Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20020095209 A1
Publication typeApplication
Application numberUS 10/071,620
Publication dateJul 18, 2002
Filing dateFeb 8, 2002
Priority dateSep 16, 1997
Also published asDE69841615D1, EP1023007A1, EP1023007A4, EP1023007B1, US5954766, US6632243, US7033387, US7276077, US20020077696, US20030199972, US20030212452, WO1999013801A1
Publication number071620, 10071620, US 2002/0095209 A1, US 2002/095209 A1, US 20020095209 A1, US 20020095209A1, US 2002095209 A1, US 2002095209A1, US-A1-20020095209, US-A1-2002095209, US2002/0095209A1, US2002/095209A1, US20020095209 A1, US20020095209A1, US2002095209 A1, US2002095209A1
InventorsGholam-Reza Zadno-Azizi, John Ford, April Marano-Ford
Original AssigneeGholam-Reza Zadno-Azizi, Ford John S., April Marano-Ford
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Body fluid flow control device
US 20020095209 A1
Abstract
A device to provide body fluid flow control in the form of a valve to be located within a duct or passageway. The device is controlled through pressure above a preselected threshold. Bulk resilience about a passageway in a valve body provides the mechanism for controlled flow. One-way valve operation may be provided through a flap or through a pressure differential on the valve body depending upon the direction of flow. A frame structure positioned within a resilient seal includes longitudinally elongate elements which may be of spring material, malleable material or heat recoverable material so as to accomplish an initial insertion state and an expanded anchoring state. A valve support transitions between the resilient seal portion and the valve body to insure that the states do not change the threshold opening pressure. Insertion devices may be employed to position and actuate a change of state of the frame in the body duct or passageway.
Images(7)
Previous page
Next page
Claims(15)
What is claimed is:
1. A body fluid flow control device comprising
a resilient seal of substantially annular configuration;
a frame extending within at least a portion of the resilient seal and including a passageway extending longitudinally through the frame and at least one longitudinally extending element having an insertion state and an anchoring state, the anchoring state being with the at least one longitudinally extending element outwardly of the insertion state, thereby expanding the portion of the resilient seal within which the frame extends, the passageway being inwardly of the at least one longitudinally extending element;
a valve body having bulk resilience and a passage therethrough resiliently biased closed by the bulk resilience and communicating with the passageway;
a valve support about the valve body and attached to the valve body and to the resilient seal, the passage being in communication with the passageway extending longitudinally through the frame.
2. The body fluid flow control device of claim 1, the resilient seal further including a skirt extending at least partially over the at least one longitudinally extending element to form a peripheral seal.
3. The body fluid flow control device of claim 1, the resilient seal further including a skirt extending within the at least one longitudinally extending element and having a cuff over one end of each of the at least one longitudinally extending element to form a peripheral seal.
4. The body fluid flow control device of claim 1, the resilient seal further including a skirt extending fully over the frame.
5. The body fluid flow control device of claim 1, the passage having a predetermined fluid opening pressure.
6. The body fluid flow control device of claim 5, the fluid opening pressure being about 0.2 psi to 3.0 psi for urinary incontinence.
7. The body fluid flow control device of claim 5, the fluid opening pressure being about 0.005 psi to 1.0 psi for intervasoular placement.
8. The body fluid flow control device of claim 1, the passage being a single slit.
9. The body fluid flow control device of claim 1, the resilient seal, the valve body and the valve support being one piece.
10. The body fluid flow control device of claim 1, the at least one longitudinally extending element being heat recoverable with a transition temperature range below a reasonable range of human body temperatures.
11. The body fluid flow control device of claim 1, the at least one longitudinally extending element being spring biased toward the anchoring state and being held in the insertion state by a release wire separable from the frame.
12. The body fluid flow control device of claim 1 further comprising
a flap attached to the valve body adjacent the passage and extending over the passage to restrict flow to one direction through the passage.
13. The body fluid flow control device of claim 1 further comprising
an elongate expander means for expanding the at least one longitudinally extending element from the insertion state to the anchoring state, the at least one longitudinally extending element defining a concavity receiving at least a portion of the elongate expander means.
14. The body fluid flow control device of claim 13, the elongate expander means including a balloon at a distal end thereof with a passage extending substantially the length of the elongate expander means.
15. The body fluid flow control device of claim 13, the elongate expander means including an outer sheath into which the resilient seal and the frame are positionable in the insertion state and a ram extending within the sheath to engage the frame in the passageway extending longitudinally through the frame.
Description
  • [0001]
    This is a continuing application of U.S. patent application Ser. No. 08/931,552, filed Sep. 16, 1997 and issuing as U.S. Pat. No. 5,954,766, the disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The field of the present invention is valve mechanisms for use in the human body.
  • [0003]
    Valves play an important role in a number of bodily functions. One such physiologic valve is in the urinary tract. Valve failure in this system leads to urinary incontinence, a significant health issue. Urinary incontinence is estimated to affect some ten million Americans. The full extent of this problem is unknown because less than half of affected adults are believed to actually seek medical attention.
  • [0004]
    Devices are available to assist in the control of urinary incontinence. Such devices include external valves, valves extending throughout the lower urinary tract and into the bladder, devices extending through long portions of the urethra and implanted protheses as well as injected bulking agents which support the urethral sphincter to enhance operation. Such devices are often inconvenient, uncomfortable and/or require surgical insertion. Other devices are considered overly intrusive.
  • [0005]
    Native valves are also found in cardiovascular systems. In veins, native venous valves promote one-way flow toward the heart from the periphery. Diseases exist such as venous thrombosis and thrombophlebitis which can render native venous valves incompetent, resulting in edema. Replacement of these artificial valves with artificial ones could provide substantial health benefits.
  • [0006]
    The pulmonic valve associated with the heart is yet another native flow control mechanism which can exhibit incompetence either congenitally, through disease or iatrogenically due to treatment of pulmonary stenosis. A one-way valve positioned distal to the native pulmonic valve within the pulmonary artery could be of substantial benefit in overcoming this problem.
  • SUMMARY OF THE INVENTION
  • [0007]
    The present invention is directed to a body fluid flow control device which includes an ability to seal about the device in the fluid passageway, a placement and retention format for the device and a valve body capable of either or both a pressure threshold for operation and a one-way flow restriction. The valve body preferably end bulk resilience and a passage therethrough which is closed by that bulk resilience. This may be defined by an elastomeric or other polymeric body with a passage therethrough cut without the removal of material. A single slit, a cross or a star shaped cut are included among the possibilities. One-way flow may be accomplished through a flap or other inhibitor physically impeding flow in one direction or by a configuration of the valve to employ passage pressure to prevent opening.
  • [0008]
    In a separate aspect of the present invention, such devices as contemplated above are combined with mechanisms to assist in transforming the state of the device from insertion to anchoring.
  • [0009]
    Accordingly, it is a principal object of the present invention to provide a flow control device for the human body such as for urinary, venous or pulmonic placement. Other and further objects and advantages may appear hereinafter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0010]
    [0010]FIG. 1 is a perspective view of a first flow control device.
  • [0011]
    [0011]FIG. 2 is a cross-sectional side view of the device of FIG. 1.
  • [0012]
    [0012]FIG. 3 is a cross-sectional side view of a second flow control device.
  • [0013]
    [0013]FIG. 4 is an end view of a third fluid flow control device.
  • [0014]
    [0014]FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4.
  • [0015]
    [0015]FIG. 6 is an end view of yet another fluid flow control device.
  • [0016]
    [0016]FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 6.
  • [0017]
    [0017]FIG. 8 is a cross-sectional view of yet another fluid flow control device.
  • [0018]
    [0018]FIG. 9 is a cross-sectional view of yet another fluid flow control device.
  • [0019]
    [0019]FIG. 10 is a cross-sectional view of yet another fluid flow control device.
  • [0020]
    [0020]FIG. 11 is a cross-sectional view of the device of FIG. 10 with a balloon expander positioned within the device.
  • [0021]
    [0021]FIG. 12 is a cross-sectional side view of an insertion tool with a fluid flow control device in place.
  • [0022]
    [0022]FIG. 13 is a prospective view of another frame.
  • [0023]
    [0023]FIG. 14 is a prospective view of yet another frame.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0024]
    [0024]FIGS. 1 and 2 illustrate a first fluid flow control device capable of one-way flow, the sealing of a body passageway and pressure actuation. The device includes a resilient seal 20 which, in this first embodiment, includes a cylindrical elastomeric or, more generically, polymeric material capable of sealing within the interior of a body duct or passageway. This resilient seal is shown in this embodiment to be cylindrical but may be tapered through a portion thereof. In either instance, the seal has a substantially circular cross section to fit within the body duct or passageway.
  • [0025]
    To one end of the seal 20, a valve support 22 extends inwardly from an attachment to the valve body. This valve support 22 preferably provides a barrier to flow through the resilient seal. The support 22 is conveniently formed as one piece with the seal 20.
  • [0026]
    A valve body 24 is attached to the valve support 22 about the outer periphery of the body 24. The valve body 24 is also of polymeric material and may be most conveniently formed as one piece with the seal 20 and the valve support 22. The body 24 is shown in this first embodiment to define a passage 26 which is shown to be a single slit. The slit 26 extends longitudinally through the valve body. The body of the valve being polymeric and resilient is able to provide bulk resilience to maintain its natural state. As the slit 26 is preferably manufactured without removal of material from the valve body 24, the resilience of the body closes the slit 26 so that no flow can occur. Through empirical testing, an appropriate size of the slit 26 and overall body size and shape of the valve body 24 will define a threshold pressure which may be applied to one end of the valve to cause the slit 26 to open. For purposes of urinary tract control, this opening pressure should be in the range of about 0.2 psi to 3.0 psi. For intervascular placement, the threshold should be from about 0.005 psi to 1.0 psi.
  • [0027]
    The valve body 24 acts in this embodiment as a one-way valve because of the substantially parallel sides to either side of the slit 26. In the event that flow builds up on the side of the valve with the extending substantially parallel sides 28, the pressure will not only build up at the slit 26, it will also build up on the parallel sides 28 as well. The pressure on the sides will prevent the slit from opening.
  • [0028]
    A frame, generally designated 30, is located within the peripheral resilient seal 20. This frame 30 is contemplated to be a metallic member having an expanded metal cylinder 32 defined by longitudinally extending elements 34. In this instance, the longitudinally extending elements 34 are interconnected as one construction so as to form the expanded metal cylinder.
  • [0029]
    The resilient seal forming the peripheral element about the frame 30 to define a seal with the duct or passageway in which the device is placed may be affixed to the frame 30 by any number of conventional means. For example, the frame 30 may be bonded to the resilient seal 20. The resilient seal 20 may be formed through injection molding, blow molding, insertion molding or the like with the frame in place within the mold such that the frame 30 becomes embedded within the seal 20. There may be a physical interlocking through the use of an inwardly extending flange on the open end of the resilient seal 20 to physically retain the frame 30.
  • [0030]
    The frame 30, being of expanded metal, is capable of being easily stretched to expand from a stable first state to a stable expanded state. The first state, referred to as the insertion state, is contemplated with the overall diameter of the frame 30 and the surrounding resilient seal 20 exhibiting a first diameter. With the frame 30 expanded to what may be termed an anchor state, the resilient seal 20 also expands. In the expanded state, the overall device is intended to fit with interference in the duct or passage. Before expansion, easy insertion is contemplated with clearance.
  • [0031]
    The construction of this first embodiment provides for the valve support 22 to extend longitudinally in a cylindrical element 36 from an inwardly extending disk element 38. A further inwardly extending disk element 40 extends to the valve body 24. The employment of the cylindrical element 36 between these disk elements 38 and 40 is intended to isolate the valve body 24 from the displacement of the resilient seal 20 as the frame is expanded from an insertion state to an anchor state. Distortion of the valve which may result in a change in the threshold pressure to open the valve may be avoided.
  • [0032]
    Looking to FIG. 3, a similar view to that of FIG. 2 illustrates a second embodiment. This embodiment differs from the prior embodiment in the redirection of the valve body 24 at the disk 40. With that redirection, the valve body 24 is positioned to face in the opposite direction. In this way, the one-way feature operates to provide flow in the opposite direction relative to the frame 30 and resilient seal 20.
  • [0033]
    Turning to FIGS. 4 and 5, another embodiment is illustrated. Identical reference numbers are applied to those of the first embodiment to similar structures and functional elements. Presenting a more quantitative description, the wall thickness of the elastomeric polymer defining the resilient seal 20, valve support 22 and valve body 24 is contemplated to be between approximately 0.005″ and 0.050″. The width of the slit is approximately 0.024″ while the outside diameter of the resilient seal 20 is approximately 0.349″. The length of this element is contemplated to be approximately 0.60″. The frame is cylindrical with an OD in the insertion state of approximately 0.329″, a length of approximately 0.304″ and a thickness of approximately 0.005″ to 0.015″. This member is preferably of stainless steel or nitinol. The metallic member in this and each other embodiment is contemplated to be substantially nonreactive with body fluids and the body itself or coated with such a nonreactive material. Other dimensions can also be manufactured depending on the size of the placement.
  • [0034]
    Turning to the embodiment of FIGS. 6 and 7, substantially the same device is illustrated as in the prior embodiment. Again, the correspondence of reference numerals reflect similar structures and functional features. This device has an added flap 42 overlying the passage 26. The flap 42 is attached by adhesive, bonding or other conventional procedure. The passage 26 may again be a slit as previously described so as to provide a threshold pressure level before opening. If a passageway is presented instead, the device will simply act as a one-way valve.
  • [0035]
    Turning to FIG. 8, a different overall exterior configuration is presented as well as a different frame. A polymeric resilient seal 44 is shown to extend over a frame, generally designated 46. The frame 46 includes longitudinally extending elements 48. The elements 48 extend from a conically shaped portion 50 of the frame 46. This conically shaped portion 50 is truncated to provide a wide passageway 52 for operation of the valving mechanism. The resilient seal 44 forms a skirt which extends inwardly to a valve support 54 which is located about the truncated conical portion 50. The valve support 54 and the resilient seal 44 are preferably of the same piece of material. A valve body 56 extends across the passageway 52 in an appropriate thickness to provide the appropriate bulk resilience to accommodate a threshold opening pressure. A passage 58, shown here to be a slit extends through the valve body 56.
  • [0036]
    Turning to FIG. 9, a device similar to that of FIG. 8 is disclosed. Common reference numerals indicate similar elements and functional features. The resilient seal 44 extends over the longitudinally extending elements as a skirt with the ends of the elements 48 extending outwardly therefrom. A truncated somewhat conical portion 50 actually forming a dome shape extends to a passageway 52. The valve support 54 covers this portion 50. A truncated cone shaped element 60 forms a further part of the valve. It may be part of the same piece of material as the resilient seal 44 and valve support 54. A valve body 62 is shown to be a cylindrical element with a passage 58, shown here to be slits in the form of a cross or star extending longitudinally therethrough.
  • [0037]
    The length of the valve body 62 establishes that the passage 64 will operate only in expansion and not through bending of the components. Thus, a substantially greater threshold level of pressure is anticipated for this configuration.
  • [0038]
    [0038]FIG. 10 illustrates yet another fluid flow control device. This device includes a resilient seal 66 in the form of a cuff extending about one end of the periphery of the device. The frame 68 is generally on the outside of the valve with longitudinally extending elements 70 extending into the cuff 66. The valve support 72 extends within the frame 68 to a valve body 74 which forms a disk element with a slit 78 therethrough. The frame 68 includes a section in the form of a solid disk 80 with a passageway 82 therethrough. The passageway 82 is substantially larger than the slit 78 in order that it not interfere with the operation thereof. The solid disk 80 also acts to tie together the longitudinally extending element 70 extending out to the cuff 66.
  • [0039]
    A variety of slits or other mechanisms may be employed to achieve flow through a passage above a preestablished threshold pressure. With thin membranes, a slit or multiple crossed slits can employ a bending component to achieve flow. The bulk resilience is employed more in bending than in radial compression away from the cut or cuts. With longer passageways, radial compression outwardly from the passage provides the controlling mechanism. The thickness of the resilient seal as measured laterally of the slit can be of importance in one-way flow operation. With a thin lateral wall thickness, the pressure surrounding the valve can prevent its opening. Thus, flow would only occur from the side of the valve where pressure cannot accumulate and prevent its opening.
  • [0040]
    The frame is to be capable of two states, an insertion state and an anchoring state. The anchoring state is larger than the insertion state by the laterally extending resilient elements being outwardly of the insertion position of these elements when they are in the anchor state.
  • [0041]
    To achieve these two states, a number of mechanisms may be employed. First, a malleable material can be used. Because the passageways and ducts within the body are quite resilient, large changes in diameter are not required. Consequently, almost any metal is capable of sufficient malleability, particularly if it is employed in an expanded metal state, for example. Reference is made to the embodiment of FIGS. 1 and 2. The choice of metals can become more dependent upon satisfying environmental needs within the body.
  • [0042]
    Another mechanism which may be employed to accommodate this two-state requirement is spring resilience. The insertion state can be achieved through a preconstraint of the longitudinally extending elements within the elastic range of these elements. Once positioned, the elements can be released to expand into an anchoring state. Constraining tubes or pull wires may achieve the initial insertion state.
  • [0043]
    Another mechanism which may be used to accomplish both the insertion and the anchor states of the frame is the heat recovery of materials available with alloys such as certain nickel titanium alloys. Preferably the transition temperature of such devices is below body temperature. Under these circumstances, a cool device can be positioned and allowed to attain ambient temperature. The unrecovered state of the frame would be in the insertion position with the longitudinally extending elements in a radially contracted position. Upon recovery, the frame would expand. Another use of this material may be through a heating of the device above body temperature with a recovery temperature zone above that of normal body temperature but below a temperature which may cause burning. The device might be heated electrically or through the modulation of a field.
  • [0044]
    To accomplish a transition from the insertion state to the anchoring state, a variety of devices may be employed. An elongate expander is illustrated in FIG. 11. A balloon 84 is presented at the end of an elongate passage 86 through which pressure may be transmitted. The fluid flow control device can be inserted on the mechanism making up the passage 86 and balloon 84. When in position, the balloon 84 is expanded through the application of pressure to the accessible end of the passage 86. The malleable longitudinally extending elements are bent beyond their yield point into an interfering engagement with the wall of the passageway in the body.
  • [0045]
    Another mechanism for providing an elongate expander and insertion tool is illustrated in FIG. 12. The device includes an outer sheath 88 into which is positioned a fluid flow control device which has longitudinally extending elements that are of spring material. The elements are bent such that the frame is radially constricted. The size of the sheath inner diameter is such that the spring elements are not bent to the point that they exceed the elastic limit. A ram 90 extends into the sheath 88 to force the fluid flow control device from the end of the sheath. As the device is released from the sheath 88, it will naturally expand to the anchored state. This same mechanism may be employed with any of the devices for placement regardless of whether the mechanism for expansion is deformation, heat recovery or resilience. Naturally, the ram 90 can accommodate a heating element or balloon mechanism depending upon the appropriate need.
  • [0046]
    Finally, FIGS. 13 and 14 illustrate two additional forms of the frame which may be employed in place of one of the other frames disclosed. The frame may form a complete cylinder or a rolled sheet 92 as in FIG. 13. A frame which is another alternative is seen in FIG. 14. A longitudinally extending element 94 is formed into a coil. These devices may be of heat recoverable material so as to form an insertion state and an anchor state or be of spring material constrained to a reduced diameter for insertion.
  • [0047]
    Considering the use of these devices, the thresholds are selected with the appropriate pressures in mind. With incontinence, the threshold pressure is high enough to prevent leakage as normal pressure builds in the bladder. When the bladder is to be voided, abdominal pressure is used. The threshold pressure is also low enough that the abdominal pressure will overcome the resistance and allow flow. Where placement is in the cardiovascular system, minimum resistance to flow in one direction may designed into the valve. In this application, however, substantial resistance to flow is designed into the valve to eliminate flow in one direction for all pressures contemplated.
  • [0048]
    Accordingly, a number of improved devices for providing body fluid flow control are disclosed. While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications are possible without departing from the inventive concepts herein. The invention, therefore is not to be restricted except in the spirit of the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US512919 *Apr 5, 1893Jan 16, 1894 Apparatus for filling cans and cooking the contents thereof
US2981254 *Nov 12, 1957Apr 25, 1961Vanderbilt Edwin GApparatus for the gas deflation of an animal's stomach
US3657744 *May 8, 1970Apr 25, 1972Univ MinnesotaMethod for fixing prosthetic implants in a living body
US3667069 *Mar 27, 1970Jun 6, 1972Univ MinnesotaJet pump cardiac replacement and assist device and method of at least partially replacing a disabled right heart
US3788327 *Mar 30, 1971Jan 29, 1974Donowitz HSurgical implant device
US3874388 *Feb 12, 1973Apr 1, 1975Ochsner Med Found AltonShunt defect closure system
US4014318 *May 22, 1975Mar 29, 1977Dockum James MCirculatory assist device and system
US4086665 *Dec 16, 1976May 2, 1978Thermo Electron CorporationArtificial blood conduit
US4212463 *Feb 17, 1978Jul 15, 1980Pratt Enoch BHumane bleeder arrow
US4250873 *Apr 17, 1978Feb 17, 1981Richard Wolf GmbhEndoscopes
US4470157 *Apr 19, 1983Sep 11, 1984Love Jack WTricuspid prosthetic tissue heart valve
US4477930 *Sep 28, 1982Oct 23, 1984Mitral Medical International, Inc.Natural tissue heat valve and method of making same
US4732152 *Dec 5, 1985Mar 22, 1988Medinvent S.A.Device for implantation and a method of implantation in a vessel using such device
US4759758 *Dec 7, 1984Jul 26, 1988Shlomo GabbayProsthetic heart valve
US4795449 *Aug 4, 1986Jan 3, 1989Hollister IncorporatedFemale urinary incontinence device
US4808183 *Jun 3, 1980Feb 28, 1989University Of Iowa Research FoundationVoice button prosthesis and method for installing same
US4819664 *Feb 17, 1988Apr 11, 1989Stefano NazariDevice for selective bronchial intubation and separate lung ventilation, particularly during anesthesia, intensive therapy and reanimation
US4830003 *Jun 17, 1988May 16, 1989Wolff Rodney GCompressive stent and delivery system
US4832680 *Jul 3, 1986May 23, 1989C.R. Bard, Inc.Apparatus for hypodermically implanting a genitourinary prosthesis
US4846836 *Oct 3, 1988Jul 11, 1989Reich Jonathan DArtificial lower gastrointestinal valve
US4850999 *May 26, 1981Jul 25, 1989Institute Fur Textil-Und Faserforschung Of StuttgartFlexible hollow organ
US4852568 *Dec 28, 1987Aug 1, 1989Kensey Nash CorporationMethod and apparatus for sealing an opening in tissue of a living being
US4877025 *Oct 6, 1988Oct 31, 1989Hanson Donald WTracheostomy tube valve apparatus
US4934999 *Jul 28, 1988Jun 19, 1990Paul BaderClosure for a male urethra
US5061274 *Dec 4, 1989Oct 29, 1991Kensey Nash CorporationPlug device for sealing openings and method of use
US5116360 *Dec 27, 1990May 26, 1992Corvita CorporationMesh composite graft
US5116564 *Oct 10, 1989May 26, 1992Josef JansenMethod of producing a closing member having flexible closing elements, especially a heart valve
US5151105 *Oct 7, 1991Sep 29, 1992Kwan Gett CliffordCollapsible vessel sleeve implant
US5306234 *Mar 23, 1993Apr 26, 1994Johnson W DudleyMethod for closing an atrial appendage
US5382261 *Sep 1, 1992Jan 17, 1995Expandable Grafts PartnershipMethod and apparatus for occluding vessels
US5392775 *Mar 22, 1994Feb 28, 1995Adkins, Jr.; Claude N.Duckbill valve for a tracheostomy tube that permits speech
US5409019 *Nov 3, 1993Apr 25, 1995Wilk; Peter J.Coronary artery by-pass method
US5411507 *Jan 5, 1994May 2, 1995Richard Wolf GmbhInstrument for implanting and extracting stents
US5413599 *Dec 13, 1993May 9, 1995Nippon Zeon Co., Ltd.Medical valve apparatus
US5417226 *Jun 9, 1994May 23, 1995Juma; SaadFemale anti-incontinence device
US5445626 *May 15, 1992Aug 29, 1995Gigante; LuigiValve operated catheter for urinary incontinence and retention
US5486154 *Jun 8, 1993Jan 23, 1996Kelleher; Brian S.Endoscope
US5499995 *May 25, 1994Mar 19, 1996Teirstein; Paul S.Body passageway closure apparatus and method of use
US5500014 *May 9, 1994Mar 19, 1996Baxter International Inc.Biological valvular prothesis
US5522881 *Jun 28, 1994Jun 4, 1996Meadox Medicals, Inc.Implantable tubular prosthesis having integral cuffs
US5645565 *Jun 13, 1995Jul 8, 1997Ethicon Endo-Surgery, Inc.Surgical plug
US5660175 *Aug 21, 1995Aug 26, 1997Dayal; BimalEndotracheal device
US5662713 *Sep 14, 1995Sep 2, 1997Boston Scientific CorporationMedical stents for body lumens exhibiting peristaltic motion
US5755770 *Jan 31, 1995May 26, 1998Boston Scientific CorporatiionEndovascular aortic graft
US5800339 *May 2, 1997Sep 1, 1998Opticon Medical Inc.Urinary control valve
US5855587 *Aug 22, 1996Jan 5, 1999Chon-Ik HyonHole forming device for pierced earrings
US5855597 *May 7, 1997Jan 5, 1999Iowa-India Investments Co. LimitedStent valve and stent graft for percutaneous surgery
US5855601 *Jun 21, 1996Jan 5, 1999The Trustees Of Columbia University In The City Of New YorkArtificial heart valve and method and device for implanting the same
US5868779 *Aug 15, 1997Feb 9, 1999Ruiz; Carlos E.Apparatus and methods for dilating vessels and hollow-body organs
US5891195 *May 24, 1996Apr 6, 1999Sulzer Carbomedics Inc.Combined prosthetic aortic heart valve and vascular graft with sealed sewing ring
US5944738 *Feb 6, 1998Aug 31, 1999Aga Medical CorporationPercutaneous catheter directed constricting occlusion device
US5947997 *Jun 30, 1997Sep 7, 1999William Cook Europe A/SClosure prothesis for transcatheter placement
US5954765 *Nov 3, 1997Sep 21, 1999Ruiz; Carlos E.Self-adjusting prosthesis for treating constrictions in growing vessels
US5954766 *Sep 16, 1997Sep 21, 1999Zadno-Azizi; Gholam-RezaBody fluid flow control device
US5957949 *May 1, 1997Sep 28, 1999World Medical Manufacturing Corp.Percutaneous placement valve stent
US6009614 *Apr 21, 1998Jan 4, 2000Advanced Cardiovascular Systems, Inc.Stent crimping tool and method of use
US6020380 *Nov 25, 1998Feb 1, 2000Tap Holdings Inc.Method of treating chronic obstructive pulmonary disease
US6022312 *May 1, 1996Feb 8, 2000Chaussy; ChristianEndosphincter, set for releasable closure of the urethra and method for introduction of an endosphincter into the urethra
US6051022 *Dec 30, 1998Apr 18, 2000St. Jude Medical, Inc.Bileaflet valve having non-parallel pivot axes
US6068635 *Jun 4, 1998May 30, 2000Schneider (Usa) IncDevice for introducing an endoprosthesis into a catheter shaft
US6068638 *Oct 27, 1998May 30, 2000Transvascular, Inc.Device, system and method for interstitial transvascular intervention
US6077291 *Nov 26, 1996Jun 20, 2000Regents Of The University Of MinnesotaSeptal defect closure device
US6083255 *Dec 19, 1997Jul 4, 2000Broncus Technologies, Inc.Bronchial stenter
US6123663 *Apr 7, 1997Sep 26, 2000Rebuffat; CarloSurgical appliance for the treatment of pulmonary emphysema
US6168614 *Feb 20, 1998Jan 2, 2001Heartport, Inc.Valve prosthesis for implantation in the body
US6174323 *Jun 5, 1998Jan 16, 2001Broncus Technologies, Inc.Method and assembly for lung volume reduction
US6183520 *Nov 10, 1998Feb 6, 2001Galt Laboratories, Inc.Method of maintaining urinary continence
US6200333 *Dec 31, 1998Mar 13, 2001Broncus Technologies, Inc.Bronchial stenter
US6206918 *May 12, 1999Mar 27, 2001Sulzer Carbomedics Inc.Heart valve prosthesis having a pivot design for improving flow characteristics
US6234996 *Jun 23, 1999May 22, 2001Percusurge, Inc.Integrated inflation/deflation device and method
US6240615 *Sep 30, 1999Jun 5, 2001Advanced Cardiovascular Systems, Inc.Method and apparatus for uniformly crimping a stent onto a catheter
US6245102 *Jul 21, 1999Jun 12, 2001Iowa-India Investments Company Ltd.Stent, stent graft and stent valve
US6258100 *Oct 10, 2000Jul 10, 2001Spiration, Inc.Method of reducing lung size
US6270527 *Oct 16, 1998Aug 7, 2001Sulzer Carbomedics Inc.Elastic valve with partially exposed stent
US6287290 *Jul 2, 1999Sep 11, 2001PulmonxMethods, systems, and kits for lung volume reduction
US6293951 *Aug 24, 1999Sep 25, 2001Spiration, Inc.Lung reduction device, system, and method
US6355014 *Mar 13, 1998Mar 12, 2002Medtronic Percusurge, Inc.Low profile catheter valve
US6398775 *Oct 21, 1999Jun 4, 2002PulmonxApparatus and method for isolated lung access
US6402754 *Oct 20, 1999Jun 11, 2002Spiration, Inc.Apparatus for expanding the thorax
US6416554 *Aug 24, 1999Jul 9, 2002Spiration, Inc.Lung reduction apparatus and method
US6510846 *Oct 26, 2000Jan 28, 2003O'rourke SamSealed back pressure breathing device
US6527761 *Oct 27, 2000Mar 4, 2003Pulmonx, Inc.Methods and devices for obstructing and aspirating lung tissue segments
*US20010095209 Title not available
US20020007831 *Jul 18, 2001Jan 24, 2002Davenport Paul W.Method for treating chronic obstructive pulmonary disorder
US20020025132 *Aug 30, 2001Feb 28, 2002Zarian James R.Linear light form with light diverting layer
US20020026233 *Mar 20, 2001Feb 28, 2002Alexander ShaknovichMethod and devices for decreasing elevated pulmonary venous pressure
US20020062120 *Dec 13, 2001May 23, 2002PulmonxMethods, systems, and kits for lung volume reduction
US20020077593 *Feb 11, 2002Jun 20, 2002PulmonxApparatus and method for isolated lung access
US20020077696 *Feb 21, 2002Jun 20, 2002Gholam-Reza Zadno-AziziBody fluid flow control device
US20020087153 *Sep 4, 2001Jul 4, 2002Broncus Technologies, Inc.Devices for creating collateral channels
US20020111619 *Sep 4, 2001Aug 15, 2002Broncus Technologies, Inc.Devices for creating collateral channels
US20020111620 *Sep 4, 2001Aug 15, 2002Broncus Technologies, Inc.Devices and methods for maintaining collateral channels in tissue
US20020112729 *Feb 21, 2001Aug 22, 2002Spiration, Inc.Intra-bronchial obstructing device that controls biological interaction with the patient
US20020138135 *Mar 21, 2001Sep 26, 2002Duerig Thomas W.Stent-based venous valves
US20030018327 *Jul 18, 2002Jan 23, 2003Csaba TruckaiSystems and techniques for lung volume reduction
US20030018344 *Jul 19, 2002Jan 23, 2003Olympus Optical Co., Ltd.Medical device and method of embolizing bronchus or bronchiole
US20030050648 *Sep 11, 2001Mar 13, 2003Spiration, Inc.Removable lung reduction devices, systems, and methods
US20030083671 *Oct 25, 2001May 1, 2003Spiration, Inc.Bronchial obstruction device deployment system and method
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6632243Sep 16, 1999Oct 14, 2003Emphasys Medical Inc.Body fluid flow control device
US6679264Mar 4, 2000Jan 20, 2004Emphasys Medical, Inc.Methods and devices for use in performing pulmonary procedures
US6694979Mar 2, 2001Feb 24, 2004Emphasys Medical, Inc.Methods and devices for use in performing pulmonary procedures
US7036509Dec 3, 2004May 2, 2006Emphasys Medical, Inc.Multiple seal port anesthesia adapter
US7662181Feb 16, 2010Pulmonx CorporationMethods and devices for use in performing pulmonary procedures
US7682390Jul 30, 2002Mar 23, 2010Medtronic, Inc.Assembly for setting a valve prosthesis in a corporeal duct
US7691151Oct 24, 2006Apr 6, 2010Spiration, Inc.Articulable Anchor
US7712606Feb 2, 2006May 11, 2010Sadra Medical, Inc.Two-part package for medical implant
US7717115Nov 25, 2003May 18, 2010Pulmonx CorporationDelivery methods and devices for implantable bronchial isolation devices
US7740655Apr 6, 2006Jun 22, 2010Medtronic Vascular, Inc.Reinforced surgical conduit for implantation of a stented valve therein
US7748389Oct 21, 2004Jul 6, 2010Sadra Medical, Inc.Leaflet engagement elements and methods for use thereof
US7757692Jul 20, 2010Spiration, Inc.Removable lung reduction devices, systems, and methods
US7758606Feb 5, 2004Jul 20, 2010Medtronic, Inc.Intravascular filter with debris entrapment mechanism
US7771472Nov 18, 2005Aug 10, 2010Pulmonx CorporationBronchial flow control devices and methods of use
US7780725Jun 16, 2004Aug 24, 2010Sadra Medical, Inc.Everting heart valve
US7780726Aug 24, 2010Medtronic, Inc.Assembly for placing a prosthetic valve in a duct in the body
US7798147Jul 25, 2003Sep 21, 2010Pulmonx CorporationBronchial flow control devices with membrane seal
US7814912Jun 29, 2005Oct 19, 2010Pulmonx CorporationDelivery methods and devices for implantable bronchial isolation devices
US7824442Nov 2, 2010Sadra Medical, Inc.Methods and apparatus for endovascularly replacing a heart valve
US7824443Feb 2, 2006Nov 2, 2010Sadra Medical, Inc.Medical implant delivery and deployment tool
US7842061Dec 23, 2003Nov 30, 2010Spiration, Inc.Methods of achieving lung volume reduction with removable anchored devices
US7846199Nov 18, 2008Dec 7, 2010Cook IncorporatedRemodelable prosthetic valve
US7854228Dec 21, 2010Pulmonx CorporationBronchial flow control devices and methods of use
US7875048Jan 25, 2011Spiration, Inc.One-way valve devices for anchored implantation in a lung
US7887585Mar 4, 2009Feb 15, 2011Spiration, Inc.Bronchoscopic repair of air leaks in a lung
US7892281Feb 22, 2011Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US7896887Mar 1, 2011Spiration, Inc.Apparatus and method for deployment of a bronchial obstruction device
US7914569May 13, 2005Mar 29, 2011Medtronics Corevalve LlcHeart valve prosthesis and methods of manufacture and use
US7942931Aug 15, 2005May 17, 2011Spiration, Inc.Device and method for intra-bronchial provision of a therapeutic agent
US7959666Jun 14, 2011Sadra Medical, Inc.Methods and apparatus for endovascularly replacing a heart valve
US7959672Jun 14, 2011Sadra MedicalReplacement valve and anchor
US7972378Jul 5, 2011Medtronic, Inc.Stents for prosthetic heart valves
US7988724Aug 2, 2011Sadra Medical, Inc.Systems and methods for delivering a medical implant
US8002826Oct 14, 2009Aug 23, 2011Medtronic Corevalve LlcAssembly for placing a prosthetic valve in a duct in the body
US8016877Jun 29, 2009Sep 13, 2011Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US8021385Sep 20, 2011Spiration, Inc.Removable anchored lung volume reduction devices and methods
US8043301Oct 25, 2011Spiration, Inc.Valve loader method, system, and apparatus
US8048153Nov 1, 2011Sadra Medical, Inc.Low profile heart valve and delivery system
US8052749Nov 8, 2011Sadra Medical, Inc.Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8052750Nov 8, 2011Medtronic Ventor Technologies LtdValve prosthesis fixation techniques using sandwiching
US8070801Dec 6, 2011Medtronic, Inc.Method and apparatus for resecting and replacing an aortic valve
US8075615Dec 13, 2011Medtronic, Inc.Prosthetic cardiac valve formed from pericardium material and methods of making same
US8079368Dec 20, 2011Spiration, Inc.Bronchoscopic lung volume reduction method
US8092487Jan 10, 2012Medtronic, Inc.Intravascular filter with debris entrapment mechanism
US8109996Feb 7, 2012Sorin Biomedica Cardio, S.R.L.Minimally-invasive cardiac-valve prosthesis
US8136230Oct 10, 2008Mar 20, 2012Spiration, Inc.Valve loader method, system, and apparatus
US8136659May 10, 2010Mar 20, 2012Sadra Medical, Inc.Two-part package for medical implant
US8157852Jan 22, 2009Apr 17, 2012Medtronic, Inc.Delivery systems and methods of implantation for prosthetic heart valves
US8157853Apr 17, 2012Medtronic, Inc.Delivery systems and methods of implantation for prosthetic heart valves
US8177805Aug 4, 2011May 15, 2012Spiration, Inc.Removable anchored lung volume reduction devices and methods
US8182528Dec 23, 2003May 22, 2012Sadra Medical, Inc.Locking heart valve anchor
US8206684Jun 26, 2012Pulmonx CorporationMethods and devices for blocking flow through collateral pathways in the lung
US8216299Jul 10, 2012Cook Medical Technologies LlcMethod to retract a body vessel wall with remodelable material
US8226710Mar 25, 2011Jul 24, 2012Medtronic Corevalve, Inc.Heart valve prosthesis and methods of manufacture and use
US8231670Jul 31, 2012Sadra Medical, Inc.Repositionable heart valve and method
US8241274Aug 14, 2012Medtronic, Inc.Method for guiding a medical device
US8246678Mar 9, 2007Aug 21, 2012Sadra Medicl, Inc.Methods and apparatus for endovascularly replacing a patient's heart valve
US8251067Aug 16, 2010Aug 28, 2012Pulmonx CorporationBronchial flow control devices with membrane seal
US8252052Aug 28, 2012Sadra Medical, Inc.Methods and apparatus for endovascularly replacing a patient's heart valve
US8257381Dec 15, 2010Sep 4, 2012Spiration, Inc.One-way valve devices for anchored implantation in a lung
US8287584Nov 14, 2005Oct 16, 2012Sadra Medical, Inc.Medical implant deployment tool
US8313525Nov 20, 2012Medtronic Ventor Technologies, Ltd.Valve suturing and implantation procedures
US8328868Dec 11, 2012Sadra Medical, Inc.Medical devices and delivery systems for delivering medical devices
US8343213Oct 21, 2004Jan 1, 2013Sadra Medical, Inc.Leaflet engagement elements and methods for use thereof
US8348995Jan 8, 2013Medtronic Ventor Technologies, Ltd.Axial-force fixation member for valve
US8357139Nov 4, 2008Jan 22, 2013Pulmonx CorporationMethods and devices for use in performing pulmonary procedures
US8388682Mar 5, 2013Pulmonx CorporationBronchial flow control devices and methods of use
US8414643Apr 9, 2013Medtronic Ventor Technologies Ltd.Sinus-engaging valve fixation member
US8414655Apr 9, 2013Spiration, Inc.Removable lung reduction devices, systems, and methods
US8430927Feb 2, 2009Apr 30, 2013Medtronic, Inc.Multiple orifice implantable heart valve and methods of implantation
US8444690Jan 12, 2011May 21, 2013Spiration, Inc.Bronchoscopic repair of air leaks in a lung
US8454708Jun 4, 2013Spiration, Inc.Articulable anchor
US8474460Sep 17, 2010Jul 2, 2013Pulmonx CorporationImplanted bronchial isolation devices and methods
US8512397Apr 27, 2009Aug 20, 2013Sorin Group Italia S.R.L.Prosthetic vascular conduit
US8535373Jun 16, 2008Sep 17, 2013Sorin Group Italia S.R.L.Minimally-invasive cardiac-valve prosthesis
US8539662Jun 16, 2008Sep 24, 2013Sorin Group Italia S.R.L.Cardiac-valve prosthesis
US8540768Dec 30, 2011Sep 24, 2013Sorin Group Italia S.R.L.Cardiac valve prosthesis
US8562672Nov 18, 2005Oct 22, 2013Medtronic, Inc.Apparatus for treatment of cardiac valves and method of its manufacture
US8579962Dec 20, 2005Nov 12, 2013Sadra Medical, Inc.Methods and apparatus for performing valvuloplasty
US8579966Feb 4, 2004Nov 12, 2013Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US8591570Mar 14, 2008Nov 26, 2013Medtronic, Inc.Prosthetic heart valve for replacing previously implanted heart valve
US8603159Dec 11, 2009Dec 10, 2013Medtronic Corevalve, LlcProsthetic valve for transluminal delivery
US8603160Dec 23, 2003Dec 10, 2013Sadra Medical, Inc.Method of using a retrievable heart valve anchor with a sheath
US8617236Nov 2, 2011Dec 31, 2013Sadra Medical, Inc.Medical devices and delivery systems for delivering medical devices
US8623076Sep 22, 2011Jan 7, 2014Sadra Medical, Inc.Low profile heart valve and delivery system
US8623077Dec 5, 2011Jan 7, 2014Medtronic, Inc.Apparatus for replacing a cardiac valve
US8623078Jun 8, 2011Jan 7, 2014Sadra Medical, Inc.Replacement valve and anchor
US8628570Aug 18, 2011Jan 14, 2014Medtronic Corevalve LlcAssembly for placing a prosthetic valve in a duct in the body
US8647392Apr 26, 2012Feb 11, 2014Spiration, Inc.Articulable anchor
US8652204Jul 30, 2010Feb 18, 2014Medtronic, Inc.Transcatheter valve with torsion spring fixation and related systems and methods
US8667973Nov 1, 2011Mar 11, 2014Spiration, Inc.Bronchoscopic lung volume reduction method
US8668733Nov 12, 2008Mar 11, 2014Sadra Medical, Inc.Everting heart valve
US8673000May 20, 2011Mar 18, 2014Medtronic, Inc.Stents for prosthetic heart valves
US8685077Mar 14, 2012Apr 1, 2014Medtronics, Inc.Delivery systems and methods of implantation for prosthetic heart valves
US8685084Dec 28, 2012Apr 1, 2014Sorin Group Italia S.R.L.Prosthetic vascular conduit and assembly method
US8721708Sep 23, 2011May 13, 2014Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US8721714Sep 17, 2008May 13, 2014Medtronic Corevalve LlcDelivery system for deployment of medical devices
US8747458Aug 20, 2007Jun 10, 2014Medtronic Ventor Technologies Ltd.Stent loading tool and method for use thereof
US8747460Dec 23, 2011Jun 10, 2014Medtronic Ventor Technologies Ltd.Methods for implanting a valve prothesis
US8771302Apr 6, 2007Jul 8, 2014Medtronic, Inc.Method and apparatus for resecting and replacing an aortic valve
US8771345Oct 31, 2011Jul 8, 2014Medtronic Ventor Technologies Ltd.Valve prosthesis fixation techniques using sandwiching
US8771346Jul 25, 2011Jul 8, 2014Medtronic Ventor Technologies Ltd.Valve prosthetic fixation techniques using sandwiching
US8777980Dec 23, 2011Jul 15, 2014Medtronic, Inc.Intravascular filter with debris entrapment mechanism
US8795241May 13, 2011Aug 5, 2014Spiration, Inc.Deployment catheter
US8801779May 10, 2011Aug 12, 2014Medtronic Corevalve, LlcProsthetic valve for transluminal delivery
US8808369Oct 5, 2010Aug 19, 2014Mayo Foundation For Medical Education And ResearchMinimally invasive aortic valve replacement
US8828078Sep 20, 2005Sep 9, 2014Sadra Medical, Inc.Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8834563Dec 16, 2009Sep 16, 2014Sorin Group Italia S.R.L.Expandable prosthetic valve having anchoring appendages
US8834564Mar 11, 2010Sep 16, 2014Medtronic, Inc.Sinus-engaging valve fixation member
US8840661May 13, 2009Sep 23, 2014Sorin Group Italia S.R.L.Atraumatic prosthetic heart valve prosthesis
US8840662Oct 27, 2011Sep 23, 2014Sadra Medical, Inc.Repositionable heart valve and method
US8840663Dec 23, 2003Sep 23, 2014Sadra Medical, Inc.Repositionable heart valve method
US8858619May 12, 2006Oct 14, 2014Medtronic, Inc.System and method for implanting a replacement valve
US8858620Jun 10, 2011Oct 14, 2014Sadra Medical Inc.Methods and apparatus for endovascularly replacing a heart valve
US8876791Sep 15, 2010Nov 4, 2014Pulmonx CorporationCollateral pathway treatment using agent entrained by aspiration flow current
US8876895Mar 23, 2007Nov 4, 2014Medtronic Ventor Technologies Ltd.Valve fixation member having engagement arms
US8876896Dec 7, 2011Nov 4, 2014Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US8894703Jun 22, 2011Nov 25, 2014Sadra Medical, Inc.Systems and methods for delivering a medical implant
US8920492Aug 21, 2013Dec 30, 2014Sorin Group Italia S.R.L.Cardiac valve prosthesis
US8926647Mar 29, 2013Jan 6, 2015Spiration, Inc.Removable anchored lung volume reduction devices and methods
US8940014Nov 14, 2012Jan 27, 2015Boston Scientific Scimed, Inc.Bond between components of a medical device
US8951243Nov 29, 2012Feb 10, 2015Boston Scientific Scimed, Inc.Medical device handle
US8951280Jun 9, 2010Feb 10, 2015Medtronic, Inc.Cardiac valve procedure methods and devices
US8951299Oct 13, 2009Feb 10, 2015Sadra Medical, Inc.Medical devices and delivery systems for delivering medical devices
US8956319Jul 20, 2012Feb 17, 2015Spiration, Inc.One-way valve devices for anchored implantation in a lung
US8956402Sep 14, 2012Feb 17, 2015Medtronic, Inc.Apparatus for replacing a cardiac valve
US8974484Mar 6, 2013Mar 10, 2015Spiration, Inc.Removable lung reduction devices, systems, and methods
US8974527Mar 29, 2013Mar 10, 2015Spiration, Inc.Bronchoscopic repair of air leaks in a lung
US8986329Oct 28, 2013Mar 24, 2015Medtronic Corevalve LlcMethods for transluminal delivery of prosthetic valves
US8986336Jan 25, 2011Mar 24, 2015Spiration, Inc.Apparatus and method for deployment of a bronchial obstruction device
US8986361Oct 17, 2008Mar 24, 2015Medtronic Corevalve, Inc.Delivery system for deployment of medical devices
US8992608Jun 26, 2009Mar 31, 2015Sadra Medical, Inc.Everting heart valve
US8998976Jul 12, 2012Apr 7, 2015Boston Scientific Scimed, Inc.Coupling system for medical devices
US8998979Feb 11, 2014Apr 7, 2015Medtronic Corevalve LlcTranscatheter heart valves
US8998981Sep 15, 2009Apr 7, 2015Medtronic, Inc.Prosthetic heart valve having identifiers for aiding in radiographic positioning
US9005273Apr 4, 2007Apr 14, 2015Sadra Medical, Inc.Assessing the location and performance of replacement heart valves
US9011521Dec 13, 2011Apr 21, 2015Sadra Medical, Inc.Methods and apparatus for endovascularly replacing a patient's heart valve
US9060856Feb 11, 2014Jun 23, 2015Medtronic Corevalve LlcTranscatheter heart valves
US9060857Jun 19, 2012Jun 23, 2015Medtronic Corevalve LlcHeart valve prosthesis and methods of manufacture and use
US9066799Jan 20, 2011Jun 30, 2015Medtronic Corevalve LlcProsthetic valve for transluminal delivery
US9078781Jan 11, 2006Jul 14, 2015Medtronic, Inc.Sterile cover for compressible stents used in percutaneous device delivery systems
US9131926Nov 5, 2012Sep 15, 2015Boston Scientific Scimed, Inc.Direct connect flush system
US9138312Jun 6, 2014Sep 22, 2015Medtronic Ventor Technologies Ltd.Valve prostheses
US9138314Feb 10, 2014Sep 22, 2015Sorin Group Italia S.R.L.Prosthetic vascular conduit and assembly method
US9149357Dec 23, 2013Oct 6, 2015Medtronic CV Luxembourg S.a.r.l.Heart valve assemblies
US9149358Jan 23, 2009Oct 6, 2015Medtronic, Inc.Delivery systems for prosthetic heart valves
US9161836Feb 10, 2012Oct 20, 2015Sorin Group Italia S.R.L.Sutureless anchoring device for cardiac valve prostheses
US9198669Dec 13, 2013Dec 1, 2015Spiration, Inc.Articulable anchor
US9211181Sep 24, 2012Dec 15, 2015Pulmonx CorporationImplant loading device and system
US9226826Feb 24, 2010Jan 5, 2016Medtronic, Inc.Transcatheter valve structure and methods for valve delivery
US9237886Apr 14, 2008Jan 19, 2016Medtronic, Inc.Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof
US9248017May 20, 2011Feb 2, 2016Sorin Group Italia S.R.L.Support device for valve prostheses and corresponding kit
US9277991Dec 31, 2013Mar 8, 2016Boston Scientific Scimed, Inc.Low profile heart valve and delivery system
US9277993Dec 14, 2012Mar 8, 2016Boston Scientific Scimed, Inc.Medical device delivery systems
US9289289Feb 10, 2012Mar 22, 2016Sorin Group Italia S.R.L.Sutureless anchoring device for cardiac valve prostheses
US9308085Sep 23, 2014Apr 12, 2016Boston Scientific Scimed, Inc.Repositionable heart valve and method
US9320599Sep 24, 2014Apr 26, 2016Boston Scientific Scimed, Inc.Methods and apparatus for endovascularly replacing a heart valve
US9326873Dec 6, 2011May 3, 2016Spiration, Inc.Valve loader method, system, and apparatus
US9331328Dec 12, 2011May 3, 2016Medtronic, Inc.Prosthetic cardiac valve from pericardium material and methods of making same
US9339382Jan 24, 2014May 17, 2016Medtronic, Inc.Stents for prosthetic heart valves
US9358106Nov 11, 2013Jun 7, 2016Boston Scientific Scimed Inc.Methods and apparatus for performing valvuloplasty
US9358110Dec 31, 2013Jun 7, 2016Boston Scientific Scimed, Inc.Medical devices and delivery systems for delivering medical devices
US20020112729 *Feb 21, 2001Aug 22, 2002Spiration, Inc.Intra-bronchial obstructing device that controls biological interaction with the patient
US20030070682 *Oct 10, 2002Apr 17, 2003Wilson Peter M.Bronchial flow control devices and methods of use
US20030199972 *Apr 18, 2003Oct 23, 2003Gholam-Reza Zadno-AziziBody fluid flow control device
US20030212452 *Jun 3, 2003Nov 13, 2003Gholam-Reza Zadno-AziziBody fluid flow control device
US20030228344 *Mar 6, 2003Dec 11, 2003Fields Antony J.Methods and devices for inducing collapse in lung regions fed by collateral pathways
US20040039250 *May 28, 2003Feb 26, 2004David TholfsenGuidewire delivery of implantable bronchial isolation devices in accordance with lung treatment
US20040055606 *Jul 25, 2003Mar 25, 2004Emphasys Medical, Inc.Bronchial flow control devices with membrane seal
US20040074491 *Aug 20, 2003Apr 22, 2004Michael HendricksenDelivery methods and devices for implantable bronchial isolation devices
US20040134487 *Nov 6, 2003Jul 15, 2004Deem Mark E.Methods and devices for use in performing pulmonary procedures
US20040148035 *Nov 25, 2003Jul 29, 2004Michael BarrettDelivery methods and devices for implantable bronchial isolation devices
US20040243393 *May 29, 2003Dec 2, 2004Microsoft CorporationSemantic object synchronous understanding implemented with speech application language tags
US20050016530 *Jul 8, 2004Jan 27, 2005Mccutcheon JohnTreatment planning with implantable bronchial isolation devices
US20050051163 *Nov 6, 2003Mar 10, 2005Deem Mark E.Methods and devices for use in performing pulmonary procedures
US20050066974 *May 28, 2003Mar 31, 2005Antony FieldsModification of lung region flow dynamics using flow control devices implanted in bronchial wall channels
US20050145253 *Mar 2, 2005Jul 7, 2005Emphasys Medical, Inc., A Delaware CorporationBronchial flow control devices and methods of use
US20050166925 *Mar 28, 2005Aug 4, 2005Emphasys Medical, Inc., A California CorporationBronchial flow control devices and methods of use
US20050261669 *Apr 26, 2005Nov 24, 2005Medtronic, Inc.Intracardiovascular access (ICVA™) system
US20060004305 *Jun 29, 2005Jan 5, 2006George Robert MDelivery methods and devices for implantable bronchial isolation devices
US20060155217 *Oct 26, 2005Jul 13, 2006Devore Lauri JDevice and method for measuring the diameter of an air passageway
US20060235432 *May 3, 2006Oct 19, 2006Devore Lauri JIntra-bronchial obstructing device that controls biological interaction with the patient
US20060235467 *May 2, 2006Oct 19, 2006Devore Lauri JRemovable anchored lung volume reduction device and methods
US20060249164 *May 3, 2006Nov 9, 2006Springmeyer Steven CBronchoscopic lung volume reduction method
US20060283462 *Aug 25, 2006Dec 21, 2006Fields Antony JMethods and devices for inducing collapse in lung regions fed by collateral pathways
US20070185531 *Apr 10, 2007Aug 9, 2007Spiration, Inc.Apparatus and method for deployment of a bronchial obstruction device
US20070232992 *Oct 24, 2006Oct 4, 2007James KutskoArticulable anchor
US20070235846 *Apr 1, 2006Oct 11, 2007Stats Chippac Ltd.Integrated circuit package system with net spacer
US20080249503 *Jun 4, 2008Oct 9, 2008Fields Antony JMethods and devices for lung treatment
US20090182369 *Mar 4, 2009Jul 16, 2009Spiration, Inc.Bronchoscopic repair of air leaks in a lung
US20110208228 *Aug 25, 2011Spiration, Inc.Bronchoscopic repair of air leaks in a lung
USD732666Aug 9, 2011Jun 23, 2015Medtronic Corevalve, Inc.Heart valve prosthesis
Classifications
U.S. Classification623/1.24
International ClassificationA61F2/00, A61F2/06, A61F2/24, A61F2/90, A61F2/84, A61F2/88
Cooperative ClassificationA61F2210/0033, A61F2/88, A61F2/91, A61F2/2475, A61F2/0022, A61F2/958, A61F2/2418, A61F2/0009
European ClassificationA61F2/24D6, A61F2/00B2, A61F2/00B4
Legal Events
DateCodeEventDescription
Feb 21, 2003ASAssignment
Owner name: EMPHASYS MEDICAL, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOUNDRY, LLC, THE;REEL/FRAME:013776/0468
Effective date: 20010501
Owner name: FOUNDRY, LLC, THE, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZADNO-AZIZI, GHOLAM-REZA;FORD, JOHN S.;MARANO-FORD, APRIL;REEL/FRAME:013771/0468;SIGNING DATES FROM 20000525 TO 20000603
Mar 25, 2010ASAssignment
Owner name: PULMONX,CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EMPHASYS MEDICAL, INC.;VENTURE LENDING & LEASING IV, INC.;VENTURE LENDING & LEASING V, INC.;SIGNING DATES FROM 20100303 TO 20100319;REEL/FRAME:024140/0103