Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20020131683 A1
Publication typeApplication
Application numberUS 09/809,126
Publication dateSep 19, 2002
Filing dateMar 15, 2001
Priority dateMar 15, 2001
Also published asCA2372536A1, CA2372536C, US6956987, US20030194174, US20050025426
Publication number09809126, 809126, US 2002/0131683 A1, US 2002/131683 A1, US 20020131683 A1, US 20020131683A1, US 2002131683 A1, US 2002131683A1, US-A1-20020131683, US-A1-2002131683, US2002/0131683A1, US2002/131683A1, US20020131683 A1, US20020131683A1, US2002131683 A1, US2002131683A1
InventorsChristopher Doerr
Original AssigneeDoerr Christopher Richard
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Planar lightwave wavelength blocker devices using micromachines
US 20020131683 A1
Abstract
A method and apparatus are disclosed for selectively passing or blocking an optical signal using an opaque or reflective shutter that is selectively positioned in or out of the light path. The disclosed wavelength blocker can be employed to filter input wavelength-division multiplexed (WDM) signal comprised of N wavelength channels, where a mechanical shutter array selectively passes each of the N wavelength channels. Each mechanical shutter may be controlled, for example, by a micromachine control element that physically lifts the shutter into or out of the lightpath. The disclosed wavelength blockers may be utilized in wavelength-selective cross connects, as well as other optical devices. In an exemplary wavelength-selective cross connect, an array of mirrors are employed in a planar waveguide having two sets of waveguide gratings intersecting at an angle. The mirrors and waveguide gratings are positioned such that if the mirror for a given channel is up (removed from the light path), then that channel passes across the device and exits the corresponding output port (bar state), otherwise the light is reflected by the mirror and exits the opposite output port (bar state).
Images(7)
Previous page
Next page
Claims(20)
I claim:
1. A planar optical device for filtering an optical signal, the optical device comprising:
an input waveguide for carrying said optical signal;
an output waveguide for carrying said optical signal and
a mechanical shutter for coupling said input and output waveguides, said mechanical shutter selectively positioned in or out of said lightpath to selectively block or pass said optical signal.
2. The optical device according to claim 1, wherein said optical signal is a wavelength-division multiplexed (WDM) signal comprising N wavelength channels and wherein said optical device further comprises a demultiplexer for producing a plurality of demultiplexed output signals from said input WDM signal, a multiplexer for producing an output WDM signal, and a mechanical shutter associated with each of said N wavelength channels.
3. The optical device according to claim 2, wherein a plurality of said waveguides carry each of said N wavelength channels.
4. The optical device according to claim 2, wherein said demultiplexer is embodied as a waveguide grating and wherein an aperture of said waveguide grating is substantially larger than an aperture of said mechanical shutter.
5. The optical device according to claim 1, wherein said shutter is opaque.
6. The optical device according to claim 1, wherein said shutter is a reflective surface.
7. The optical device according to claim 1, wherein said shutter is controlled by a micromachine control element that positions said shutter in and out of said lightpath.
8. A method for filtering an optical signal in a planar optical device, said method comprising the steps of:
receiving said optical signal on an input waveguide;
coupling said input waveguide to an output waveguide; and
selectively blocking or passing said optical signal using a mechanical shutter.
9. The method according to claim 8, wherein said optical signal is a wavelength-division multiplexed (WDM) signal comprising N wavelength channels and wherein said method further comprises the step of producing a plurality of demultiplexed output signals from said input WDM signal using a demultiplexer.
10. The method according to claim 9, wherein a plurality of said waveguides carry each of said N wavelength channels.
11. The method according to claim 9, wherein said demultiplexer is embodied as a waveguide grating and wherein an aperture of said waveguide grating is substantially larger than an aperture of said mechanical shutter.
12. The method according to claim 8, wherein said shutter is opaque.
13. The method according to claim 8, wherein said shutter is a reflective surface.
14. The method according to claim 8, wherein said shutter is controlled by a micromachine control element that positions said shutter in and out of said lightpath.
15. A wavelength-selective cross connect (WSC) having a plurality of input ports and output ports for selectively passing or crossing an incoming signal received on one of said input ports to a corresponding output port or to an opposite output port, said WSC comprising:
a first set of waveguide gratings corresponding to said input ports;
a second set of waveguide gratings corresponding to said output ports, wherein said first and second sets of waveguide gratings intersect at an angle;
a reflective shutter array for coupling said first and second sets of waveguide gratings, said reflective shutter selectively positioned in or out of said lightpath to selectively reflect or pass said signal, whereby in a bar state a given channel passes across said WSC and exits a corresponding output port or in a cross state said channel is reflected and exits an opposite output port.
16. The WSC according to claim 15, wherein said shutter array is controlled by a micromachine control element that positions said shutter in and out of said lightpath.
17. The WSC according to claim 15, wherein an aperture of said waveguide gratings is substantially larger than an aperture of said reflective shutter.
18. A wavelength add-drop (WAD) multiplexer having an input port and an output port for selectively removing or adding light of a given wavelength to an optical signal comprising N wavelength channels, said WAD comprising:
a first waveguide grating corresponding to said input port;
a second waveguide grating corresponding to said output port;
a first waveguide lens corresponding to a drop port;
a second waveguide lens corresponding to an add port;
a reflective shutter array for coupling said first and second waveguide gratings and first and second waveguide lenses, said reflective shutter selectively positioned in or out of said lightpath to selectively reflect or pass said signal, whereby in a first state a given channel passes across said WAD and exits said output port or in a second state said channel is reflected and exits said drop port and signals from said add port are multiplexed together and sent to said output port.
19. The WAD multiplexer according to claim 18, wherein said shutter array is controlled by a micromachine control element that positions said shutter in and out of said lightpath.
20. The WAD according to claim 18, wherein an aperture of said waveguide gratings is substantially larger than an aperture of said reflective shutter.
Description
FIELD OF THE INVENTION

[0001] The present invention relates to optical communication networks and, more particularly, to optical devices for routing multi-wavelength optical signals.

BACKGROUND OF THE INVENTION

[0002] When multiple users share a transmission medium, some form of multiplexing is required to provide separable user sub-channels. There are many multiplexing techniques available that simultaneously transmit information signals within the available bandwidth, while still maintaining the quality and intelligibility that are required for a given application. Optical communication systems, for example, increasingly employ wavelength division multiplexing (WDM) techniques to transmit multiple information signals on the same fiber, and differentiate each user sub-channel by modulating it with a unique wavelength of invisible light. WDM techniques are being used to meet the increasing demands for increasing speed and bandwidth in optical transmission applications.

[0003] In optical communication networks, such as those employing WDM techniques, individual optical signals are often selectively routed to different destinations. Thus, a high capacity matrix or cross-connect switch is often employed to selectively route signals through interconnected nodes in a communication network. Many cross-connect switches used in optical communication networks are either manual or electronic, requiring multiple optical-to-electrical and electrical-to-optical conversions. The speed and bandwidth advantages associated with transmitting information in optical form, however, makes an all-optical network the preferred solution for WDM-based optical networks. Moreover, all-optical network elements are needed to provide the flexibility for managing bandwidth at the optical layer (e.g., on a wavelength by wavelength basis). In addition, it is often desirable to remove light of a given wavelength from a fiber or add light of a given wavelength to the fiber. A device that provides this feature is often referred to as a wavelength add-drop (WAD) multiplexer.

[0004] Wavelength blockers are optical devices that accept an incoming signal of multiple wavelength channels and independently pass or block each wavelength channel. Wavelength blockers can be used as components in a larger optical communication system, for example, to route a given optical signal along a desired path between a source and destination. Optical cross-connect switches and wavelength add-drop multiplexers, for example, are often implemented using wavelength blockers. A wavelength blocker provides a number of desirable features. First, a network element using wavelength blockers is modular and thus scalable and repairable. Second, network elements using wavelength blockers have a multicasting capability. Third, wavelength blockers are relatively easy to manufacture with high performance. Wavelength blockers have only two fiber connections, and it is possible to use a polarization diversity scheme to make them polarization independent.

[0005] As the demand for optical bandwidth increases in WDM communication systems, it is desirable to increase the number of channels. Unfortunately, an increase in the number of channels provides a corresponding increase in the size, cost and insertion loss of the optical devices in such WDM communication systems. A need therefore exists for improved wavelength blockers that permit optical cross-connect switches, wavelength add-drop multiplexers and other optical devices to be fabricated with reduced size and cost. A further need exists for two-port wavelength blockers that permit optical cross-connect switches and wavelength add-drop multiplexers to be configured without complex waveguide crossings. Yet another need exists for improved wavelength blockers having a frequency spectrum with a generally flat transmission spectrum in both amplitude and phase.

SUMMARY OF THE INVENTION

[0006] Generally, a method and apparatus are disclosed for selectively passing or blocking an optical signal using an opaque or reflective shutter that is selectively positioned in or out of the light path. The disclosed wavelength blocker can be employed to filter input wavelength-division multiplexed (WDM) signal comprised of N wavelength channels, where a mechanical shutter array selectively passes each of the N wavelength channels. Each mechanical shutter may be controlled, for example, by a micromachine control element that physically lifts the shutter into or out of the lightpath.

[0007] The disclosed wavelength blockers may be utilized in wavelength-selective cross connects, wavelength add drop multiplexers, as well as other optical devices. In an exemplary wavelength-selective cross connect, an array of mirrors are employed in a planar waveguide having two sets of waveguide gratings intersecting at an angle. The mirrors and waveguide gratings are positioned such that if the mirror for a given channel is up (removed from the light path), then that channel passes across the device and exits the corresponding output port (bar state), otherwise the light is reflected by the mirror and exits the opposite output port (bar state).

[0008] A more complete understanding of the present invention, as well as further features and advantages of the present invention, will be obtained by reference to the following detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009]FIG. 1 illustrates a conventional wavelength blocker;

[0010]FIG. 2 is an optical diagram illustrating an implementation of the wavelength blocker of FIG. 1;

[0011]FIG. 3 is an optical diagram illustrating a wavelength blocker incorporating features of the present invention;

[0012]FIG. 4 illustrates a representative waveguide layout for a wavelength blocker using micromachine shutters in accordance with the present invention;

[0013]FIG. 5 illustrates the micromachine shutter array of FIG. 4 in further detail;

[0014]FIG. 6 is a schematic block diagram of a wavelength-selective cross connect (WSC);

[0015]FIG. 7 is an optical diagram illustrating a 2×2 wavelength-selective cross connect (WSC) incorporating features of the present invention; and

[0016]FIG. 8 is an optical diagram illustrating a wavelength add drop multiplexer incorporating features of the present invention

DETAILED DESCRIPTION

[0017]FIG. 1 illustrates a conventional wavelength blocker 100. As shown in FIG. 1, a wavelength blocker 100 is an optical device having two ports 110-1, 110-2 that accept an incoming signal of multiple wavelength channels at a first port 110-1 and independently pass or block each wavelength channel, i, to a second port 110-2. A demultiplexer 115-1 separates the incoming signal into each component wavelength channel, i, which is then selectively passed or blocked by the corresponding shutter 120-i (or variable optical attenuators) to a multiplexer 115-2. The wavelength blocker 100 may be embodied, for example, as the wavelength blocker disclosed in contemporaneously filed U.S. patent application Ser. No. ______, entitled “Planar Lightwave Wavelength Blocker,” (Attorney Docket Number Doerr 49), assigned to the assignee of the present invention and incorporated by reference herein, as modified herein in accordance with the present invention.

[0018] According to one feature of the present invention, each shutter 120-i is embodied as an opaque element that can be selectively positioned in and out of the lightpath to selectively pass or block light. In one embodiment, discussed further below, each shutter 120-i may be controlled by a micromachine control element that can physically lift the shutter 120-i in and out of the lightpath.

[0019]FIG. 2 is an optical diagram illustrating an implementation of the wavelength blocker 100 of FIG. 1. As shown in FIG. 2, the optical wavelength blocker 200 is comprised of a number of lenses 205-1 through 205-4, two wavelength gratings 210-1 and 210-2 and a control element array 215. The lens 205-1 focuses an input beam on the grating 210-1, which serves to separate each of the wavelength channels. The lens 205-2 focuses each of the wavelength channels on the control element array 215 that selectively passes or blocks each wavelength.

[0020]FIG. 3 is an optical diagram illustrating a wavelength blocker 300 incorporating features of the present invention. As shown in FIG. 3, the optical wavelength blocker 300 is comprised of two wavelength gratings 310-1 and 310-2 each surrounded by a pair of lenses 305-1, 305-2 and 305-3, 305-4, and a micromachine control element 315. The lenses 305 and gratings 310 operate in the same manner as described above in conjunction with FIG. 2. As previously indicated, the micromachine control element 315 is embodied as a micromachine device that can physically lift opaque pieces in or out of the lightpath to selectively pass or block light.

[0021]FIG. 4 illustrates a representative waveguide layout for a wavelength blocker 400 using a planar arrangement of waveguides and micromachine shutters, in accordance with the present invention. As shown in FIG. 4, the wavelength blocker 400 consists of two separate planar lightwave circuits 410-1 and 410-2. The planar lightwave circuits 410-1 and 410-2 can optionally have their facets polished and anti-reflection coatings optionally applied where the array of micromachine shutters 500 is positioned. A pair of star couplers 420-1 and 420-2 serve as a demultiplex/multiplex pair coupled by a waveguide grating 430-1, 430-2. The micromachine shutter gallery 500 is discussed below in conjunction with FIG. 5.

[0022] It has been observed that non-central wavelengths, such as λ2, enter the output fiber in FIG. 3 at a large angle, causing high loss for these channels. However, one can make this loss arbitrarily small by making the aperture of the gratings (310-1, 310-2 in FIG. 3 or 430-1, 430-2 in FIG. 4) very large or the control elements 315, 500 very small (or both). In other words, if the gratings have a large aperture, relative to the shutters, then the non-central wavelengths, such as λ2, can be made to enter the output fiber in FIG. 3 at a smaller angle, without using additional lenses. Let the center-to-center spacing between the grating arm inlets on the control-element side be a, and the small control element spacing be b, where b=λRI(Ma), where λ is the wavelength, R is the distance between the grating and control elements, and M is the number of grating arms. For a flat stopband, one requires at least two minimum control element spacings per channel. Then for the outermost channels (at the edges of the central Brillouin zone), the mode center in the fiber will offset by b/a of its width. If we choose the reasonable values a=25 μm and b=5 μm (with 3 element spacing used per channel, so that the channel controls are spaced by 15 μm center-to-center), then the worst channel is off by only {fraction (1/5)} of its width. If we then populate only half the central Brillouin zone, this reduces to {fraction (1/10)}, resulting in low loss for all the channels.

[0023]FIG. 5 illustrates the micromachine shutter gallery 500 of FIG. 4 in further detail. As shown in FIG. 5, the micromachine shutter gallery 500 employs one or more spacers 510 to maintain a gap between the planar lightwave chips 510-1, 510-2. Thus, the chips 510-1, 510-2 can be attached to each other with the spacer 510, thereby leaving a gap for the insertion of the shutters. The shutters 500 are opaque pieces that can be can lifted in and out of the gap under the control of a micromachine device. In the exemplary embodiment, the shutters are attached to the tops of the planar lightwave circuits, as shown in FIG. 5. When all of the shutters are out of the lightpath, the device has a flat transmission across all the channels, making it especially useful when used to make a WAD. This also means that one does not have to have one shutter per channel. If some channels will never be dropped, then they will not need shutters. It is important that the higher diffraction orders be blocked. This can be done either by tapering the free-space regions in the vicinity of the shutters or by inserting opaque objects into the gap. It is noted that the shutters can be microfabricated, e.g., from silicon on insulator wafers.

[0024]FIG. 6 illustrates a general block diagram of a wavelength-selective cross connect (WSC) 600. The wavelength-selective cross connect 600 may be used, for example, in a communication system having multiple fiber rings. As shown in FIG. 6, the wavelength-selective cross connect 600 is an optical device having two input ports 610-1 and 610-2 and two output ports 610-3 and 610-4. An incoming signal received on a given incoming port 610-1 and 610-2 is selectively (i) passed to the corresponding output port 610-3 or 610-4, respectively, in a bar state; or (ii) crossed to the opposite output port 610-4 or 610-3, respectively, in a cross state. The wavelength-selective cross connect 600 consists of four wavelength blockers 100-1 through 100-4, which may each be embodied as the wavelength blocker 100 discussed above in conjunction with FIG. 1.

[0025]FIG. 7 is an optical diagram illustrating a 2×2 wavelength-selective cross connect (WSC) 700 incorporating features of the present invention. As shown in FIG. 7, the wavelength-selective cross connect 700 consists of two separate planar lightwave circuits 710-1 and 710-2. Four star couplers 720-1 through 720-4 serve as demultiplexers/multiplexers coupled by waveguide gratings 730-1 through 730-4. The micromachine mirror array 750 may be embodied using the micromachine shutter gallery 500 discussed above in conjunction with FIG. 5, although the opaque shutters are now replaced by mirrors.

[0026] The two sets of waveguide gratings 730-1, 730-2 intersect at an angle. Thus, if the mirror 750 for a given channel is up (removed from the light path), then that channel passes across the device and exits the corresponding output port (bar state), otherwise it is reflected and exits the opposite output port (bar state). Additional gratings could be added around the circle and use rotatable mirrors to make 1×N WSC.

[0027] Thus, the wavelength-selective cross connect 700 has two input ports 705-1 and 705-2 and two output ports 705-3 and 705-4. An incoming signal received on a given incoming port 705-1 and 705-2 is selectively (i) passed to the corresponding output port 705-3 and 705-4, respectively, in a bar state; or (ii) crossed to the opposite output port 705-3 and 705-4, respectively, in a cross state.

[0028]FIG. 8 is an optical diagram illustrating a wavelength add drop (WAD) multiplexer 800 incorporating features of the present invention. As shown in FIG. 8, the WAD multiplexer 800 has an input port 810-1 and an output port 810-2, as well as an add port 815-A and a drop port 815-D. Four star couplers 825-1 through 825-4 serve as demultiplexers/multiplexers coupled by two waveguide gratings 820-1 and 820-2 and two waveguide lenses 830-1 and 830-2 (where path lengths are all equal), as shown in FIG. 8. The micromachine mirror array 750 may be embodied using the micromachine shutter gallery 500 discussed above in conjunction with FIG. 5, although the opaque shutters are now replaced by mirrors. An incoming signal of multiple wavelength channels is accepted at the input port 810-1 and is applied to a waveguide grating 820-1.

[0029] The two sets of waveguide gratings and lenses 820. 830 intersect at an angle. Thus, if the mirror 850 for a given channel is up (removed from the light path), then that channel passes across the device and exits the output port 810-2, otherwise that channel is reflected and exits the drop port 815-D, and signals from the add port 815-A are multiplexed together and are sent to the through port.

[0030] It is to be understood that the embodiments and variations shown and described herein are merely illustrative of the principles of this invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6965711Aug 10, 2004Nov 15, 2005Olympus CorporationLight intercepting device and optical switch apparatus
US7236660May 20, 2003Jun 26, 2007Jds Uniphase CorporationReconfigurable optical add-drop module, system and method
US7277640 *Nov 18, 2003Oct 2, 2007Avago Technologies Fiber Ip (Singapore) Pte LtdOptical add/drop multiplexing systems
Classifications
U.S. Classification385/19
International ClassificationG02B6/12, H04B10/02, H04B10/28, G02B26/00, G02B6/34, G02B26/02, G02B6/35
Cooperative ClassificationG02B6/12021, G02B6/352, G02B6/12011, G02B6/3596, G02B6/353, G02B6/12014, G02B6/356, G02B6/3518
European ClassificationG02B6/12M2A, G02B6/12M2F, G02B6/12M2O2
Legal Events
DateCodeEventDescription
Jun 22, 2001ASAssignment
Owner name: LUCENT TECHNOLOGIES INC., NEW JERSEY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOERR, CHRISTOPHER RICHARD;REEL/FRAME:011945/0627
Effective date: 20010419