Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20020119711 A1
Publication typeApplication
Application numberUS 10/038,487
Publication dateAug 29, 2002
Filing dateJan 4, 2002
Priority dateJun 9, 1997
Also published asCA2291105A1, CA2291105C, DE69837006D1, DE69837006T2, EP0987982A1, EP0987982A4, EP0987982B1, US5954643, US6368141, US7402153, US7660615, US20040193025, US20080064944, WO1998056293A1
Publication number038487, 10038487, US 2002/0119711 A1, US 2002/119711 A1, US 20020119711 A1, US 20020119711A1, US 2002119711 A1, US 2002119711A1, US-A1-20020119711, US-A1-2002119711, US2002/0119711A1, US2002/119711A1, US20020119711 A1, US20020119711A1, US2002119711 A1, US2002119711A1
InventorsNannette VanAntwerp, Edgardo Halili
Original AssigneeMinimed, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Insertion set for a transcutaneous sensor
US 20020119711 A1
Abstract
An improved insertion set is provided for transcutaneous placement of a sensor such as a glucose sensor at a selected site within the body of a patient. The insertion set comprises a mounting base defining an upwardly open channel for receiving and supporting a flexible thin film sensor, in combination with a cap assembled with said mounting base to capture and retain a proximal end of the sensor within said channel. The sensor further includes a distal segment with sensor electrodes thereon which protrudes from the mounting base for transcutaneous placement, wherein the sensor distal segment is slidably carried by a slotted insertion needle fitted through the assembled base and cap. Placement of the insertion set against the patient's skin causes the insertion needle to pierce the skin to carry the sensor electrodes to the desired subcutaneous site, after which the insertion needle can be slidably withdrawn from the insertion set. The mounting base further includes a fitting and related snap latch members for mated slide-fit releasable coupling of conductive contact pads on a proximal end of the sensor to a cable connector for transmitting sensor signals to a suitable monitoring device.
Images(8)
Previous page
Next page
Claims(35)
What is claimed is:
1. A transcutaneous sensor insertion set, comprising:
a mounting base adapted for mounting onto a patient's skin, said mounting base having an upwardly open channel formed therein;
a flexible sensor having a proximal segment seated within said channel and a distal segment protruding from said mounting base with at least one sensor electrode thereon;
a retainer cap mounted on said mounting base to close said channel for retaining said sensor proximal segment within said channel; and
an insertion needle extending through said retainer cap and mounting base, said insertion needle defining means engageable with at least a portion of said sensor distal segment for transcutaneously placing said sensor distal segment and for subcutaneously placing said at least one electrode when said mounting base is placed against a patient's skin, said insertion needle being withdrawable from said sensor and said mounting base and retainer cap.
2. The transcutaneous sensor insertion set of claim 1 wherein said means for transcutaneously placing said sensor distal segment comprises a longitudinally extending slot formed along one side of said insert needle, said sensor distal segment and a portion of said sensor proximal segment being slidably carried by said insertion needle, and said insertion needle being slidably withdrawable therefrom.
3. The transcutaneous sensor insertion set of claim 1 wherein said retainer cap includes means for snap fit mounting onto said mounting base.
4. The transcutaneous sensor insertion set of claim 1 wherein said retainer cap and said mounting base are constructed from molded plastic.
5. The transcutaneous sensor insertion set of claim 1 wherein said retainer cap includes means for frictionally capturing said sensor proximal segment within said channel.
6. The transcutaneous sensor insertion set of claim 1 wherein said channel is formed on said mounting base to extend angularly forwardly and downwardly from a front end of said mounting base, whereby said sensor distal segment protrudes forwardly and downwardly from said mounting base.
7. The transcutaneous sensor insertion set of claim 1 further including a protective cannula having said sensor distal segment and at least a portion of said sensor proximal segment received therein, said retainer cap engaging said cannula to retain said sensor proximal segment within said channel.
8. The transcutaneous sensor insertion set of claim 7 wherein said retainer cap includes means for snap fit mounting onto said mounting base.
9. The transcutaneous sensor insertion set of claim 7 wherein said retainer cap includes teeth means for engaging and retaining said cannula.
10. The transcutaneous sensor insertion set of claim 7 wherein said cannula includes means for slide-fit engagement with said insertion needle.
11. The transcutaneous sensor insertion of claim 7 wherein said cannula has at least one window formed therein in general alignment with said at least one sensor electrode to expose said sensor electrode through said window when said sensor is slidably received within said cannula.
12. The transcutaneous sensor insertion set of claim 1 wherein said sensor further includes a head formed generally at a proximal end thereof and including at least one conductive contact pad, said mounting base including a cable fitting adapted for releasable coupling to a cable connector, said cable fitting defining a seat for supporting and retaining said sensor head.
13. The transcutaneous sensor insertion set of claim 1 wherein said mounting base further includes snap fit latch means for releasable coupling to a cable connector.
14. The transcutaneous sensor insertion set of claim 1 further including a cable connector, said mounting base and said cable connector having releasably interengageable snap fit latch members.
15. The transcutaneous sensor insertion set of claim 1 further including an enlarged hub mounted at a rear end of said insertion needle, said hub and said mounting base including cooperatively interfitting alignment surfaces for guiding said insertion needle into assembly and withdrawal from said sensor.
16. The transcutaneous sensor insertion set of claim 15 wherein said cooperatively interfitting alignment surfaces further limit rotation of said insertion needle relative to said mounting base.
17. The transcutaneous sensor insertion set of claim 15 wherein said hub comprises an enlarged rear wing for facilitated manual grasping, and a bifurcated nose defining said cooperatively interfitting alignment surfaces in combination with said mounting base.
18. The transcutaneous sensor insertion set of claim 17 wherein said retainer cap includes a raised segment sized to fit within said bifurcated nose of said hub.
19. The transcutaneous sensor insertion set of claim 1 wherein said sensor comprises a thin film sensor.
20. The transcutaneous sensor insertion set of claim 1 further including means for removable attachment of said mounting base to a patient's skin.
21. The transcutaneous sensor insertion set of claim 1 wherein said retainer cap has a needle port formed therein for sliding reception of said insertion needle.
22. A transcutaneous sensor insertion set, comprising:
a mounting base adapted for mounting onto a patient's skin, said mounting base having an upwardly open channel formed therein, and further including a cable fitting generally at a rear end of said channel and adapted for releasable coupling with a cable connector, said channel extending from said cable fitting to a front end of said mounting base;
a flexible sensor having a head formed generally at a proximal end thereof, a proximal segment extending from said head and a distal segment having at least one sensor electrode thereon, said head including at least one contact pad conductively coupled to said electrode;
a protective cannula having said sensor distal segment and at a portion of said sensor proximal segment received therein;
said sensor proximal segment and a portion of said cannula being seated within said channel formed in said mounting base, with said sensor distal segment and the remainder of said cannula protruding from said mounting base;
a retainer cap mounted on said mounting base to close said channel and to engage the cannula portion therein to capture and retain said cannula portion and said sensor proximal segment within said channel; and
an insertion needle extending through the assembled retainer cap and mounting base, said cannula including means for engagement with said needle upon insertion of said needle through the assemble retainer cap and mounting base, said insertion needle being slidably withdrawable from said cannula and from said retainer cap and mounting base.
23. The transcutaneous sensor insertion set of claim 22 wherein said insertion needle defines a longitudinally extending slot for slide-fit engagement with and for sliding withdrawal from said cannula.
24. The transcutaneous sensor insertion set of claim 22 wherein said retainer cap includes means for snap fit mounting onto said mounting base.
25. The transcutaneous sensor insertion set of claim 22 wherein said retainer cap and said mounting base are constructed from molded plastic.
26. The transcutaneous sensor insertion set of claim 22 wherein said retainer cap includes teeth means for engaging and retaining said cannula.
27. The transcutaneous sensor insertion set of claim 22 wherein said channel is formed on said mounting base to extend angularly forwardly and downwardly from a front end of said mounting base, whereby said sensor distal segment protrudes forwardly and downwardly from said mounting base.
28. The transcutaneous sensor insertion set of claim 22 wherein said cable fitting includes a recessed seat for supporting and retaining said sensor head.
29. The transcutaneous sensor insertion set of claim 22 wherein said mounting base further includes snap fit latch means for releasable coupling to a cable connector.
30. The transcutaneous sensor insertion set of claim 22 further including a cable connector, said mounting base and said cable connector having releasably interengageable snap fit latch members.
31. The transcutaneous sensor insertion set of claim 22 further including an enlarged hub mounted at a rear end of said insertion needle, said hub and said mounting base including cooperatively interfitting alignment surfaces for guiding said insertion needle into assembly and withdrawal from said cannula.
32. The transcutaneous sensor insertion set of claim 31 wherein said cooperatively interfitting alignment surfaces further limit rotation of said insertion needle relative to said mounting base.
33. The transcutaneous sensor insertion set of claim 22 wherein said cable fitting comprises a tubular element having a central bore formed therein for pass through reception of a portion of said sensor proximal segment, said bore being generally coaxially aligned with said channel.
34. The transcutaneous sensor insertion set of claim 33 wherein said cable fitting includes a generally D-shaped key formed as a rearward extension of said tubular element, said key defining a recessed seat for receiving and supporting said sensor head.
35. The transcutaneous sensor insertion set of claim 34 wherein said recessed seat is formed at ramp angle relative to a central axis of said bore.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    This invention relates generally to devices and methods for placing a sensor at a selected site within the body of a patient. More particularly, this invention relates to an improved and relatively simple insertion set for quick and easy transcutaneous placement of a flexible thin film sensor of the type used, for example, to obtain blood glucose readings.
  • [0002]
    In recent years, a variety of electrochemical sensors have been developed for a range of applications, including medical applications for detecting and/or quantifying specific agents in a patient's blood and other body fluids. As one example, glucose sensors have been developed for use in obtaining an indication of blood glucose levels in a diabetic patient. Such readings can be especially useful in monitoring and/or adjusting a treatment regimen which typically includes regular administration of insulin to the patient. In this regard, blood glucose readings are particularly useful in conjunction with semi-automated medication infusion pumps of the external type, as generally described in U.S. Pat. Nos. 4,562,751; 4,678,408; and 4,685,903; or automated implantable medication infusion pumps, as generally described in U.S. Pat. No. 4,573,994.
  • [0003]
    Relatively small and flexible electrochemical sensors have been developed for subcutaneous placement of sensor electrodes in direct contact with patient blood or other extracellular fluid, wherein such sensors can be used to obtain periodic readings over an extended period of time. In one form, flexible transcutaneous sensors are constructed in accordance with thin film mask techniques wherein an elongated sensor includes thin film conductive elements encased between flexible insulative layers of polyimide sheet or similar material. Such thin film sensors typically include exposed electrodes at a distal end for subcutaneous placement in direct contact with patient blood or the like, and exposed conductive contact pads at an externally located proximal end for convenient electrical connection with a suitable monitoring device. Such thin film sensors hold significant promise in patient monitoring applications, but unfortunately have been difficult to place transcutaneously with the sensor electrodes in direct contact with patient blood or other body fluid. Improved thin film sensors and related insertion sets are described in commonly assigned U.S. Pat. Nos. 5,390,671; 5,391,250; 5,482,473; 5,299,571; 5,586,553 and 5,568,806, which are incorporated by reference herein.
  • [0004]
    Notwithstanding the foregoing improvements in and to thin film electrochemical sensors and related transcutaneous insertion sets, there exists an on-going need for further improvements in such insertion sets particularly with respect to facilitated and cost efficient manufacture, improvements in quick and easy transcutaneous placement of the thin film sensor, and simplified attachment of the sensor to a conductive cable or the like for coupling of sensor signals to the associated monitoring device. The present invention fulfills these needs and provides further related advantages.
  • SUMMARY OF THE INVENTION
  • [0005]
    In accordance with the invention, an improved insertion set is provided for transcutaneously placing a flexible sensor such as a thin film electrochemical sensor at a selected site within the body of a patient. The insertion set comprises a mounting base adapted for seated mounting onto the patient's skin, in combination with a cap for assembly therewith to cooperatively capture and retain the sensor. A distal segment of the sensor with sensor electrodes thereon is slidably carried by a slotted hollow insertion needle fitted through the assembled mounting base and cap for piercing the patient's skin to subcutaneously place the sensor electrodes as the mounting base is pressed onto the patient's skin. The insertion needle can then be slidably withdrawn to leave the sensor electrodes at the desired subcutaneous site. A proximal end of the sensor including conductive contact pads is carried by a cable fitting on the mounting base for slide-fit coupling with a cable connector, with the mounting base and cable connector including snap fit latch members for releasable interconnection.
  • [0006]
    In the preferred form, the sensor comprises an elongated thin film element with a head at a proximal end thereof including the contact pads seated in a predetermined position and orientation in the cable fitting formed on the mounting base. A proximal segment of the sensor extends from the cable fitting within a recessed channel defined in an upper surface of the mounting base, with the sensor distal segment protruding angularly forwardly and downwardly from the mounting base. The cap is designed for assembly with the mounting base, as by snap fit interconnection therewith, to capture and retain the proximal sensor segment within the recessed channel. In the preferred form, the sensor distal segment and at least a portion of the proximal segment is protectively carried within a cannula. A proximal portion of the cannula is seated within the channel, and a distal cannular portion extends from the mounting base and is slidably carried by the slotted insertion needle as described in U.S. Pat. No. 5,586,553. The insertion needle is slidably fitted through the assembled mounting base and cap, and is connected at its upper end to an enlarged hub for facilitated manipulation thereof. The hub includes keyed alignment surfaces which cooperate with associated alignment or guide surfaces on the assembled base and cap to prevent or minimize needle rotation relative to the sensor and to guide the needle during slide-fit engagement and disengagement therewith.
  • [0007]
    The cable fitting formed on the mounting base is sized and shaped for slide-fit coupling with a matingly shaped fitting formed on the cable connector, for electrically coupling the sensor contact pads with individual associated conductors of an electrical cable. In the preferred form, the mounting base includes at least one and preferably a plurality of latch arms for snap fit engagement with latch recesses formed on the cable connector to couple the mounting base and cable connector together with their respective fittings properly engaged.
  • [0008]
    In use, the snap fit latch members permit quick and easy connection of the insertion set mounting base to the cable connector. The insertion set can then be pressed against the patient's skin so that the insertion needle pierces the skin and carries the cannula with sensor distal segment therein to the desired subcutaneous position. The mounting base is then affixed to the skin, as by suitable adhesive means, and the insertion needle is withdrawn from the patient leaving the cannula and the sensor therein at the selected insertion site. When it is necessary or appropriate to replace with sensor, the used insertion set can be simply removed from the patient to withdraw the sensor from the patient's skin, followed by detachment of the insertion set from the cable connector for disposal thereof. A replacement insertion set is then coupled to the cable connector and transcutaneously placed on the patient as described above.
  • [0009]
    Other features and advantages of the invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0010]
    The accompanying drawings illustrate the invention. In such drawings:
  • [0011]
    [0011]FIG. 1 is a fragmented perspective view illustrating a sensor insertion set embodying the novel features of the invention, wherein the insertion set is depicted in assembled relation with a cable connector;
  • [0012]
    [0012]FIG. 2 is an exploded perspective view of the insertion set;
  • [0013]
    [0013]FIG. 3 is an enlarged and exploded perspective view showing assembly of the insertion set components, and depicting an upper side of an insertion set mounting base;
  • [0014]
    [0014]FIG. 4 is an exploded perspective view showing assembly of the insertion set components, depicting an underside of the mounting base;
  • [0015]
    [0015]FIG. 5 is an underside perspective view of the mounting base shown in FIG. 4, showing a proximal end or head of a flexible thin film sensor seated on the mounting base;
  • [0016]
    [0016]FIG. 6 is another exploded perspective view illustrating assembly of a retainer cap on an upper side of the mounting base;
  • [0017]
    [0017]FIG. 7 is an exploded perspective view similar to FIG. 6, and depicting further assembly of the retainer cap with the mounting base;
  • [0018]
    [0018]FIG. 8 is an enlarged perspective view showing the underside of the retainer cap of FIGS. 6 and 7;
  • [0019]
    [0019]FIG. 9 is a perspective view similar to FIGS. 6 and 7, and showing the retainer cap in assembled relation with the mounting base;
  • [0020]
    [0020]FIG. 10 is a perspective view similar to FIG. 9, and depicting an insertion needle installed on the assembled mounting base and retainer cap;
  • [0021]
    [0021]FIG. 11 is an enlarged sectional view taken generally on the line 11-11 of FIG. 10;
  • [0022]
    [0022]FIG. 12 is a front end perspective view of the cable connector of FIGS. 1 and 2;
  • [0023]
    [0023]FIG. 13 is an exploded perspective view illustrating assembly of the cable connector with the insertion set;
  • [0024]
    [0024]FIG. 14 is a perspective view showing sliding removal of the insertion needle from the insertion set, following placement of the mounting base onto the skin of a patient; and
  • [0025]
    [0025]FIG. 15 is a perspective view showing the insertion set and cable connector mounted onto the skin of a patient, following removal of the insertion needle.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0026]
    As shown in the exemplary drawings, an improved insertion set referred to generally in FIGS. 1 and 2 by the reference numeral 10 is provided for placing a biological sensor 12 (FIG. 2) in a selected transcutaneous position on a patient. The insertion set 10 includes an insertion needle 14 for placing a distal end segment of the sensor 12 having sensor electrodes 15 thereon (FIG. 3) in a selected subcutaneous position in direct contact with patient blood or other body fluid. The insertion set further supports the sensor 12 for quick and easy coupling of a proximal end or head 16 having conductive contact pads 18 thereon (FIG. 3) with a cable connector 20 (FIG. 1) for coupling sensor signals in turn via an electrical cable 22 to a suitable monitoring device (not shown).
  • [0027]
    The insertion set 10 of the present invention is particularly designed for facilitating quick and easy transcutaneous placement of a flexible thin film electrochemical sensor of the type used for monitoring specific blood parameters representative of patient condition. The insertion set 10 is designed to place the sensor 12 subcutaneously or at another selected site within the body of a patient, in a manner minimizing patient discomfort and trauma. In one preferred application, the sensor 12 may be designed to monitor blood glucose levels, and may be used in conjunction with automated or semi-automated medication infusion pumps of the external or implantable type as described in U.S. Pat. Nos. 4,562,751; 4,678,408; 4,685,903; and 4,573,994, to deliver insulin to a diabetic patient. However, it will be understood that the sensor may be designed to monitor other patient body fluid parameters for other applications. Further, is will be understood that the term “patient” can be broadly construed to encompass humans and other animals, and that the term “blood” encompasses patient blood and other extracellular patient fluids.
  • [0028]
    As shown best in FIGS. 2-4, the flexible thin film sensor 12 comprises a relatively thin and elongated element which can be constructed according to so-called thin film mask techniques to include elongated conductive elements 24 (FIG. 3) embedded or encased between layers of a selected insulative sheet material such as polyimide film or sheet. The proximal end or head 16 of the sensor 12 is relatively enlarged and defines the conductive contact pads 18 which are exposed through the insulative sheet material for electrical connection to the cable 22, as will be described in more detail. An opposite or distal end segment of the sensor 12 includes the corresponding plurality of exposed sensor electrodes 15 for contacting patient body fluid when the sensor distal segment is placed into the body of the patient. The sensor electrodes 15 generate electrical signals representative of patient condition, wherein these signals are transmitted via the contact pads 18 and the cable 22 to an appropriate monitoring device (not shown) for recordation and/or display to monitor patient condition. Further description of flexible thin film sensors of this general type may be found in U.S. Pat. No. 5,391,250, which is incorporated by reference herein.
  • [0029]
    The sensor 12 is carried by the insertion set 10 which is adapted for placement onto the skin of a patient (FIGS. 14-15) at the selected insertion site. As shown in FIGS. 1-7, the insertion set 10 generally comprises a compact mounting base 30 having a generally planar or flat underside surface 32 (FIGS. 4-5) attached to an adhesive patch 34 for press-on adhesive mounting onto the patient's skin. The mounting base 30 is conveniently and economically constructed as a unitary molding of lightweight plastic to include a rear cable fitting 36 for slide-fit coupling with the cable connector 20. The rear cable fitting 36 cooperates with an upwardly open recessed groove or channel 38 formed in an upper surface 40 of the mounting base 30 (FIGS. 2, 3, 6 and 7) to receive and support the sensor 12.
  • [0030]
    More particularly, FIGS. 2-5 show the rear cable fitting 36 of the mounting base 30 to comprise a rearwardly projecting tubular element 42 defining a central bore 44 aligned generally coaxially with a rearward end of the recessed channel 38. The tubular element 42 includes external grooves 46 (FIG. 2) for receiving seal rings 48 adapted for sealed slide-fit engagement with the cable connector 20, as will be described. Importantly, the rearward end of the tubular element 42 terminates in a generally D-shaped or half-circle fitting key 50 formed as a rearward extension thereof, and which incorporates a shallow recessed flat or seat 52 formed at the rearward end of the bore 44. This recessed seat 52 is sized and shaped to receive and support the proximal head 16 of the sensor 12, with a proximal end of the elongated sensor 12 extending from said head 16 through the bore 44 and lying within the recessed channel 38. In the preferred form, the head 16 of the sensor 12 is secured and seated (FIG. 5) within the recessed seat 52 by means of a suitable adhesive or the like. In addition, subsequent to placement of the sensor 12 through the bore 44, in the preferred form, the bore 44 is hermetically sealed with a suitable sealant such as curable silicone sealer or the like. For facilitated slide-fit engagement with the cable connector 20, the seat 52 is formed to ramp angularly rearwardly and upwardly from a central axis of the bore 44, thereby supporting the sensor head 16 with the contact pads 18 presented downwardly and angularly rearwardly.
  • [0031]
    The recessed channel 38 in the mounting base 30 thus receives and supports the proximal segment of the thin film sensor 12. As shown in FIGS. 3, 6 and 7, the recessed channel 38 extends forwardly from the fitting bore 44 with a generally horizontal orientation, and then turns downwardly and forwardly at an angle of about 45 degrees to extend along an angled face 53 within a forwardly open gap 54 formed in the front end or nose of the mounting base. A cannula 58 is slidably fitted over at least a portion of the proximal segment of the sensor 12, to extend also over the distal segment to encase and protect the sensor. In the preferred form, the cannula is constructed from a lightweight plastic material such as a urethane based plastic, and has a double lumen configuration as shown in FIG. 11 with the sensor slidably received within one lumen thereof. The double lumen cannula 58 is especially suited for slide-fit engagement with and disengagement from the insertion needle 14, as will be described in more detail, and includes a window 59 (FIG. 4) to expose the sensor electrodes 15. The specific cannula construction for receiving and supporting the sensor 12, and for slidably interfitting with the insertion needle 14, is shown and described in more detail in U.S. Pat. No. 5,586,553, which is incorporated by reference herein.
  • [0032]
    The proximal end of the sensor 12 and the portion of the cannula 58 thereon are folded as shown in FIG. 7 to follow the contour of the mounting base channel 38, so that the distal segment of the sensor and the cannula thereon extend and protrude downwardly and forwardly from the front of the mounting base 30. The sensor and cannula are captured and retained in this orientation by a retainer cap 60 shown in FIGS. 7-9. This retainer cap 60 is also formed conveniently and economically as a lightweight plastic molding and includes means for quick and easy snap fit installation onto the mounting base 30. More specifically, the cap 60 has an elongated and relatively narrow geometry to include a rear head 62 with a pair of upright keys 64 formed on opposite sides thereof for vertical slide-fit reception into a mating pair of keyways 66 formed in upright support brackets 68 on the mounting base 30. A front or nose end 70 of the retainer cap 60 is sized and shaped to fit matingly into the angularly formed gap 54 in the mounting base 30 to retain the cannula 58 and sensor 12 seated in the channel 38 of the ramped face 53. This cap nose 70 includes snap tabs 72 on opposite sides thereof for snap-fit engagement with snap detents 74 lining the gap 54. When the retainer cap 60 is assembled with the mounting base 30, these components cooperatively close the top of the channel 38 to capture and retain the sensor and cannula therein. In this regard, the underside of the cap 60 desirably includes retainer means such as a plurality of retainer teeth 76 (FIG. 8) for frictionally gripping and retaining the cannula with an interference fit within the channel 38. Alternative means can be used to secure the cap 60 to the mounting base 30, such as an adhesive attachment, or ultrasonic bonding means or the like.
  • [0033]
    The retainer cap 60 further defines a needle port 78 (FIGS. 9 and 10) for pass through reception of the insertion needle 14. The insertion needle 14 has a hollow and longitudinally slotted configuration (FIG. 11) with a pointed or sharpened tip and a rear end anchored to an enlarged hub 80. The hub 80 is manually manipulated to fit the needle 14 through the cap port 78, in order to slide the slotted needle into engagement with the cannula 58 within the forwardly and downwardly angled portion of the channel 38. In this regard, the needle port 78 is sized and shaped to orient the insertion needle 14 for proper angular and rotational alignment with the cannula 58 to insure correct slide-fit engagement therebetween.
  • [0034]
    More particularly, the hub 80 includes an enlarged tab-like wing 82 adapted for easy grasping and handling between the thumb and index finger. This enlarged wing 82 projects upwardly from a bifurcated nose 84 which is sized and shaped to seat onto the mounting base upper surface 40, on opposite sides of a raised central section 86 of the retainer cap 60. The hub nose 84 is contoured to defined keyed alignment or guide surfaces 88 for matingly contacting associated keyed alignment surfaces on the mounting base 30, defined by the upper surface 40 and an angularly presented forward face 90 of the support brackets 68. With this geometry, the hub 80 is slidably displaced against the mounting base with the insertion needle 14 extending into and through the cap port 78 at the correct angular and rotational orientation for slide-fit engagement with and disengagement from the cannula 58. In the preferred form, the insertion needle 14 slidably assembles with the cannula 58 as described in U.S. Pat. No. 5,586,553 to provide a generally circular cross sectional profile (FIG. 11) protruding from the mounting base.
  • [0035]
    [0035]FIGS. 12 and 13 show the cable connector 20 for coupling with the assembled insertion set 10. As shown, the cable connector 20 comprises a compact coupling element which can also be constructed from lightweight molded plastic. The cable connector 20 defines a socket fitting 92 for mating slide-fit engagement with the rear cable fitting 36 of the mounting base 30. This socket fitting 92 has a cylindrical entry portion 93 which merges with a generally D-shaped or half-circle step portion 94 sized to receive the D-shaped key 50 of the fitting 36. As shown, the socket fitting 92 includes a plurality of conductive contacts 96 (FIG. 12) positioned on the step portion 94 for electrically coupled engagement with the contact pads 18 on the sensor 12, when the insertion set 10 and cable connector 20 are coupled together as viewed in FIG. 13. When assembled, the seal rings 48 sealingly engage the entry portion 93 of the socket fitting 92 to provide a sealed connection between the components. Importantly, the D-shaped geometry of the interfitting components 50 and 94 insure one-way interconnection for correct conductive coupling of the cable 22 to the sensor 12.
  • [0036]
    The insertion set 10 and the cable connector 20 are retained in releasably coupled relation by interengaging snap fit latch members. As shown, the mounting base 30 is formed to include a pair of rearwardly projecting cantilevered latch arms 97 which terminate at the rearward ends thereof in respective undercut latch tips 98. The latch arms 97 are sufficiently and naturally resilient for movement relative to the remainder of the mounting base 30, to permit the latch arms to be squeezed inwardly toward each other. The permissible range of motion accommodates snap fit engagement of the latch tips 98 into a corresponding pair of latch recesses 100 formed in the cable connector 20 on opposite sides of the socket fitting 92, wherein the latch recesses 100 are lined with latch keepers 102 for engaging said latch tips 98. The components can be disengaged for uncoupling when desired by manually squeezing the latch arms 97 inwardly toward each other for release from the latch keepers 102, while axially separating the mounting base 30 from the cable connector 20.
  • [0037]
    The insertion set 10 of the present invention is mounted on the patient's skin quickly and easily to transcutaneously place the sensor 12, as viewed in FIGS. 13-15. The insertion set 10 is initially coupled to the cable connector 20 by engaging the snap fit latch members, with the fitting components 36 and 92 engaged to electrically couple the sensor 12 to the cable 22. The insertion set 10 is then pressed against the patient's skin, typically after removing a protective needle guard (not shown) and a release film (also not shown) from the underside of the adhesive patch 34 to expose a pressure sensitive adhesive thereon. Pressing the set 10 against the skin causes the insertion needle 14 to pierce the skin and thereby carry the cannula 58 with the sensor electrodes 15 thereon to the desired subcutaneous position. The insertion needle 14 is then slidably disengaged from the cannula and sensor by withdrawing the needle from the patient. The insertion set 10 can be affixed more securely to the patient, if desired, by an overdressing (not shown).
  • [0038]
    When it is necessary or desirable to remove the sensor from the patient, the insertion set is simply removed from the patient's skin to withdraw the sensor from the subcutaneous site. The insertion set 10 is quickly and easily disassembled from the cable connector 20 by appropriate release of the snap fit latch members. A new insertion set 10 can then assembled with the cable connector and quickly placed on the patient to subcutaneously position a new sensor.
  • [0039]
    A variety of modifications and improvements in and to the transcutaneous insertion set of the present invention will be apparent to those persons skilled in the art. Accordingly, no limitation on the invention is intended by way of the foregoing description and accompanying drawings, except as set forth in the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3921631 *Aug 1, 1974Nov 25, 1975Vicra Sterile IncCatheter insertion device and method of catheter introduction
US4235234 *Nov 30, 1978Nov 25, 1980Martin John K IiiSubcutaneous injection system
US4562751 *Jan 6, 1984Jan 7, 1986Nason Clyde KSolenoid drive apparatus for an external infusion pump
US4573994 *Dec 7, 1981Mar 4, 1986The Johns Hopkins UniversityRefillable medication infusion apparatus
US4678408 *Sep 24, 1985Jul 7, 1987Pacesetter Infusion, Ltd.Solenoid drive apparatus for an external infusion pump
US4682981 *Aug 5, 1985Jul 28, 1987Terumo Kabushiki KaishaMedical device
US4685903 *Jan 6, 1984Aug 11, 1987Pacesetter Infusion, Ltd.External infusion pump apparatus
US4840613 *Apr 27, 1988Jun 20, 1989Menlo Care, Inc.Protective sheath for catheter assembly
US5249576 *Oct 24, 1991Oct 5, 1993Boc Health Care, Inc.Universal pulse oximeter probe
US5390671 *Mar 15, 1994Feb 21, 1995Minimed Inc.Transcutaneous sensor insertion set
US5522803 *Mar 8, 1994Jun 4, 1996Pharma Plast International A/SInfusion set for an intermittent or continuous administration of a therapeutical substance
US5545143 *Jan 7, 1994Aug 13, 1996T. S. I. MedicalDevice for subcutaneous medication delivery
US6224571 *Nov 14, 1997May 1, 2001Venetec International, Inc.Medical line securement device
US6302866 *May 13, 1999Oct 16, 2001Disetronic Licensing AgCatheter head for subcutaneous administration of an substance
US6450973 *Jun 16, 2000Sep 17, 2002Kieran P. J. MurphyBiopsy gun
US6488663 *Jun 7, 2001Dec 3, 2002Arta Plast AbInfusion apparatus for administering a medicine
US6749589 *Sep 29, 2000Jun 15, 2004Sterling Medications, Inc.Subcutaneous injection set for use with a reservoir that has a septum
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7052483Dec 18, 2001May 30, 2006Animas CorporationTranscutaneous inserter for low-profile infusion sets
US7318816Mar 14, 2003Jan 15, 2008Medtronic Minimed, Inc.Insertion device for an insertion set and method of using the same
US7329239Feb 20, 2003Feb 12, 2008Medtronic Minimed, Inc.Insertion device for an insertion set and method of using the same
US7494481Dec 3, 2004Feb 24, 2009Medtronic Minimed, Inc.Multi-position infusion set device and process
US7520867Nov 10, 2003Apr 21, 2009Medtronic Minimed, Inc.Subcutaneous infusion set
US7654956Feb 2, 2010Dexcom, Inc.Transcutaneous analyte sensor
US7679407Apr 27, 2004Mar 16, 2010Abbott Diabetes Care Inc.Method and apparatus for providing peak detection circuitry for data communication systems
US7697967Sep 28, 2006Apr 13, 2010Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US7713574Mar 10, 2005May 11, 2010Dexcom, Inc.Transcutaneous analyte sensor
US7715893Dec 3, 2004May 11, 2010Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US7756561Sep 30, 2005Jul 13, 2010Abbott Diabetes Care Inc.Method and apparatus for providing rechargeable power in data monitoring and management systems
US7761130Jul 20, 2010Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US7766829Nov 4, 2005Aug 3, 2010Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US7768408May 17, 2006Aug 3, 2010Abbott Diabetes Care Inc.Method and system for providing data management in data monitoring system
US7771352May 1, 2008Aug 10, 2010Dexcom, Inc.Low oxygen in vivo analyte sensor
US7774145Aug 10, 2010Dexcom, Inc.Transcutaneous analyte sensor
US7778680Aug 17, 2010Dexcom, Inc.System and methods for processing analyte sensor data
US7783333Mar 10, 2005Aug 24, 2010Dexcom, Inc.Transcutaneous medical device with variable stiffness
US7797028Sep 14, 2010Dexcom, Inc.System and methods for processing analyte sensor data
US7811231Oct 12, 2010Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US7826981Nov 2, 2010Dexcom, Inc.System and methods for processing analyte sensor data
US7831287Nov 9, 2010Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US7857760Feb 22, 2006Dec 28, 2010Dexcom, Inc.Analyte sensor
US7860544Mar 7, 2007Dec 28, 2010Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7869853Jan 11, 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7883464Sep 30, 2005Feb 8, 2011Abbott Diabetes Care Inc.Integrated transmitter unit and sensor introducer mechanism and methods of use
US7884729Aug 2, 2010Feb 8, 2011Abbott Diabetes Care Inc.Method and system for providing data management in data monitoring system
US7885697Feb 8, 2011Dexcom, Inc.Transcutaneous analyte sensor
US7885699Feb 8, 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7896809Nov 3, 2008Mar 1, 2011Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US7899511Jan 17, 2006Mar 1, 2011Dexcom, Inc.Low oxygen in vivo analyte sensor
US7901354May 1, 2008Mar 8, 2011Dexcom, Inc.Low oxygen in vivo analyte sensor
US7905833 *Jun 21, 2005Mar 15, 2011Dexcom, Inc.Transcutaneous analyte sensor
US7914450Mar 29, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7917186Mar 29, 2011Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US7920906Mar 9, 2006Apr 5, 2011Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US7920907Jun 7, 2007Apr 5, 2011Abbott Diabetes Care Inc.Analyte monitoring system and method
US7922458Dec 29, 2008Apr 12, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US7925321Mar 23, 2010Apr 12, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7927274Apr 19, 2011Dexcom, Inc.Integrated receiver for continuous analyte sensor
US7928850Apr 19, 2011Abbott Diabetes Care Inc.Analyte monitoring system and methods
US7933639Apr 26, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7935057May 3, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7946984May 24, 2011Dexcom, Inc.Transcutaneous analyte sensor
US7949381Apr 11, 2008May 24, 2011Dexcom, Inc.Transcutaneous analyte sensor
US7955261Mar 23, 2010Jun 7, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7959569Mar 23, 2010Jun 14, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7976492Jul 12, 2011Dexcom, Inc.Integrated delivery device for continuous glucose sensor
US7976778Jul 12, 2011Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US7979104Jul 12, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7986986Mar 23, 2010Jul 26, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US7993108Aug 9, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US7993109Aug 9, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US7998071Oct 14, 2009Aug 16, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8000901Aug 16, 2011Dexcom, Inc.Transcutaneous analyte sensor
US8005524Aug 23, 2011Dexcom, Inc.Signal processing for continuous analyte sensor
US8005525Aug 23, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8010174Aug 22, 2003Aug 30, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8029245Oct 4, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US8029250Oct 4, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US8029459Oct 4, 2011Abbott Diabetes Care Inc.Method and system for providing integrated medication infusion and analyte monitoring system
US8029460Oct 4, 2011Abbott Diabetes Care Inc.Method and system for providing integrated medication infusion and analyte monitoring system
US8047811Dec 29, 2008Nov 1, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US8047812Dec 29, 2008Nov 1, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US8052601Nov 8, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US8060173Nov 15, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US8064977Jul 29, 2009Nov 22, 2011Dexcom, Inc.Silicone based membranes for use in implantable glucose sensors
US8066639Jun 4, 2004Nov 29, 2011Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8073519Oct 14, 2009Dec 6, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8073520Dec 6, 2011Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8089363Jan 3, 2012Abbott Diabetes Care Inc.Method and system for providing data management in data monitoring system
US8103456Jan 24, 2012Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US8112138Sep 26, 2008Feb 7, 2012Abbott Diabetes Care Inc.Method and apparatus for providing rechargeable power in data monitoring and management systems
US8112240Apr 29, 2005Feb 7, 2012Abbott Diabetes Care Inc.Method and apparatus for providing leak detection in data monitoring and management systems
US8123686Mar 1, 2007Feb 28, 2012Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US8128562Oct 14, 2009Mar 6, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8133178Feb 22, 2006Mar 13, 2012Dexcom, Inc.Analyte sensor
US8149117Aug 29, 2009Apr 3, 2012Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8150488Oct 14, 2009Apr 3, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8160669Apr 17, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8160671Apr 17, 2012Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8162829Mar 30, 2009Apr 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8167801May 1, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8170803May 1, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8175673Nov 9, 2009May 8, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8177716Dec 21, 2009May 15, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8187183Oct 11, 2010May 29, 2012Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8195265Feb 9, 2011Jun 5, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8206297Jun 26, 2012Dexcom, Inc.System and methods for processing analyte sensor data
US8216139Sep 23, 2009Jul 10, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8224413Oct 10, 2008Jul 17, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226555Mar 18, 2009Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226557Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226558Sep 27, 2010Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226891Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US8229534Jul 24, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8229535Jul 24, 2012Dexcom, Inc.Systems and methods for blood glucose monitoring and alert delivery
US8229536Jul 24, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8231531Jul 31, 2012Dexcom, Inc.Analyte sensor
US8231532Apr 30, 2007Jul 31, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8233958Oct 12, 2009Jul 31, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8233959Jul 31, 2012Dexcom, Inc.Systems and methods for processing analyte sensor data
US8235896Dec 21, 2009Aug 7, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8236242Feb 12, 2010Aug 7, 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US8249684Aug 21, 2012Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8251906Apr 15, 2009Aug 28, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8255031Mar 17, 2009Aug 28, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8257259Sep 4, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8260392Sep 4, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8260393Sep 4, 2012Dexcom, Inc.Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US8265725Sep 11, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8265726Sep 11, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8268243Dec 28, 2009Sep 18, 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US8273022Sep 25, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8275437Mar 23, 2007Sep 25, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8275439Nov 9, 2009Sep 25, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8280475Feb 23, 2009Oct 2, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8282549Oct 9, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8282550Jul 29, 2008Oct 9, 2012Dexcom, Inc.Integrated receiver for continuous analyte sensor
US8285354Mar 23, 2010Oct 9, 2012Dexcom, Inc.System and methods for processing analyte sensor data
US8287453Nov 7, 2008Oct 16, 2012Dexcom, Inc.Analyte sensor
US8287454Oct 16, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8290559Oct 24, 2008Oct 16, 2012Dexcom, Inc.Systems and methods for processing sensor data
US8290560Oct 16, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8290561Oct 16, 2012Dexcom, Inc.Signal processing for continuous analyte sensor
US8290562Oct 16, 2012Dexcom, Inc.System and methods for processing analyte sensor data
US8292810Jan 27, 2011Oct 23, 2012Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8292849Sep 9, 2010Oct 23, 2012Medtronic Minimed, Inc.Insertion device for an insertion set and method of using the same
US8306598Nov 9, 2009Nov 6, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8311749Nov 13, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8313434Nov 20, 2012Dexcom, Inc.Analyte sensor inserter system
US8317759Jan 27, 2009Nov 27, 2012Medtronic Minimed, Inc.Multi-position infusion set device and process
US8321149Nov 27, 2012Dexcom, Inc.Transcutaneous analyte sensor
US8332008Mar 23, 2010Dec 11, 2012Dexcom, Inc.System and methods for processing analyte sensor data
US8333714Sep 10, 2006Dec 18, 2012Abbott Diabetes Care Inc.Method and system for providing an integrated analyte sensor insertion device and data processing unit
US8343092Nov 24, 2009Jan 1, 2013Abbott Diabetes Care Inc.Method and system for providing integrated medication infusion and analyte monitoring system
US8343093May 28, 2010Jan 1, 2013Abbott Diabetes Care Inc.Fluid delivery device with autocalibration
US8344966Jan 31, 2006Jan 1, 2013Abbott Diabetes Care Inc.Method and system for providing a fault tolerant display unit in an electronic device
US8346336Mar 18, 2009Jan 1, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8346337Jun 30, 2009Jan 1, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8346338Jan 1, 2013Dexcom, Inc.System and methods for replacing signal artifacts in a glucose sensor data stream
US8353829Dec 21, 2009Jan 15, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8357091Jan 22, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8362904Jan 29, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8364229Jan 29, 2013Dexcom, Inc.Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8366614Mar 30, 2009Feb 5, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8369919Oct 24, 2008Feb 5, 2013Dexcom, Inc.Systems and methods for processing sensor data
US8372005Dec 21, 2009Feb 12, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8374667Oct 16, 2008Feb 12, 2013Dexcom, Inc.Signal processing for continuous analyte sensor
US8380273Feb 19, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8386004Feb 26, 2013Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8391945Mar 17, 2009Mar 5, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8394021Mar 12, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8396528Mar 12, 2013Dexcom, Inc.Analyte sensor
US8409131Mar 7, 2007Apr 2, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8412301Apr 2, 2013Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8417312Oct 24, 2008Apr 9, 2013Dexcom, Inc.Systems and methods for processing sensor data
US8423113Apr 16, 2013Dexcom, Inc.Systems and methods for processing sensor data
US8423114Oct 1, 2007Apr 16, 2013Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US8428678Apr 23, 2013Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8428679Mar 26, 2010Apr 23, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8435179Jan 27, 2011May 7, 2013Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8442610Aug 21, 2008May 14, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8452368May 28, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8456301May 8, 2008Jun 4, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8457708Jun 4, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8461985May 8, 2008Jun 11, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8463350Jun 11, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8465425Jun 18, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8467972Jun 18, 2013Abbott Diabetes Care Inc.Closed loop blood glucose control algorithm analysis
US8469886Sep 23, 2009Jun 25, 2013Dexcom, Inc.Signal processing for continuous analyte sensor
US8471714Dec 30, 2011Jun 25, 2013Abbott Diabetes Care Inc.Method and system for providing data management in data monitoring system
US8473021Jul 31, 2009Jun 25, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8473220Jan 23, 2012Jun 25, 2013Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US8474397May 6, 2010Jul 2, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8475373Jul 17, 2008Jul 2, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8480580Apr 19, 2007Jul 9, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8483791Apr 11, 2008Jul 9, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8483793Oct 29, 2010Jul 9, 2013Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US8491474Jan 27, 2011Jul 23, 2013Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8509867Feb 7, 2006Aug 13, 2013Cercacor Laboratories, Inc.Non-invasive measurement of analytes
US8509871Oct 28, 2008Aug 13, 2013Dexcom, Inc.Sensor head for use with implantable devices
US8512239Apr 20, 2009Aug 20, 2013Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8512243Sep 30, 2005Aug 20, 2013Abbott Diabetes Care Inc.Integrated introducer and transmitter assembly and methods of use
US8512246Mar 15, 2010Aug 20, 2013Abbott Diabetes Care Inc.Method and apparatus for providing peak detection circuitry for data communication systems
US8515516Mar 10, 2005Aug 20, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8515519Feb 26, 2009Aug 20, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8543184Oct 20, 2011Sep 24, 2013Dexcom, Inc.Silicone based membranes for use in implantable glucose sensors
US8545403Dec 28, 2006Oct 1, 2013Abbott Diabetes Care Inc.Medical device insertion
US8548551May 14, 2010Oct 1, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8548553Jun 22, 2012Oct 1, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8560037Mar 26, 2010Oct 15, 2013Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US8560039Sep 17, 2009Oct 15, 2013Dexcom, Inc.Particle-containing membrane and particulate electrode for analyte sensors
US8560082Jan 30, 2009Oct 15, 2013Abbott Diabetes Care Inc.Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US8562558Jun 5, 2008Oct 22, 2013Dexcom, Inc.Integrated medicament delivery device for use with continuous analyte sensor
US8565848May 7, 2009Oct 22, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8565849May 14, 2010Oct 22, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8571624Dec 29, 2004Oct 29, 2013Abbott Diabetes Care Inc.Method and apparatus for mounting a data transmission device in a communication system
US8571625May 14, 2010Oct 29, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8579816Jan 7, 2010Nov 12, 2013Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US8579853Oct 31, 2006Nov 12, 2013Abbott Diabetes Care Inc.Infusion devices and methods
US8585591Jul 10, 2010Nov 19, 2013Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US8588882Dec 16, 2009Nov 19, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8591455Feb 20, 2009Nov 26, 2013Dexcom, Inc.Systems and methods for customizing delivery of sensor data
US8593109Nov 3, 2009Nov 26, 2013Abbott Diabetes Care Inc.Method and system for powering an electronic device
US8593287Jul 20, 2012Nov 26, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8597189Mar 3, 2009Dec 3, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8597575Jul 23, 2012Dec 3, 2013Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US8602991Jun 7, 2010Dec 10, 2013Abbott Diabetes Care Inc.Analyte sensor introducer and methods of use
US8611978Jan 7, 2010Dec 17, 2013Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US8612159Feb 16, 2004Dec 17, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8613703May 29, 2008Dec 24, 2013Abbott Diabetes Care Inc.Insertion devices and methods
US8613892Jun 30, 2009Dec 24, 2013Abbott Diabetes Care Inc.Analyte meter with a moveable head and methods of using the same
US8615282Feb 22, 2006Dec 24, 2013Dexcom, Inc.Analyte sensor
US8617071Jun 21, 2007Dec 31, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8622903May 25, 2012Jan 7, 2014Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8622905Dec 11, 2009Jan 7, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8622906Dec 21, 2009Jan 7, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8628498Jun 30, 2011Jan 14, 2014Medtronic Minimed, Inc.Insertion device for an insertion set and method of using the same
US8638220May 23, 2011Jan 28, 2014Abbott Diabetes Care Inc.Method and apparatus for providing data communication in data monitoring and management systems
US8641619Dec 21, 2009Feb 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8641674Sep 19, 2012Feb 4, 2014Medtronic Minimed, Inc.Insertion device for an insertion set and method of using the same
US8647269Apr 20, 2009Feb 11, 2014Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8649841Apr 3, 2007Feb 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8652043Jul 20, 2012Feb 18, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8653977Jun 21, 2013Feb 18, 2014Abbott Diabetes Care Inc.Method and system for providing data management in data monitoring system
US8657745Oct 16, 2008Feb 25, 2014Dexcom, Inc.Signal processing for continuous analyte sensor
US8657747Apr 5, 2011Feb 25, 2014Dexcom, Inc.Systems and methods for processing analyte sensor data
US8660627Mar 17, 2009Feb 25, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8663109Mar 29, 2010Mar 4, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8663538Jun 30, 2011Mar 4, 2014Picolife Technologies, LlcMethod of making a membrane for use with a flow control system for a micropump
US8665091Jun 30, 2009Mar 4, 2014Abbott Diabetes Care Inc.Method and device for determining elapsed sensor life
US8666469Nov 16, 2007Mar 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8668645Jan 3, 2003Mar 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8670815Apr 30, 2007Mar 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8672844Feb 27, 2004Mar 18, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8672845Mar 25, 2010Mar 18, 2014Dexcom, Inc.Systems and methods for processing analyte sensor data
US8676287Dec 11, 2009Mar 18, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8676513Jun 21, 2013Mar 18, 2014Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US8688188Jun 30, 2009Apr 1, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8690775Apr 11, 2008Apr 8, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8700117Dec 8, 2009Apr 15, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8721545Mar 22, 2010May 13, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8721585Mar 30, 2012May 13, 2014Dex Com, Inc.Integrated delivery device for continuous glucose sensor
US8731630Mar 22, 2010May 20, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8732188Feb 15, 2008May 20, 2014Abbott Diabetes Care Inc.Method and system for providing contextual based medication dosage determination
US8734346Apr 30, 2007May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8734348Mar 17, 2009May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8738109Mar 3, 2009May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8744545Mar 3, 2009Jun 3, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8747315Sep 23, 2009Jun 10, 2014Dexcom. Inc.Signal processing for continuous analyte sensor
US8750955Nov 2, 2009Jun 10, 2014Dexcom, Inc.Analyte sensor
US8761856Apr 27, 2012Jun 24, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8764657Mar 30, 2012Jul 1, 2014Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US8765059Oct 27, 2010Jul 1, 2014Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US8771183Feb 16, 2005Jul 8, 2014Abbott Diabetes Care Inc.Method and system for providing data communication in continuous glucose monitoring and management system
US8771187May 31, 2011Jul 8, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8771229Dec 1, 2011Jul 8, 2014Picolife Technologies, LlcCartridge system for delivery of medicament
US8774887Mar 24, 2007Jul 8, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8774888Jan 20, 2010Jul 8, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8777853Apr 4, 2012Jul 15, 2014Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8788006Dec 11, 2009Jul 22, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8788007Mar 8, 2012Jul 22, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8788008May 31, 2011Jul 22, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8790260Oct 14, 2009Jul 29, 2014Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8790307Feb 9, 2012Jul 29, 2014Picolife Technologies, LlcDrug delivery device and methods therefor
US8792953Mar 19, 2010Jul 29, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8792954Mar 19, 2010Jul 29, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8792955Jun 9, 2011Jul 29, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8795177Jan 14, 2009Aug 5, 2014Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8798934Jul 23, 2010Aug 5, 2014Abbott Diabetes Care Inc.Real time management of data relating to physiological control of glucose levels
US8801610Jul 24, 2009Aug 12, 2014Dexcom, Inc.Signal processing for continuous analyte sensor
US8801611Mar 22, 2010Aug 12, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8801612Apr 27, 2012Aug 12, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8807169Jun 30, 2011Aug 19, 2014Picolife Technologies, LlcFlow control system for a micropump
US8808182Apr 27, 2012Aug 19, 2014Dexcom, Inc.System and methods for processing analyte sensor data
US8808228Jun 5, 2008Aug 19, 2014Dexcom, Inc.Integrated medicament delivery device for use with continuous analyte sensor
US8812072Apr 17, 2008Aug 19, 2014Dexcom, Inc.Transcutaneous medical device with variable stiffness
US8812073Jun 1, 2010Aug 19, 2014Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8821400Feb 9, 2011Sep 2, 2014Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8825127May 14, 2010Sep 2, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8840553Feb 26, 2009Sep 23, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8843187Jun 1, 2010Sep 23, 2014Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8845536Apr 11, 2007Sep 30, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8852101Sep 30, 2009Oct 7, 2014Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US8858434Mar 10, 2005Oct 14, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8862198Dec 17, 2012Oct 14, 2014Abbott Diabetes Care Inc.Method and system for providing an integrated analyte sensor insertion device and data processing unit
US8880137Apr 18, 2003Nov 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8886272Feb 22, 2006Nov 11, 2014Dexcom, Inc.Analyte sensor
US8886273Nov 7, 2008Nov 11, 2014Dexcom, Inc.Analyte sensor
US8911369Dec 15, 2008Dec 16, 2014Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US8915849Feb 3, 2009Dec 23, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8915850Mar 28, 2014Dec 23, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8920319Dec 28, 2012Dec 30, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8926585Mar 30, 2012Jan 6, 2015Dexcom, Inc.Integrated delivery device for continuous glucose sensor
US8929968Jul 19, 2010Jan 6, 2015Dexcom, Inc.Dual electrode system for a continuous analyte sensor
US8930203Feb 3, 2010Jan 6, 2015Abbott Diabetes Care Inc.Multi-function analyte test device and methods therefor
US8933664Nov 25, 2013Jan 13, 2015Abbott Diabetes Care Inc.Method and system for powering an electronic device
US8971981 *Jul 31, 2008Mar 3, 2015Roche Diagnostics Operations, Inc.Device and method for facilitating infusion of therapeutic fluids and sensing of bodily analytes
US8974386Nov 1, 2005Mar 10, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8986209Jul 13, 2012Mar 24, 2015Dexcom, Inc.Transcutaneous analyte sensor
US8989833Mar 10, 2005Mar 24, 2015Dexcom, Inc.Transcutaneous analyte sensor
US8993331Aug 31, 2010Mar 31, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods for managing power and noise
US9000929Nov 22, 2013Apr 7, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9011331Dec 29, 2004Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9011332Oct 30, 2007Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9014773Mar 7, 2007Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9020572Sep 10, 2010Apr 28, 2015Dexcom, Inc.Systems and methods for processing, transmitting and displaying sensor data
US9035767May 30, 2013May 19, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9039975Dec 2, 2013May 26, 2015Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US9042953Mar 2, 2007May 26, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9044199Mar 10, 2005Jun 2, 2015Dexcom, Inc.Transcutaneous analyte sensor
US9055901Sep 14, 2012Jun 16, 2015Dexcom, Inc.Transcutaneous analyte sensor
US9060742Mar 19, 2010Jun 23, 2015Dexcom, Inc.Transcutaneous analyte sensor
US9064107Sep 30, 2013Jun 23, 2015Abbott Diabetes Care Inc.Infusion devices and methods
US9066694Apr 3, 2007Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066695Apr 12, 2007Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066697Oct 27, 2011Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066709Mar 17, 2014Jun 30, 2015Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US9072477Jun 21, 2007Jul 7, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9078607Jun 17, 2013Jul 14, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9078608Jul 13, 2012Jul 14, 2015Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US9078626Mar 31, 2011Jul 14, 2015Dexcom, Inc.Transcutaneous analyte sensor
US9095290Feb 27, 2012Aug 4, 2015Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US9101303 *Aug 18, 2010Aug 11, 2015Abbott Diabetes Care Inc.Analyte sensor ports
US9107623Apr 15, 2009Aug 18, 2015Dexcom, Inc.Signal processing for continuous analyte sensor
US9125603 *Aug 11, 2009Sep 8, 2015Abbott Diabetes Care Inc.Analyte sensor ports
US9125604May 18, 2011Sep 8, 2015Arkray, Inc.Electrochemical sensor
US9135402Oct 24, 2008Sep 15, 2015Dexcom, Inc.Systems and methods for processing sensor data
US9143569Feb 20, 2009Sep 22, 2015Dexcom, Inc.Systems and methods for processing, transmitting and displaying sensor data
US9149219Feb 9, 2011Oct 6, 2015Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9149233Jun 13, 2012Oct 6, 2015Dexcom, Inc.Systems and methods for processing sensor data
US9149234Jun 13, 2012Oct 6, 2015Dexcom, Inc.Systems and methods for processing sensor data
US9155496Feb 18, 2011Oct 13, 2015Dexcom, Inc.Low oxygen in vivo analyte sensor
US9177456Jun 10, 2013Nov 3, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9186098Mar 24, 2011Nov 17, 2015Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US9192328Sep 23, 2009Nov 24, 2015Dexcom, Inc.Signal processing for continuous analyte sensor
US9215992Mar 24, 2011Dec 22, 2015Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US9220449Jul 9, 2013Dec 29, 2015Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US9226701Apr 28, 2010Jan 5, 2016Abbott Diabetes Care Inc.Error detection in critical repeating data in a wireless sensor system
US9247900Jun 4, 2013Feb 2, 2016Dexcom, Inc.Analyte sensor
US9247901Aug 2, 2006Feb 2, 2016Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9259175Oct 23, 2006Feb 16, 2016Abbott Diabetes Care, Inc.Flexible patch for fluid delivery and monitoring body analytes
US9265453Mar 24, 2011Feb 23, 2016Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US9282925Mar 25, 2010Mar 15, 2016Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9314195Aug 31, 2010Apr 19, 2016Abbott Diabetes Care Inc.Analyte signal processing device and methods
US9314196Sep 7, 2012Apr 19, 2016Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US9314198Apr 3, 2015Apr 19, 2016Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9320461Sep 29, 2010Apr 26, 2016Abbott Diabetes Care Inc.Method and apparatus for providing notification function in analyte monitoring systems
US9323898Nov 15, 2013Apr 26, 2016Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US9326714Jun 29, 2010May 3, 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9326716Dec 5, 2014May 3, 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9328371Jul 16, 2013May 3, 2016Dexcom, Inc.Sensor head for use with implantable devices
US9332933Sep 29, 2014May 10, 2016Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US9332944Jan 31, 2014May 10, 2016Abbott Diabetes Care Inc.Method and system for providing data management in data monitoring system
US9339222May 31, 2013May 17, 2016Dexcom, Inc.Particle-containing membrane and particulate electrode for analyte sensors
US9339238May 16, 2012May 17, 2016Dexcom, Inc.Systems and methods for processing sensor data
US20020077599 *Dec 18, 2001Jun 20, 2002Animas CorporationTranscutaneous inserter for low-profile infusion sets
US20030158520 *Feb 20, 2003Aug 21, 2003Medtronic Minimed, Inc.Insertion device for an insertion set and method of using the same
US20030199823 *Apr 18, 2003Oct 23, 2003Minimed Inc.Insertion device for an insertion set and method of using the same
US20030225373 *Mar 14, 2003Dec 4, 2003Minimed, Inc.Insertion device for an insertion set and method of using the same
US20040002682 *Dec 9, 2002Jan 1, 2004Medtronic Minimed, Inc.Insertion device for an insertion set and method of using the same
US20040106163 *Jul 10, 2003Jun 3, 2004Workman Jerome JamesNon-invasive measurement of analytes
US20050101910 *Nov 10, 2003May 12, 2005Medtronic Minimed, Inc.Subcutaneous infusion set
US20060129090 *Dec 3, 2004Jun 15, 2006Medtronic Minimed, Inc.Multi-position infusion set device and process
US20060129123 *Jan 25, 2006Jun 15, 2006Steven WojcikTranscutaneous inserter for low-profile infusion sets
US20070020181 *Feb 7, 2006Jan 25, 2007Workman Jerome JNon-invasive measurement of analytes
US20070142776 *Dec 9, 2002Jun 21, 2007Medtronic Minimed, Inc.Insertion device for an insertion set and method of using the same
US20090163878 *Jan 27, 2009Jun 25, 2009Medtronic Minimed, Inc.Multi-position infusion set device and process
US20090247984 *Oct 24, 2008Oct 1, 2009Masimo Laboratories, Inc.Use of microneedles for small molecule metabolite reporter delivery
US20100137695 *Jul 31, 2008Jun 3, 2010Ofer YodfatDevice for method facilitating infusion of therapeutic fluids and sensing of bodily analytes
US20110040164 *Feb 17, 2011Analyte Sensor PortsAnalyte Sensor Ports
US20110040246 *Feb 17, 2011Galasso John RAnalyte sensor ports
US20110040256 *Feb 17, 2011Medtronic Minimed, Inc.Insertion Device for an Insertion Set and Method of Using the Same
US20130274576 *Apr 16, 2012Oct 17, 2013PicoLife TechnologiesMedication delivery device with multi-reservoir cartridge system and related methods of use
USRE43399Jun 13, 2008May 22, 2012Dexcom, Inc.Electrode systems for electrochemical sensors
USRE44695May 1, 2012Jan 7, 2014Dexcom, Inc.Dual electrode system for a continuous analyte sensor
EP1389138A2 *Apr 2, 2002Feb 18, 2004Medtronic MiniMed, Inc.Insertion device for an insertion set and method of using the same
EP1389138A4 *Apr 2, 2002Apr 4, 2007Medtronic Minimed IncInsertion device for an insertion set and method of using the same
EP2322094A1 *Jul 13, 2005May 18, 2011DexCom, Inc.Transcutaneous analyte sensor
EP2327362A1 *Jul 13, 2005Jun 1, 2011DexCom, Inc.Transcutaneous analyte sensor
EP2332466A1 *Jul 13, 2005Jun 15, 2011DexCom, Inc.Transcutaneous analyte sensor
EP2335587A2 *Jul 13, 2005Jun 22, 2011DexCom, Inc.Transcutaneous analyte sensor
WO2006017359A1 *Jul 13, 2005Feb 16, 2006Dexcom, Inc.Transcutaneous analyte sensor with variable stiffness
WO2011019658A1 *Aug 9, 2010Feb 17, 2011Abbott Diabetes Care Inc.Analyte sensor ports
WO2013158431A1 *Apr 10, 2013Oct 24, 2013PicoLife TechnologiesMedication delivery device with multi-reservoir cartridge system and related methods of use
Classifications
U.S. Classification439/834
International ClassificationA61B17/34, A61B5/00, A61M25/06, A61M5/158, A61B5/1473, A61B5/145
Cooperative ClassificationY10S439/909, A61B5/6849, A61B2017/3492, A61B5/14532, A61M2005/1581, A61M25/0612, A61M2005/1587
European ClassificationA61B5/145G, A61B5/68D1B2