-09-27 2010-08-31 Corning Cable Systems Llc Strain-relief assemblies and methods for a field-installable fiber optic connector
JP4999184B2 (en) * 2008-02-21 2012-08-15 サンコール株式会社 Optical fiber connector
US8201322B2 (en) * 2009-05-29 2012-06-19 Schratz Gary F Fiber optic connector tooling device
US8337093B2 (en) * 2009-09-30 2012-12-25 Corning Cable Systems Llc Fiber optic connectors and methods for making the same
TW201211604A (en) * 2010-09-03 2012-03-16 Ezontek Technologies Co Ltd Optical fiber adapter capable of preventing dust
JP5100869B2 (en) * 2010-09-06 2012-12-19 株式会社精工技研 Optical connector plug
CN101950057B (en) * 2010-09-21 2012-08-22 深圳日海通讯技术股份有限公司 Optical fiber connector and assembly methods thereof
CN102012547B (en) * 2010-11-12 2012-01-04 泰兴市航联电连接器有限公司 Optical cable connector for environment resistant neutral optical cable
JP5594083B2 (en) * 2010-11-19 2014-09-24 ソニー株式会社 Optical fiber adapter and laser device
US8636425B2 (en) * 2011-03-15 2014-01-28 Adc Telecommunications, Inc. Fiber optic connector
TWM429881U (en) * 2011-11-14 2012-05-21 Gloriole Electroptic Technology Corp Fiber optic connector
WO2013117589A2 (en) 2012-02-07 2013-08-15 Tyco Electronics Raychem Bvba Cable termination assembly and method for connectors
US9176285B2 (en) 2012-05-03 2015-11-03 Adc Telecommunications, Inc. Fiber optic connector
EP2926181B1 (en) 2012-11-30 2020-04-15 CommScope Technologies LLC Fiber optic connector with field installable outer connector housing
AU2013352273A1 (en) 2012-11-30 2015-06-04 Tyco Electronics Corporation Distributed split configuration for multi-dwelling unit
CN103212981A (en) * 2013-04-26 2013-07-24 苏州安捷讯光电科技有限公司 FC fiber-optic connector assembling integrated equipment
CN103412374B (en) * 2013-08-02 2016-02-03 武汉光迅科技股份有限公司 The joints of optical fibre that a kind of high return loss optical attenuation is adjustable and joints of optical fibre group
ES2831401T3 (en) 2013-08-24 2021-06-08 CommScope Connectivity Belgium BVBA Reinforced fiber optic connectors and connection systems
CN104678514B (en) * 2013-11-29 2017-01-04 台达电子工业股份有限公司 Optical transceiver module
CN104849816B (en) 2014-02-14 2017-01-11 泰科电子(上海)有限公司 Optical fiber connector and assembly method therefor
CN104849815B (en) 2014-02-14 2017-01-18 泰科电子(上海)有限公司 Optical fiber connector and assembly method therefor
CN105445862B (en) 2014-07-09 2018-01-19 泰科电子(上海)有限公司 The joints of optical fibre and its on-site assembly method
EP3705920A1 (en) 2015-04-03 2020-09-09 CommScope Connectivity Belgium BVBA Low cost hardened fiber optic connection system
US10620385B2 (en) 2015-11-30 2020-04-14 Commscope Technologies Llc Fiber optic connector and assembly thereof
US10641970B2 (en) 2015-12-16 2020-05-05 Commscope Technologies Llc Field installed fiber optic connector
CN107193091B (en) 2016-03-14 2020-09-04 康普科技有限责任公司 Enhanced female fiber optic connector cable assembly
EP3430451A1 (en) * 2016-03-17 2019-01-23 Corning Optical Communications LLC Tunable optical fiber connector and tuning methods for optical fiber cable assemblies
WO2019044079A1 (en) * 2017-08-30 2019-03-07 住友電気工業株式会社 Connector plug, optical connector, and optical connection structure
JP7027781B2 (en) * 2017-10-04 2022-03-02 住友電気工業株式会社 Optical connector and optical connection structure
US11150412B2 (en) 2018-01-31 2021-10-19 Commscope Technologies Llc Tunable fiber optic connectors
TWI820765B (en) * 2021-08-16 2023-11-01 顏玉惠 Connector shroud
WO2023021723A1 (en) * 2021-08-19 2023-02-23 株式会社フジクラ Optical connector connecting structure

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762389A (en) 1984-03-30 1988-08-09 Nec Corporation Optical fiber connector
JPS60178809U (en) 1984-05-07 1985-11-27 第一電子工業株式会社 Optical fiber connector ferrule holding structure
JPS61213811A (en) 1985-03-19 1986-09-22 Sumitomo Electric Ind Ltd Optical connector
FR2598821B1 (en) 1986-05-15 1989-12-01 Radiall Ind CONNECTOR CAP FOR SINGLE-MODE OPTICAL FIBERS WITH POLARIZATION HOLD AND METHOD OF ADJUSTING THE SAME.
US5016970A (en) 1989-08-22 1991-05-21 Nippon Telegraph And Telephone Corp. Ferrule for optical fiber transmitting linearly polarized light and optical fiber connector using this ferrule
US5253315A (en) 1990-12-24 1993-10-12 Fentress Vernon A Method and apparatus for installing a fiber optic cable by capture of a coupling nut or coupling nut assembly
US5134677A (en) 1991-02-15 1992-07-28 Augat Communications Group Fiber-optic connector and method of assembly
US5216733A (en) 1991-03-11 1993-06-01 Nippon Telegraph And Telephone Corporation Polarization maintaining optical fiber connector including positioning flange and method utilizing same
JP2538394Y2 (en) 1991-05-29 1997-06-11 住友電気工業株式会社 Optical connector
US5142598A (en) 1991-08-28 1992-08-25 Porta Systems Corp. Fiber optic connector having snap ring adjustment means
US5146525A (en) 1991-09-03 1992-09-08 Porta Systems Corp. Fiber optic plug connector having optical center adjustment means
US5214732A (en) 1992-01-02 1993-05-25 Adc Telecommunications, Inc. Optical fiber retention mechanism for securing optical fiber cable
US5222169A (en) 1992-02-18 1993-06-22 Foxconn International, Inc. Optical fiber connector assembly
US5212753A (en) 1992-02-25 1993-05-18 Hughes Aircraft Company Polarization preserving fiber optic terminus
US5212752A (en) 1992-05-27 1993-05-18 At&T Bell Laboratories Optical fiber ferrule connector having enhanced provisions for tuning
US5390269A (en) * 1992-12-23 1995-02-14 Methode Electronics, Inc. Fiber optic connector with high resolution tunable fiber holder
US5321784A (en) 1993-02-18 1994-06-14 Minnesota Mining And Manufacturing Company Pull-proof, modular fiber optic connector system
US5436994A (en) * 1993-02-26 1995-07-25 Ott; Conrad L. Ferrule holder for fiber optic connector
US5287425A (en) 1993-02-26 1994-02-15 Foxconn International, Inc. Optical fiber SC type connector assembly with partly pre-assembled components
US5436995A (en) 1993-05-14 1995-07-25 Nippon Telegraph And Telephone Corporation Optical fiber connector unit and optical fiber connector
US5428703A (en) 1994-02-18 1995-06-27 Augat Inc. One-piece SC fiber optic connector
CN1125357C (en) 1994-06-22 2003-10-22 惠特克公司 Optical fiber connector having enhanced assembly means
US5717802A (en) 1994-09-19 1998-02-10 The Whitaker Corporation Fiber optic connectors having spring-loaded ferrules
US5625731A (en) 1994-12-06 1997-04-29 The Whitaker Corporation Process for assembling an optical fiber connector
US5633970A (en) 1995-05-23 1997-05-27 Minnesota Mining And Manufacturing Company Device with internal asymmetrical features for rotational alignment of non-symmetrical articles
US5682451A (en) 1995-05-23 1997-10-28 Minnesota Mining And Manufacturing Company Device with internal features for rotational alignment of non-cylindrically symmetrical optical elements
JP3145639B2 (en) 1996-07-10 2001-03-12 三菱電線工業株式会社 Optical connector for high energy
JP3066739B2 (en) * 1996-07-15 2000-07-17 セイコーインスツルメンツ株式会社 General-purpose optical connector and basic plug
US5923804A (en) * 1997-03-31 1999-07-13 Siecor Corporation Fiber optic connector and an associated method of fabrication
JPH1138276A (en) 1997-07-22 1999-02-12 Seiko Giken:Kk Structure of optical connector and its alignment method

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572276B1 (en) * 2000-11-21 2003-06-03 Euromicron Werkezeuge Gmbh Plug for fiber optic cables with a plug housing
US20050013549A1 (en) * 2003-07-15 2005-01-20 Seikoh Giken Co., Ltd. Optical connector plug and method for assembling same
US7178988B2 (en) * 2003-07-15 2007-02-20 Seikoh Giken Co., Ltd. Optical connector plug and method for assembling same
USRE42522E1 (en) 2003-09-08 2011-07-05 Adc Telecommunications, Inc. Ruggedized fiber optic connection
EP1680697A1 (en) * 2003-10-28 2006-07-19 Euromicron Werkzeuge GmbH Fibre-optical connector, and single and double coupler for receiving one such connector
US20080085082A1 (en) * 2003-10-28 2008-04-10 Michael Theis Fiber-Optical Plug As Well As A Single And Double Coupler For Receiving Such A Plug
US7488115B2 (en) 2003-10-28 2009-02-10 Euromicron Werkzeuge Gmbh Fiber-optical plug as well as a single and double coupler for receiving such a plug
US20080175546A1 (en) * 2007-01-24 2008-07-24 Yu Lu Fiber optic connector mechanical interface converter
US10877224B2 (en) 2007-01-24 2020-12-29 Commscope Technologies Llc Fiber optic adapter
US8770862B2 (en) 2007-01-24 2014-07-08 Adc Telecommunications, Inc. Hardened fiber optic connector
US20080175542A1 (en) * 2007-01-24 2008-07-24 Yu Lu Hardened fiber optic adapter
US11409057B2 (en) 2007-01-24 2022-08-09 Commscope Technologies Llc Hardened fiber optic connector
US20090162016A1 (en) * 2007-01-24 2009-06-25 Adc Telecommunications, Inc. Hardened fiber optic connector
US9664862B2 (en) 2007-01-24 2017-05-30 Commscope Technologies Llc Hardened fiber optic connector
US20080273840A1 (en) * 2007-05-06 2008-11-06 Yu Lu Interface converter for sc fiber optic connectors
US7677814B2 (en) 2007-05-06 2010-03-16 Adc Telecommunications, Inc. Mechanical interface converter for making non-ruggedized fiber optic connectors compatible with a ruggedized fiber optic adapter
US7722258B2 (en) 2007-05-06 2010-05-25 Adc Telecommunications, Inc. Interface converter for SC fiber optic connectors
US20090003772A1 (en) * 2007-05-06 2009-01-01 Yu Lu Mechanical interface converter for making non-ruggedized fiber optic connectors compatible with a ruggedized fiber optic adapter
US8137002B2 (en) 2007-05-06 2012-03-20 Adc Telecommunications, Inc. Mechanical interface converter for making non-ruggedized fiber optic connectors compatible with a ruggedized fiber optic adapter
US20100172616A1 (en) * 2007-05-06 2010-07-08 ADC Telecommunications, Inc.. Mechanical interface converter for making non-ruggedized fiber optic connectors compatible with a ruggedized fiber optic adapter
US8128294B2 (en) 2007-05-06 2012-03-06 Adc Telecommunications, Inc. Interface converter for SC fiber optic connectors
US20100296779A1 (en) * 2007-05-06 2010-11-25 Adc Telecommunications, Inc. Interface converter for sc fiber optic connectors
US7686519B2 (en) 2007-06-18 2010-03-30 Adc Telecommunications, Inc. Hardened fiber optic housing and cable assembly
US20100183264A1 (en) * 2007-06-18 2010-07-22 Adc Telecommunications, Inc. Hardened Fiber Optic Housing and Cable Assembly
US20080310796A1 (en) * 2007-06-18 2008-12-18 Yu Lu Hardened Female Fiber Optic Connector
EP2171512A1 (en) * 2007-07-17 2010-04-07 Euromicron Werkzeuge GmbH Plug for termination of optical transmission media
US7744286B2 (en) 2007-12-11 2010-06-29 Adc Telecommunications, Inc. Hardened fiber optic connection system with multiple configurations
US20090148102A1 (en) * 2007-12-11 2009-06-11 Yu Lu Hardened Fiber Optic Connector Compatible with Hardened and Non-Hardened Fiber Optic Adapters
US10101538B2 (en) 2007-12-11 2018-10-16 Commscope Technologies Llc Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US7762726B2 (en) 2007-12-11 2010-07-27 Adc Telecommunications, Inc. Hardened fiber optic connection system
US7744288B2 (en) 2007-12-11 2010-06-29 Adc Telecommunications, Inc. Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US11867950B2 (en) 2007-12-11 2024-01-09 Commscope Technologies Llc Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US11275220B2 (en) 2007-12-11 2022-03-15 Commscope Technologies Llc Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US10746939B2 (en) 2007-12-11 2020-08-18 Commscope Technologies Llc Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US9482829B2 (en) 2007-12-11 2016-11-01 Commscope Technologies Llc Hardened fiber optic connector compatible with hardened and non-hardened fiber optic adapters
US7942590B2 (en) 2007-12-11 2011-05-17 Adc Telecommunications, Inc. Hardened fiber optic connector and cable assembly with multiple configurations
WO2010118031A1 (en) * 2009-04-06 2010-10-14 Adc Telecommunications, Inc. Fiber optic connector and method for assembling
US8342755B2 (en) 2009-04-06 2013-01-01 Adc Telecommunications, Inc. Fiber optic connector and method for assembling
US20110002586A1 (en) * 2009-04-06 2011-01-06 Ponharith Nhep Fiber optic connector and method for assembling
CN103124916A (en) * 2010-10-01 2013-05-29 胡贝尔和茹纳股份公司 Plug-in connector
US8931963B2 (en) 2010-10-01 2015-01-13 Huber+Suhner Ag Plug-in connector
WO2012041840A1 (en) 2010-10-01 2012-04-05 Huber+Suhner Ag Plug-in connector
US10663675B2 (en) * 2012-09-12 2020-05-26 Commscope Technologies Llc Tuned fiber optic connectors
US20190086616A1 (en) * 2012-09-12 2019-03-21 Commscope Technologies Llc Tuned Fiber Optic Connectors
EP2920626A4 (en) * 2012-11-16 2016-03-02 Biolitec Pharma Marketing Ltd Fiber optic connector for laser sources
US10444443B2 (en) 2013-06-27 2019-10-15 CommScope Connectivity Belgium BVBA Fiber optic cable anchoring device for use with fiber optic connectors and methods of using the same
US9612408B2 (en) * 2014-07-25 2017-04-04 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Optical fiber connector
US20160025936A1 (en) * 2014-07-25 2016-01-28 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Optical fiber connector
US10451811B2 (en) * 2014-12-19 2019-10-22 Adc Telecommunications (Shanghai) Distribution Co., Ltd. Hardened fiber optic connector with pre-compressed spring
US10983284B2 (en) 2014-12-19 2021-04-20 CommScope Connectivity Belgium BVBA Hardened fiber optic connector with pre-compressed spring
US10067300B2 (en) 2014-12-24 2018-09-04 Japan Aviation Electronics Industry, Limited Connector-equipped plug
EP3199995A4 (en) * 2014-12-24 2017-11-15 Japan Aviation Electronics Industry, Limited Plug with built-in connector
CN107111068A (en) * 2014-12-24 2017-08-29 日本航空电子工业株式会社 Plug built in connector
WO2017155097A1 (en) * 2016-03-11 2017-09-14 オリンパス株式会社 Optical connector
US10067299B2 (en) 2016-06-29 2018-09-04 Corning Optical Communications LLC Tunable optical fiber connectors and connector and cable sub-assemblies and assemblies
WO2018005093A1 (en) * 2016-06-29 2018-01-04 Corning Optical Communications LLC Improved tunable optical fiber connectors and connector and cable sub-assemblies and assemblies
US10802228B2 (en) * 2017-06-28 2020-10-13 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US11543600B2 (en) 2017-06-28 2023-01-03 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11187859B2 (en) 2017-06-28 2021-11-30 Corning Research & Development Corporation Fiber optic connectors and methods of making the same
US11215768B2 (en) 2017-06-28 2022-01-04 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adhesive admitting adapters
US11262509B2 (en) 2017-06-28 2022-03-01 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US10809463B2 (en) 2017-06-28 2020-10-20 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US11287581B2 (en) 2017-06-28 2022-03-29 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11287582B2 (en) 2017-06-28 2022-03-29 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11940656B2 (en) 2017-06-28 2024-03-26 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11914197B2 (en) 2017-06-28 2024-02-27 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11300735B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11300746B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Fiber optic port module inserts, assemblies and methods of making the same
US11307364B2 (en) 2017-06-28 2022-04-19 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11327247B2 (en) 2017-06-28 2022-05-10 Corning Optical Communications LLC Multiports having connection ports formed in the shell and associated securing features
US11914198B2 (en) 2017-06-28 2024-02-27 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11409055B2 (en) 2017-06-28 2022-08-09 Corning Optical Communications LLC Multiports having connection ports with associated securing features and methods of making the same
US11415759B2 (en) 2017-06-28 2022-08-16 Corning Optical Communications LLC Multiports having a connection port insert and methods of making the same
US11460646B2 (en) 2017-06-28 2022-10-04 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US11906792B2 (en) 2017-06-28 2024-02-20 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11487065B2 (en) 2017-06-28 2022-11-01 Corning Research & Development Corporation Multiports and devices having a connector port with a rotating securing feature
US11493700B2 (en) 2017-06-28 2022-11-08 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11493699B2 (en) 2017-06-28 2022-11-08 Corning Research & Development Corporation Multifiber fiber optic connectors, cable assemblies and methods of making the same
US11531168B2 (en) 2017-06-28 2022-12-20 Corning Research & Development Corporation Fiber optic connectors having a keying structure and methods of making the same
US11536913B2 (en) 2017-06-28 2022-12-27 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adhesive admitting adapters
US11886017B2 (en) 2017-06-28 2024-01-30 Corning Research & Development Corporation Multiports and other devices having connection ports with securing features and methods of making the same
US20190339461A1 (en) * 2017-06-28 2019-11-07 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US11789214B2 (en) 2017-06-28 2023-10-17 Corning Research & Development Corporation Multiports and other devices having keyed connection ports and securing features and methods of making the same
US11579377B2 (en) 2017-06-28 2023-02-14 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same with alignment elements
US11703646B2 (en) 2017-06-28 2023-07-18 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US11624877B2 (en) 2017-06-28 2023-04-11 Corning Research & Development Corporation Multiports having connection ports with securing features that actuate flexures and methods of making the same
US11668890B2 (en) 2017-06-28 2023-06-06 Corning Research & Development Corporation Multiports and other devices having optical connection ports with securing features and methods of making the same
US11656414B2 (en) 2017-06-28 2023-05-23 Corning Research & Development Corporation Multiports and other devices having connection ports with securing features and methods of making the same
US11555966B2 (en) 2017-11-17 2023-01-17 Commscope Technologies Llc Fiber optic connector locking feature
US10830963B2 (en) * 2017-11-17 2020-11-10 Commscope Technologies Llc Fiber optic connector locking feature
US10768382B2 (en) 2018-11-29 2020-09-08 Corning Research & Development Corporation Multiport assemblies including access apertures and a release tool
EP3999890A4 (en) * 2019-07-17 2023-08-16 CommScope Technologies LLC Fiber optic connector with anti-wicking epoxy tube
CN114286957A (en) * 2019-07-17 2022-04-05 康普技术有限责任公司 Fiber optic connector with anti-wicking epoxy tube
US11846811B2 (en) 2019-07-17 2023-12-19 Commscope Technologies Llc Tuned fiber optic connector
US11294133B2 (en) 2019-07-31 2022-04-05 Corning Research & Development Corporation Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation
US11487073B2 (en) 2019-09-30 2022-11-01 Corning Research & Development Corporation Cable input devices having an integrated locking feature and assemblies using the cable input devices
US11886010B2 (en) 2019-10-07 2024-01-30 Corning Research & Development Corporation Fiber optic terminals and fiber optic networks having variable ratio couplers
US11650388B2 (en) 2019-11-14 2023-05-16 Corning Research & Development Corporation Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal
US11536921B2 (en) 2020-02-11 2022-12-27 Corning Research & Development Corporation Fiber optic terminals having one or more loopback assemblies
US11604320B2 (en) 2020-09-30 2023-03-14 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US11880076B2 (en) 2020-11-30 2024-01-23 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release housing
US11686913B2 (en) 2020-11-30 2023-06-27 Corning Research & Development Corporation Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same
US11927810B2 (en) 2020-11-30 2024-03-12 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release member
US11947167B2 (en) 2021-05-26 2024-04-02 Corning Research & Development Corporation Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal
WO2023062934A1 (en) * 2021-10-13 2023-04-20 住友電気工業株式会社 Optical connector
US11960126B2 (en) 2023-01-09 2024-04-16 Commscope Technologies Llc Fiber optic connector locking feature

Also Published As

Publication number Publication date
EP1348142B1 (en) 2009-04-08
CN1486442A (en) 2004-03-31
WO2002052310A3 (en) 2002-12-05
EP1348142A2 (en) 2003-10-01
ATE428125T1 (en) 2009-04-15
US20030031447A1 (en) 2003-02-13
US6695489B2 (en) 2004-02-24
MXPA03005823A (en) 2004-05-04
CN1220902C (en) 2005-09-28
DE60138304D1 (en) 2009-05-20
US6428215B1 (en) 2002-08-06
TW530172B (en) 2003-05-01
AR031971A1 (en) 2003-10-08
HK1064743A1 (en) 2005-02-04
AU2002241641A1 (en) 2002-07-08
WO2002052310A2 (en) 2002-07-04

Similar Documents

Publication Publication Date Title
US6428215B1 (en) Tunable fiber optic connector and method for assembling
US8342755B2 (en) Fiber optic connector and method for assembling
US7147385B2 (en) Fiber optic connector and method
US6629782B2 (en) Tuned fiber optic connector and method
EP1443350B1 (en) Tunable fiber optic connector
US10663675B2 (en) Tuned fiber optic connectors
EP1861739B1 (en) Multi-fiber fiber optic receptacle and plug assembly
AU2007342442B2 (en) Multi-fiber fiber optic receptacle and plug assembly
EP3167321B1 (en) Optical ferrule for multi-fiber cable and hardened multi-fiber optic connector therefore
WO1996037792A1 (en) Device with internal features for rotational alignment of non-cylindrically symmetrical optical elements
US11726269B2 (en) Lockable MPO connector for securing within a port of an adapter having a unique removal key
US6913396B2 (en) Tunable fiber optic connector and device and method for tuning a connector
WO2022246255A1 (en) Fiber optic connector with integrated rear fiber tube
EP0024959B1 (en) Connector for optical waveguides
US11846811B2 (en) Tuned fiber optic connector
EP4352558A1 (en) Fiber optic connector with integrated rear fiber tube

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADC TELECOMMUNICATIONS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAULT, PATRICK JUDE;REEL/FRAME:011814/0383

Effective date: 20010227

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11

AS Assignment

Owner name: TYCO ELECTRONICS SERVICES GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADC TELECOMMUNICATIONS, INC.;REEL/FRAME:036060/0174

Effective date: 20110930

AS Assignment

Owner name: COMMSCOPE EMEA LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TYCO ELECTRONICS SERVICES GMBH;REEL/FRAME:036956/0001

Effective date: 20150828

AS Assignment

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COMMSCOPE EMEA LIMITED;REEL/FRAME:037012/0001

Effective date: 20150828

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: PATENT SECURITY AGREEMENT (TERM);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037513/0709

Effective date: 20151220

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037514/0196

Effective date: 20151220

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037514/0196

Effective date: 20151220

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: PATENT SECURITY AGREEMENT (TERM);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037513/0709

Effective date: 20151220

AS Assignment

Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: ALLEN TELECOM LLC, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: ANDREW LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: ALLEN TELECOM LLC, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: ANDREW LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: TERM LOAN SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049905/0504

Effective date: 20190404

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:049892/0051

Effective date: 20190404

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: ABL SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049892/0396

Effective date: 20190404

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CONNECTICUT

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:049892/0051

Effective date: 20190404