US20020132798A1 - 7-phenyl-substituted tetracycline compounds - Google Patents

7-phenyl-substituted tetracycline compounds Download PDF

Info

Publication number
US20020132798A1
US20020132798A1 US09/882,505 US88250501A US2002132798A1 US 20020132798 A1 US20020132798 A1 US 20020132798A1 US 88250501 A US88250501 A US 88250501A US 2002132798 A1 US2002132798 A1 US 2002132798A1
Authority
US
United States
Prior art keywords
sancycline
compound
tetracycline
substituted
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/882,505
Inventor
Mark Nelson
Glen Rennie
Darrell Koza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tufts University
Original Assignee
Tufts University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2000/016632 external-priority patent/WO2001098259A1/en
Application filed by Tufts University filed Critical Tufts University
Priority to US09/882,505 priority Critical patent/US20020132798A1/en
Publication of US20020132798A1 publication Critical patent/US20020132798A1/en
Assigned to TRUSTEES OF TUFTS COLLEGE reassignment TRUSTEES OF TUFTS COLLEGE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NELSON, MARK L.
Priority to US10/819,343 priority patent/US20050119235A1/en
Priority to US11/706,111 priority patent/US7521437B2/en
Priority to US12/425,852 priority patent/US7851460B2/en
Priority to US12/967,906 priority patent/US8168810B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/24Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton
    • C07C237/26Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/44Naphthacenes; Hydrogenated naphthacenes
    • C07C2603/461,4,4a,5,5a,6,11,12a- Octahydronaphthacenes, e.g. tetracyclines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • New tetracycline analogues have also been investigated which may prove to be equal to or more effective than the originally introduced tetracycline compounds. Examples include U.S. Pat. Nos. 3,957,980; 3,674,859; 2,980,584; 2,990,331; 3,062,717; 3,557,280; 4,018,889; 4,024,272; 4,126,680; 3,454,697; and 3,165,531. These patents are representative of the range of pharmaceutically active tetracycline and tetracycline analogue compositions.
  • the invention pertains to 7-substituted tetracycline compounds of the formula:
  • R 4 and R 4′ are each alkyl
  • R 5 is hydrogen, hydroxyl, or a prodrug moiety
  • R 6 and R 6′ are each independently hydrogen, hydroxyl, alkyl, or taken together, alkenyl;
  • R 7 is halo substituted or unsubstituted phenyl
  • R 7 is mono-, di-, or tri-halo substituted phenyl.
  • R 7 is 2-halo substituted phenyl.
  • R 7 is 3-halo substituted phenyl.
  • R 7 is 4-halo substituted phenyl.
  • the invention also pertains to a method for treating a tetracycline responsive state in a mammal, by administering to a mammal a compound of formula I.
  • the invention relates to the use of a compound of formula I to treat a tetracycline responsive state.
  • the invention also pertains to pharmaceutical compositions comprising a compound of formula I, and to the use of a compound of formula I in the manufacture of a medicament to treat a tetracycline responsive state.
  • the invention pertains to 7-substituted tetracycline compounds of the formula:
  • R 4 and R 4 ′ are each alkyl
  • R 5 is hydrogen, hydroxyl, or a prodrug moiety
  • R 6 and R 6 ′ are each independently hydrogen, hydroxyl, alkyl, or taken together, alkenyl;
  • R 7 is halo substituted or unsubstituted phenyl
  • R 7 is mono-, di-, or tri-halo substituted phenyl.
  • R 7 is 2-halo substituted phenyl.
  • R 7 is 3-halo substituted phenyl.
  • R 7 is 4-halo substituted phenyl.
  • tetracycline compound includes compounds with a similar ring structure to tetracycline, such as those included in formula I.
  • Some examples of tetracycline compounds which can be modified to include a substituent at position 7 include tetracycline, oxytetracycline, demeclocycline, methacycline, sancycline, and doxycycline; however, other derivatives and analogues comprising a similar ring structure are also included.
  • Table 1 depicts tetracycline and several known tetracycline derivatives. TABLE I
  • the term “7-substituted tetracycline compounds” includes tetracycline compounds with a phenyl substituent at the 7 position.
  • the substituted tetracycline compound is substituted tetracycline (e.g., wherein R 4 and R 4 ′ are methyl, R 5 is hydrogen, R 6 is methyl and R 6 ′ is hydroxyl); substituted doxycycline (e.g., wherein R 4 and R 4′ are methyl, R 5 is hydroxyl R 6 is methyl and R 6 ′ is hydrogen); or substituted sancycline (wherein R 4 and R 4 ′ are methyl; R 5 is hydrogen and R 6 and R 6 ′ are hydrogen atoms).
  • the compound is a derivative of tetracycline, sancycline, doxycycline, oxytetracycline, or methacycline.
  • R 5 , R 6 and R 6′ are each hydrogen and R 4 and R 4 ′ are each methyl.
  • R 7 is unsubstituted phenyl. Examples of tetracycline compounds with this R 7 substituent include 7-phenyl sancycline and 7,9 diphenyl sancycline.
  • R 7 is halo substituted phenyl.
  • the halo substituent can be, for example, chlorine, fluorine, bromine, or iodine, as well as mono-, di- or tri-halo substituted lower alkyl group, e.g., mono-, di- or tri-halo substituted methyl.
  • the halo substitution of the phenyl substituent enhances the ability of the tetracycline compound to perform its intended function, e.g., treat tetracycline responsive states.
  • R 7 is mono-, di-, or tri-halo substituted phenyl.
  • the 7-substituted tetracycline compound is 7-(2,4-difluorophenyl) sancycline, 7-(2,4-dichlorophenyl) sancycline, 7-(2,4-dibromophenyl) sancycline, or 7-(2,4-diiodophenyl) sancycline.
  • the 7-substituted tetracycline compound is 7-(2,6-difluorophenyl) sancycline, 7-(2,6-dichlorophenyl) sancycline, 7-(2,6-dibromophenyl) sancycline, or 7-(2,6-diiodophenyl) sancycline.
  • R 7 is 2-halo substituted phenyl, e.g., 7-(2-fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, or 7-(2-iodophenyl) sancycline.
  • R 7 is 3-halo substituted phenyl, e.g., 7-(3-fluorophenyl) sancycline, 7-(3-chlorophenyl) sancycline, 7-(3-bromophenyl) sancycline, or 7-(3-iodophenyl) sancycline.
  • R 7 is 4-halo substituted phenyl, e.g., 7-(4-fluorophenyl) sancycline, 7-(4-chlorophenyl) sancycline, 7-(4-bromophenyl) sancycline, or 7-(4-iodophenyl) sancycline.
  • R 7 is a mono-, di-, or tri-substituted phenyl where the substituent is a mono-, di- or tri-halo substituted lower alkyl group, e.g., mono-, di- or tri-halo substituted methyl.
  • the compound may be 7-(4-trichloromethylphenyl) sancycline, 7-(4-trifluoromethylphenyl) sancycline, 7-(4-tribromomethylphenyl) sancycline, or 7-(4-triiodomethylphenyl) sancycline.
  • the 7-substituted compounds of the invention can be synthesized by methods known in the art and/or as described herein.
  • Scheme 1 a general synthetic scheme is outlined using a Suzuki coupling of a boronic acid with an iodo tetracycline compound. Although the reaction is shown for sancycline, a similar procedure can be used for other tetracycline compounds. Furthermore, other aryl coupling reactions known in the art may also be used.
  • an iodosancycline compound can be synthesized from unsubstituted sancycline by treating it with at least one equivalent N-iodosuccinimide (NIS) under acidic conditions. The reaction is then quenched, and the resulting 7-iodosancycline can then be purified using standard techniques known in the art. The 7-iodosancycline can then be further reacted with a boronic acid, as shown in Scheme 1. 7-iodosancycline, a palladium catalyst (such as Pd(OAc) 2 ), is dissolved in a solvent and treated with aqueous sodium carbonate, and the boronic acid. The resulting compound can then be purified using techniques known in the art such as preparative HPLC and characterized.
  • NIS N-iodosuccinimide
  • the compounds of the invention can also be synthesized using Stille cross couplings. Stille cross couplings can be performed using an appropriate tin reagent (e.g., R—SnBu 3 ) and a halogenated tetracycline compound, (e.g., 7-iodosancycline).
  • the tin reagent and the iodotetracycline compound can be treated with a palladium catalyst (e.g., Pd(PPh 3 ) 2 Cl 2 or Pd(AsPh 3 ) 2 Cl 2 ) and, optionally, with an additional copper salt, e.g., CuI.
  • the resulting compound can then be purified using techniques known in the art. The synthesis of the compounds of the invention are described in more detail in Example 1.
  • alkyl includes saturated aliphatic groups, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), branched-chain alkyl groups (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl (alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups.
  • straight-chain alkyl groups e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl,
  • alkyl further includes alkyl groups, which comprise oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone.
  • a straight chain or branched chain alkyl has 6 or fewer carbon atoms in its backbone (e.g., C 1 -C 6 for straight chain, C 3 -C 6 for branched chain), and more preferably 4 or fewer.
  • preferred cycloalkyls have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure.
  • C 1 -C 6 includes alkyl groups containing 1 to 6 carbon atoms.
  • alkyl includes both “unsubstituted alkyls” and “substituted alkyls”, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
  • substituents can include, for example, alkyl, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxy
  • Cycloalkyls can be further substituted, e.g., with the substituents described above.
  • An “alkylaryl” or an “aralkyl” moiety is an alkyl substituted with an aryl (e.g., phenylmethyl (benzyl)).
  • the term “alkyl” also includes the side chains of natural and unnatural amino acids.
  • aryl includes groups with aromaticity, including 5- and 6-membered single-ring aromatic groups that may include from zero to four heteroatoms as well as multicyclic systems with at least one aromatic ring.
  • aryl groups include benzene, phenyl, pyrrole, furan, thiophene, thiazole, isothiazole, imidazole, triazole, tetrazole, pyrazole, oxazole, isooxazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like.
  • aryl includes multicyclic aryl groups, e.g., tricyclic, bicyclic, e.g., naphthalene, benzoxazole, benzodioxazole, benzothiazole, benzoimidazole, benzothiophene, methylenedioxyphenyl, quinoline, isoquinoline, napthridine, indole, benzofuran, purine, benzofuran, deazapurine, or indolizine.
  • aryl groups having heteroatoms in the ring structure may also be referred to as “aryl heterocycles”, “heterocycles,” “heteroaryls” or “heteroaromatics”.
  • the aromatic ring can be substituted at one or more ring positions with such substituents as described above, as for example, halogen, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkylaminocarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and
  • alkenyl includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double bond.
  • alkenyl includes straight-chain alkenyl groups (e.g., ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, etc.), branched-chain alkenyl groups, cycloalkenyl (alicyclic) groups (cyclopropenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl), alkyl or alkenyl substituted cycloalkenyl groups, and cycloalkyl or cycloalkenyl substituted alkenyl groups.
  • alkenyl includes straight-chain alkenyl groups (e.g., ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, de
  • alkenyl further includes alkenyl groups which include oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone.
  • a straight chain or branched chain alkenyl group has 6 or fewer carbon atoms in its backbone (e.g., C 2 -C 6 for straight chain, C 3 -C 6 for branched chain).
  • cycloalkenyl groups may have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure.
  • C 2 -C 6 includes alkenyl groups containing 2 to 6 carbon atoms.
  • alkenyl includes both “unsubstituted alkenyls” and “substituted alkenyls”, the latter of which refers to alkenyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
  • substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate,
  • alkynyl includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but which contain at least one triple bond.
  • alkynyl includes straight-chain alkynyl groups (e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.), branched-chain alkynyl groups, and cycloalkyl or cycloalkenyl substituted alkynyl groups.
  • alkynyl further includes alkynyl groups which include oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone.
  • a straight chain or branched chain alkynyl group has 6 or fewer carbon atoms in its backbone (e.g., C 2 -C 6 for straight chain, C 3 -C 6 for branched chain).
  • the term C 2 -C 6 includes alkynyl groups containing 2 to 6 carbon atoms.
  • alkynyl includes both “unsubstituted alkynyls” and “substituted alkynyls”, the latter of which refers to alkynyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
  • substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate,
  • lower alkyl as used herein means an alkyl group, as defined above, but having from one to five carbon atoms in its backbone structure.
  • Lower alkenyl and “lower alkynyl” have chain lengths of, for example, 2-5 carbon atoms.
  • acyl includes compounds and moieties which contain the acyl radical (CH 3 CO—) or a carbonyl group.
  • substituted acyl includes acyl groups where one or more of the hydrogen atoms are replaced by for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonyla
  • acylamino includes moieties wherein an acyl moiety is bonded to an amino group.
  • the term includes alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido groups.
  • aroyl includes compounds and moieties with an aryl or heteroaromatic moiety bound to a carbonyl group. Examples of aroyl groups include phenylcarboxy, naphthyl carboxy, etc.
  • alkoxyalkyl examples include alkyl groups, as described above, which further include oxygen, nitrogen or sulfur atoms replacing one or more carbons of the hydrocarbon backbone, e.g., oxygen, nitrogen or sulfur atoms.
  • alkoxy includes substituted and unsubstituted alkyl, alkenyl, and alkynyl groups covalently linked to an oxygen atom.
  • alkoxy groups include methoxy, ethoxy, isopropyloxy, propoxy, butoxy, and pentoxy groups.
  • substituted alkoxy groups include halogenated alkoxy groups.
  • the alkoxy groups can be substituted with groups such as alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxy
  • amine or “amino” includes compounds where a nitrogen atom is covalently bonded to at least one carbon or heteroatom.
  • alkylamino includes groups and compounds wherein the nitrogen is bound to at least one additional alkyl group.
  • dialkylamino includes groups wherein the nitrogen atom is bound to at least two additional alkyl groups.
  • arylamino and “diarylamino” include groups wherein the nitrogen is bound to at least one or two aryl groups, respectively.
  • alkylarylamino “alkylaminoaryl” or “arylaminoalkyl” refers to an amino group which is bound to at least one alkyl group and at least one aryl group.
  • alkaminoalkyl refers to an alkyl, alkenyl, or alkynyl group bound to a nitrogen atom which is also bound to an alkyl group.
  • amide or “aminocarboxy” includes compounds or moieties which contain a nitrogen atom which is bound to the carbon of a carbonyl or a thiocarbonyl group.
  • alkaminocarboxy groups which include alkyl, alkenyl, or alkynyl groups bound to an amino group bound to a carboxy group. It includes arylaminocarboxy groups which include aryl or heteroaryl moieties bound to an amino group which is bound to the carbon of a carbonyl or thiocarbonyl group.
  • alkylaminocarboxy “alkenylaminocarboxy,” “alkynylaminocarboxy,” and “arylaminocarboxy” include moieties wherein alkyl, alkenyl, alkynyl and aryl moieties, respectively, are bound to a nitrogen atom which is in turn bound to the carbon of a carbonyl group.
  • carbonyl or “carboxy” includes compounds and moieties which contain a carbon connected with a double bond to an oxygen atom.
  • moieties which contain a carbonyl include aldehydes, ketones, carboxylic acids, amides, esters, anhydrides, etc.
  • thiocarbonyl or “thiocarboxy” includes compounds and moieties which contain a carbon connected with a double bond to a sulfur atom.
  • ether includes compounds or moieties which contain an oxygen bonded to two different carbon atoms or heteroatoms.
  • alkoxyalkyl which refers to an alkyl, alkenyl, or alkynyl group covalently bonded to an oxygen atom which is covalently bonded to another alkyl group.
  • esters includes compounds and moieties which contain a carbon or a heteroatom bound to an oxygen atom which is bonded to the carbon of a carbonyl group.
  • ester includes alkoxycarboxy groups such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, etc.
  • alkyl, alkenyl, or alkynyl groups are as defined above.
  • thioether includes compounds and moieties which contain a sulfur atom bonded to two different carbon or hetero atoms.
  • Examples of thioethers include, but are not limited to alkthioalkyls, alkthioalkenyls, and alkthioalkynyls.
  • alkthioalkyls include compounds with an alkyl, alkenyl, or alkynyl group bonded to a sulfur atom which is bonded to an alkyl group.
  • alkthioalkenyls and “alkthioalkynyls” refer to compounds or moieties wherein an alkyl, alkenyl, or alkynyl group is bonded to a sulfur atom which is covalently bonded to an alkynyl group.
  • hydroxy or “hydroxyl” includes groups with an —OH or —O ⁇ .
  • halogen includes fluorine, bromine, chlorine, iodine, etc.
  • perhalogenated generally refers to a moiety wherein all hydrogens are replaced by halogen atoms.
  • polycyclyl or “polycyclic radical” refer to two or more cyclic rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls) in which two or more carbons are common to two adjoining rings. Rings that are joined through non-adjacent atoms are termed “bridged” rings.
  • Each of the rings of the polycycle can be substituted with such substituents as described above, as for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, alkylaminocarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, alkenylcarbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and urei
  • heteroatom includes atoms of any element other than carbon or hydrogen. Examples of heteroatoms include nitrogen, oxygen, sulfur and phosphorus.
  • the structure of some of the compounds of this invention includes asymmetric carbon atoms. It is to be understood accordingly that the isomers arising from such asymmetry (e.g., all enantiomers and diastereomers) are included within the scope of this invention, unless indicated otherwise. Such isomers can be obtained in substantially pure form by classical separation techniques and by stereochemically controlled synthesis. Furthermore, the structures and other compounds and moieties discussed in this application also include all tautomers thereof.
  • Prodrugs are compounds which are converted in vivo to active forms (see, e.g., R. B. Silverman, 1992, “The Organic Chemistry of Drug Design and Drug Action”, Academic Press, Chp. 8). Prodrugs can be used to alter the biodistribution (e.g., to allow compounds which would not typically enter the reactive site of the protease) or the pharmacokinetics for a particular compound. For example, a hydroxyl group, can be esterified, e.g., with a carboxylic acid group to yield an ester. When the ester is administered to a subject, the ester is cleaved, enzymatically or non-enzymatically, reductively or hydrolytically, to reveal the hydroxyl group.
  • prodrug moiety includes moieties which can be metabolized in vivo to yield an active drug.
  • the prodrugs moieties are metabolized in vivo by esterases or by other mechanisms to hydroxyl groups or other advantageous groups.
  • Examples of prodrugs and their uses are well known in the art (See, e.g., Berge et al. (1977) “Pharmaceutical Salts”, J. Pharm. Sci. 66:1-19).
  • the prodrugs can be prepared in situ during the final isolation and purification of the compounds, or by separately reacting the purified compound in its free acid form or hydroxyl with a suitable esterifying agent. Hydroxyl groups can be converted into esters via treatment with a carboxylic acid.
  • prodrug moieties include substituted and unsubstituted, branch or unbranched lower alkyl ester moieties, (e.g., propionoic acid esters), lower alkenyl esters, di-lower alkyl-amino lower-alkyl esters (e.g., dimethylaminoethyl ester), acylamino lower alkyl esters (e.g., acetyloxymethyl ester), acyloxy lower alkyl esters (e.g., pivaloyloxymethyl ester), aryl esters (phenyl ester), aryl-lower alkyl esters (e.g., benzyl ester), substituted (e.g., with methyl, halo, or methoxy substituents) aryl and aryl-lower alkyl esters, amides, lower-alkyl amides, di-lower alkyl amides, and hydroxy amides.
  • the invention also features a method for treating a tetracycline compound responsive state in a subject, by administering to the subject a 7-substituted tetracycline compound of the invention, e.g., a compound of formula I. Preferably, an effective amount of the tetracycline compound is administered.
  • a 7-substituted tetracycline compound of the invention e.g., a compound of formula I.
  • an effective amount of the tetracycline compound is administered.
  • Examples of 7-substituted tetracycline compounds of the invention include 7-phenyl sancycline, 7,9 diphenyl sancycline, 7-(2-fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, 7-(2-iodophenyl) sancycline, 7-(3-fluorophenyl) sancycline, 7-(3-chlorophenyl) sancycline, 7-(3-bromophenyl) sancycline, 7-(3-iodophenyl) sancycline, 7-(4-fluorophenyl) sancycline, 7-(4-chlorophenyl) sancycline, 7-(4-bromophenyl) sancycline, 7-(4-iodophenyl) s
  • tetracycline compound responsive state includes states which can be treated, prevented, or otherwise ameliorated by the administration of a tetracycline compound of the invention.
  • Tetracycline compound responsive states include bacterial infections (including those which are resistant to other tetracycline compounds), cancer, diabetes, and other states for which tetracycline compounds have been found to be active (see, for example, U.S. Pat. Nos. 5,789,395; 5,834,450; and 5,532,227).
  • Compounds of the invention can be used to prevent or control important mammalian and veterinary diseases such as diarrhea, urinary tract infections, infections of skin and skin structure, ear, nose and throat infections, wound infection, mastitis and the like.
  • methods for treating neoplasms using tetracycline compounds of the invention are also included (van der Bozert et al., Cancer Res., 48:6686-6690 (1988)).
  • Bacterial infections may be caused by a wide variety of gram positive and gram negative bacteria.
  • the compounds of the invention are useful as antibiotics against organisms which are resistant to other tetracycline compounds.
  • the antibiotic activity of the tetracycline compounds of the invention may be determined using the method discussed in Example 2, or by using the in vitro standard broth dilution method described in Waitz, J. A., National Commission for Clinical Laboratory Standards, Document M 7- A 2, vol. 10, no. 8, pp. 13-20, 2 nd edition, Villanova, Pa. (1990).
  • the tetracycline compounds may also be used to treat infections traditionally treated with tetracycline compounds such as, for example, rickettsiae; a number of gram-positive and gram-negative bacteria; and the agents responsible for lymphogranuloma venereum, inclusion conjunctivitis, psittacosis.
  • the tetracycline compounds may be used to treat infections of, e.g., K. pneumoniae, Salmonella, E. hirae, A. baumanii, B. catarrhalis, H. influenzae, P. aeruginosa, E. faecium, E. coli, S. aureus or E. faecalis.
  • the tetracycline compound is used to treat a bacterial infection that is resistant to other tetracycline antibiotic compounds.
  • the tetracycline compound of the invention may be administered with a pharmaceutically acceptable carrier.
  • the language “effective amount” of the compound is that amount necessary or sufficient to treat or prevent a tetracycline compound responsive state.
  • the effective amount can vary depending on such factors as the size and weight of the subject, the type of illness, or the particular tetracycline compound. For example, the choice of the tetracycline compound can affect what constitutes an “effective amount”.
  • One of ordinary skill in the art would be able to study the aforementioned factors and make the determination regarding the effective amount of the tetracycline compound without undue experimentation.
  • the invention also pertains to methods of treatment against microorganism infections and associated diseases.
  • the methods include administration of an effective amount of one or more tetracycline compounds to a subject.
  • the subject can be either a plant or, advantageously, an animal, e.g., a mammal, e.g., a human.
  • one or more tetracycline compounds of the invention may be administered alone to a subject, or more typically a compound of the invention will be administered as part of a pharmaceutical composition in mixture with conventional excipient, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral, oral or other desired administration and which do not deleteriously react with the active compounds and are not deleterious to the recipient thereof.
  • conventional excipient i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral, oral or other desired administration and which do not deleteriously react with the active compounds and are not deleterious to the recipient thereof.
  • the pharmaceutical composition comprises a 7-substituted tetracycline compound of the invention, e.g., of formula I.
  • the 7-substituted tetracycline compound is 7-phenyl sancycline, 7, 9 diphenyl sancycline, 7-(2-fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, 7-(2-iodophenyl) sancycline, 7-(3-fluorophenyl) sancycline, 7-(3-chlorophenyl) sancycline, 7-(3-bromophenyl) sancycline, 7-(3-iodophenyl) sancycline, 7-(4-fluorophenyl) sancycline, 7-(4-fluorophenyl) sancycline, 7
  • pharmaceutically acceptable carrier includes substances capable of being coadministered with the tetracycline compound(s), and which allow both to perform their intended function, e.g., treat or prevent a tetracycline compound responsive state.
  • Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions, alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethyl-cellulose, polyvinylpyrrolidone, etc.
  • the pharmaceutical preparations can be sterilized and if desired mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously react with the active compounds of the invention.
  • auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously react with the active compounds of the invention.
  • the tetracycline compounds of the invention that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids.
  • the acids that may be used to prepare pharmaceutically acceptable acid addition salts of the tetracycline compounds of the invention that are basic in nature are those that form non-toxic acid addition salts, i.e., salts containing pharmaceutically acceptable anions, such as the hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, acid citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfon
  • salts must be pharmaceutically acceptable for administration to a subject, e.g., a mammal
  • the acid addition salts of the base compounds of this invention are readily prepared by treating the base compound with a substantially equivalent amount of the chosen mineral or organic acid in an aqueous solvent medium or in a suitable organic solvent, such as methanol or ethanol. Upon careful evaporation of the solvent, the desired solid salt is readily obtained.
  • the preparation of other tetracycline compounds of the invention not specifically described in the foregoing experimental section can be accomplished using combinations of the reactions described above that will be apparent to those skilled in the art.
  • the tetracycline compounds of the invention that are acidic in nature are capable of forming a wide variety of base salts.
  • the chemical bases that may be used as reagents to prepare pharmaceutically acceptable base salts of those tetracycline compounds of the invention that are acidic in nature are those that form non-toxic base salts with such compounds.
  • Such non-toxic base salts include, but are not limited to those derived from such pharmaceutically acceptable cations such as alkali metal cations (e.g., potassium and sodium) and alkaline earth metal cations (e.g., calcium and magnesium), ammonium or water-soluble amine addition salts such as N-methylglucamine-(meglumine), and the lower alkanolammonium and other base salts of pharmaceutically acceptable organic amines.
  • the pharmaceutically acceptable base addition salts of tetracycline compounds of the invention that are acidic in nature may be formed with pharmaceutically acceptable cations by conventional methods.
  • these salts may be readily prepared by treating the tetracycline compound of the invention with an aqueous solution of the desired pharmaceutically acceptable cation and evaporating the resulting solution to dryness, preferably under reduced pressure.
  • a lower alkyl alcohol solution of the tetracycline compound of the invention may be mixed with an alkoxide of the desired metal and the solution subsequently evaporated to dryness.
  • tetracycline compounds of the invention and pharmaceutically acceptable salts thereof can be administered via either the oral, parenteral or topical routes.
  • these compounds are most desirably administered in effective dosages, depending upon the weight and condition of the subject being treated and the particular route of administration chosen. Variations may occur depending upon the species of the subject being treated and its individual response to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval at which such administration is carried out.
  • compositions of the invention may be administered alone or in combination with other known compositions for treating tetracycline responsive states in a mammal.
  • Preferred mammals include pets (e.g., cats, dogs, ferrets, etc.), farm animals (cows, sheep, pigs, horses, goats, etc.), lab animals (rats, mice, monkeys, etc.), and primates (chimpanzees, humans, gorillas).
  • the language “in combination with” a known composition is intended to include simultaneous administration of the composition of the invention and the known composition, administration of the composition of the invention first, followed by the known composition and administration of the known composition first, followed by the composition of the invention. Any of the therapeutically composition known in the art for treating tetracycline responsive states can be used in the methods of the invention.
  • the compounds of the invention may be administered alone or in combination with pharmaceutically acceptable carriers or diluents by any of the routes previously mentioned, and the administration may be carried out in single or multiple doses.
  • the novel therapeutic agents of this invention can be administered advantageously in a wide variety of different dosage forms, i.e., they may be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges, troches, hard candies, powders, sprays, creams, salves, suppositories, jellies, gels, pastes, lotions, ointments, aqueous suspensions, injectable solutions, elixirs, syrups, and the like.
  • Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents, etc.
  • oral pharmaceutical compositions can be suitably sweetened and/or flavored.
  • the therapeutically-effective compounds of this invention are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight.
  • tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia.
  • disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia.
  • lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes.
  • compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols.
  • preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols.
  • the active ingredient may be combined with various sweetening or flavoring agents, coloring matter or dyes, and, if so desired, emulsifying and/or suspending agents as well, together with such diluents as water, ethanol, propylene glycol, glycerin and various like combinations thereof.
  • solutions of a therapeutic compound of the present invention in either sesame or peanut oil or in aqueous propylene glycol may be employed.
  • the aqueous solutions should be suitably buffered (preferably pH greater than 8) if necessary and the liquid diluent first rendered isotonic.
  • These aqueous solutions are suitable for intravenous injection purposes.
  • the oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.
  • suitable preparations include solutions, preferably oily or aqueous solutions as well as suspensions, emulsions, or implants, including suppositories.
  • Therapeutic compounds may be formulated in sterile form in multiple or single dose formats such as being dispersed in a fluid carrier such as sterile physiological saline or 5% saline dextrose solutions commonly used with injectables.
  • topical administration examples include transdermal, buccal or sublingual application.
  • therapeutic compounds can be suitably admixed in a pharmacologically inert topical carrier such as a gel, an ointment, a lotion or a cream.
  • topical carriers include water, glycerol, alcohol, propylene glycol, fatty alcohols, triglycerides, fatty acid esters, or mineral oils.
  • topical carriers are liquid petrolatum, isopropylpalmitate, polyethylene glycol, ethanol 95%, polyoxyethylene monolauriate 5% in water, sodium lauryl sulfate 5% in water, and the like.
  • materials such as anti-oxidants, humectants, viscosity stabilizers and the like also may be added if desired.
  • tablets, dragees or capsules having talc and/or carbohydrate carrier binder or the like the carrier preferably being lactose and/or corn starch and/or potato starch.
  • a syrup, elixir or the like can be used wherein a sweetened vehicle is employed.
  • Sustained release compositions can be formulated including those wherein the active component is protected with differentially degradable coatings, e.g., by microencapsulation, multiple coatings, etc.
  • the therapeutic methods of the invention also will have significant veterinary applications, e.g. for treatment of livestock such as cattle, sheep, goats, cows, swine and the like; poultry such as chickens, ducks, geese, turkeys and the like; horses; and pets such as dogs and cats.
  • livestock such as cattle, sheep, goats, cows, swine and the like
  • poultry such as chickens, ducks, geese, turkeys and the like
  • horses such as dogs and cats.
  • the compounds of the invention may be used to treat non-animal subjects, such as plants.
  • compounds of the invention for treatment can be administered to a subject in dosages used in prior tetracycline therapies. See, for example, the Physicians' Desk Reference.
  • a suitable effective dose of one or more compounds of the invention will be in the range of from 0.01 to 100 milligrams per kilogram of body weight of recipient per day, preferably in the range of from 0.1 to 50 milligrams per kilogram body weight of recipient per day, more preferably in the range of 1 to 20 milligrams per kilogram body weight of recipient per day.
  • the desired dose is suitably administered once daily, or several sub-doses, e.g. 2 to 5 sub-doses, are administered at appropriate intervals through the day, or other appropriate schedule.
  • the invention also pertains to the use of a tetracycline compound of formula I, for the preparation of a medicament.
  • the medicament may include a pharmaceutically acceptable carrier and the tetracycline compound is an effective amount, e.g., an effective amount to treat a tetracycline responsive state.
  • the invention also pertains to the use of a tetracycline compound of formula I to treat a tetracycline responsive state, e.g., in a subject, e.g., a mammal, e.g., a human.
  • N-iodosuccinimide N-iodosuccinimide
  • the reaction is removed from the ice bath.
  • the mixture analyzed by HPLC or TLC, show the product of D-ring iodotetracyclines.
  • the sulfuric acid was dripped slowly 1 L of ice water and extracted 7 times with 300 mL of n-butanol. The solvent was removed in vacuo to produce a mixture of three products.
  • the 7-iodo regioisomer, 9-regioisomer and 7,9-diiodosancycline derivative of sancycline were purified by preparative HPLC chromatography or by methods known in the art.
  • Rt Hypersil C 18 BDS Column: 7 and 9 isomer mixture: in the ratio 40:60 for position 9/position 7
  • the solid was dissolved in dimethylformamide and injected onto a preparative HPLC system using C18 reverse-phase silica. The fraction at 39 minutes was isolated, and the solvent removed in vacuo to yield the product plus salts. The salts were removed by extraction into 50:25:25 water:butanol:ethyl acetate, and dried in vacuo. This solid was dissolved in MeOH and the HCl salt made by bubbling in HCl gas. The solvent was removed to produce the product in 57% yield as a yellow solid.
  • the solid was dissolved in dimethylformamide and injected onto a preparative HPLC system using C18 reverse-phase silica. The fraction at 19-20 minutes was isolated, and the solvent removed in vacuo to yield the product plus salts. The salts were removed by extraction into 50:25:25 water:butanol:ethyl acetate and dried in vacuo. This solid was dissolved in MeOH and the HCl salt made by bubbling in HCl gas. The solvent was removed to produce the product in 47% yield as a yellow solid.

Abstract

7-phenyl-substituted tetracycline compounds, methods of treating tetracycline responsive states, and pharmaceutical compositions containing the 7-phenyl-substituted tetracycline compounds are described.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application Serial No. 60/212,470, entitled “7-Phenyl Substituted Tetracycline Compounds,” filed on Jun. 16, 2000, the entire contents of which are hereby incorporated herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • The development of the tetracycline antibiotics was the direct result of a systematic screening of soil specimens collected from many parts of the world for evidence of microorganisms capable of producing bacteriocidal and/or bacteriostatic compositions. The first of these novel compounds was introduced in 1948 under the name chlortetracycline. Two years later, oxytetracycline became available. The elucidation of the chemical structure of these compounds confirmed their similarity and furnished the analytical basis for the production of a third member of this group in 1952, tetracycline. A new family of tetracycline compounds, without the ring-attached methyl group present in earlier tetracyclines, was prepared in 1957 and became publicly available in 1967; and minocycline was in use by 1972. [0002]
  • Recently, research efforts have focused on developing new tetracycline antibiotic compositions effective under varying therapeutic conditions and routes of administration. New tetracycline analogues have also been investigated which may prove to be equal to or more effective than the originally introduced tetracycline compounds. Examples include U.S. Pat. Nos. 3,957,980; 3,674,859; 2,980,584; 2,990,331; 3,062,717; 3,557,280; 4,018,889; 4,024,272; 4,126,680; 3,454,697; and 3,165,531. These patents are representative of the range of pharmaceutically active tetracycline and tetracycline analogue compositions. [0003]
  • Historically, soon after their initial development and introduction, the tetracyclines were found to be highly effective pharmacologically against rickettsiae; a number of gram-positive and gram-negative bacteria; and the agents responsible for lymphogranuloma venereum, inclusion conjunctivitis, and psittacosis. Hence, tetracyclines became known as “broad spectrum” antibiotics. With the subsequent establishment of their in vitro antimicrobial activity, effectiveness in experimental infections, and pharmacological properties, the tetracyclines as a class rapidly became widely used for therapeutic purposes. However, this widespread use of tetracyclines for both major and minor illnesses and diseases led directly to the emergence of resistance to these antibiotics even among highly susceptible bacterial species both commensal and pathogenic (e.g., pneumococci and Salmonella). The rise of tetracycline-resistant organisms has resulted in a general decline in use of tetracyclines and tetracycline analogue compositions as antibiotics of choice. [0004]
  • SUMMARY OF THE INVENTION
  • The invention pertains to 7-substituted tetracycline compounds of the formula: [0005]
    Figure US20020132798A1-20020919-C00001
  • wherein: [0006]
  • R[0007] 4 and R4′ are each alkyl;
  • R[0008] 5 is hydrogen, hydroxyl, or a prodrug moiety;
  • R[0009] 6 and R6′ are each independently hydrogen, hydroxyl, alkyl, or taken together, alkenyl;
  • R[0010] 7 is halo substituted or unsubstituted phenyl; and
  • pharmaceutically acceptable salts thereof. In another embodiment, R[0011] 7 is mono-, di-, or tri-halo substituted phenyl. In another embodiment, R7 is 2-halo substituted phenyl. In yet another embodiment, R7 is 3-halo substituted phenyl. In a further embodiment, R7 is 4-halo substituted phenyl.
  • The invention also pertains to a method for treating a tetracycline responsive state in a mammal, by administering to a mammal a compound of formula I. In another aspect, the invention relates to the use of a compound of formula I to treat a tetracycline responsive state. The invention also pertains to pharmaceutical compositions comprising a compound of formula I, and to the use of a compound of formula I in the manufacture of a medicament to treat a tetracycline responsive state. [0012]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention pertains to 7-substituted tetracycline compounds of the formula: [0013]
    Figure US20020132798A1-20020919-C00002
  • (I) [0014]
  • wherein: [0015]
  • R[0016] 4 and R4′ are each alkyl;
  • R[0017] 5 is hydrogen, hydroxyl, or a prodrug moiety;
  • R[0018] 6and R6′ are each independently hydrogen, hydroxyl, alkyl, or taken together, alkenyl;
  • R[0019] 7 is halo substituted or unsubstituted phenyl; and
  • pharmaceutically acceptable salts thereof. In another embodiment, R[0020] 7 is mono-, di-, or tri-halo substituted phenyl. In another embodiment, R7 is 2-halo substituted phenyl. In yet another embodiment, R7 is 3-halo substituted phenyl. In a further embodiment, R7 is 4-halo substituted phenyl.
  • The term “tetracycline compound” includes compounds with a similar ring structure to tetracycline, such as those included in formula I. Some examples of tetracycline compounds which can be modified to include a substituent at position 7 include tetracycline, oxytetracycline, demeclocycline, methacycline, sancycline, and doxycycline; however, other derivatives and analogues comprising a similar ring structure are also included. Table 1 depicts tetracycline and several known tetracycline derivatives. [0021]
    TABLE I
    Figure US20020132798A1-20020919-C00003
    Figure US20020132798A1-20020919-C00004
    Figure US20020132798A1-20020919-C00005
    Figure US20020132798A1-20020919-C00006
    Figure US20020132798A1-20020919-C00007
    Figure US20020132798A1-20020919-C00008
    Figure US20020132798A1-20020919-C00009
  • The term “7-substituted tetracycline compounds” includes tetracycline compounds with a phenyl substituent at the 7 position. In an embodiment, the substituted tetracycline compound is substituted tetracycline (e.g., wherein R[0022] 4 and R4′ are methyl, R5 is hydrogen, R6 is methyl and R6′ is hydroxyl); substituted doxycycline (e.g., wherein R4 and R4′ are methyl, R5 is hydroxyl R6 is methyl and R6′ is hydrogen); or substituted sancycline (wherein R4 and R4′ are methyl; R5 is hydrogen and R6 and R6′ are hydrogen atoms). In another embodiment, the compound is a derivative of tetracycline, sancycline, doxycycline, oxytetracycline, or methacycline. In one embodiment, R5, R6 and R6′ are each hydrogen and R4 and R4′ are each methyl. In yet another further embodiment, R7 is unsubstituted phenyl. Examples of tetracycline compounds with this R7 substituent include 7-phenyl sancycline and 7,9 diphenyl sancycline.
  • In yet another embodiment, R[0023] 7is halo substituted phenyl. The halo substituent can be, for example, chlorine, fluorine, bromine, or iodine, as well as mono-, di- or tri-halo substituted lower alkyl group, e.g., mono-, di- or tri-halo substituted methyl. In certain embodiments, the halo substitution of the phenyl substituent enhances the ability of the tetracycline compound to perform its intended function, e.g., treat tetracycline responsive states.
  • In a further embodiment, R[0024] 7 is mono-, di-, or tri-halo substituted phenyl. In certain embodiments, the 7-substituted tetracycline compound is 7-(2,4-difluorophenyl) sancycline, 7-(2,4-dichlorophenyl) sancycline, 7-(2,4-dibromophenyl) sancycline, or 7-(2,4-diiodophenyl) sancycline. In other embodiments, the 7-substituted tetracycline compound is 7-(2,6-difluorophenyl) sancycline, 7-(2,6-dichlorophenyl) sancycline, 7-(2,6-dibromophenyl) sancycline, or 7-(2,6-diiodophenyl) sancycline.
  • In another embodiment, R[0025] 7 is 2-halo substituted phenyl, e.g., 7-(2-fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, or 7-(2-iodophenyl) sancycline.
  • In yet another embodiment, R[0026] 7 is 3-halo substituted phenyl, e.g., 7-(3-fluorophenyl) sancycline, 7-(3-chlorophenyl) sancycline, 7-(3-bromophenyl) sancycline, or 7-(3-iodophenyl) sancycline.
  • In further embodiment, R[0027] 7 is 4-halo substituted phenyl, e.g., 7-(4-fluorophenyl) sancycline, 7-(4-chlorophenyl) sancycline, 7-(4-bromophenyl) sancycline, or 7-(4-iodophenyl) sancycline.
  • In yet another embodiment, R[0028] 7 is a mono-, di-, or tri-substituted phenyl where the substituent is a mono-, di- or tri-halo substituted lower alkyl group, e.g., mono-, di- or tri-halo substituted methyl. For example, the compound may be 7-(4-trichloromethylphenyl) sancycline, 7-(4-trifluoromethylphenyl) sancycline, 7-(4-tribromomethylphenyl) sancycline, or 7-(4-triiodomethylphenyl) sancycline.
  • The 7-substituted compounds of the invention can be synthesized by methods known in the art and/or as described herein. In Scheme 1, a general synthetic scheme is outlined using a Suzuki coupling of a boronic acid with an iodo tetracycline compound. Although the reaction is shown for sancycline, a similar procedure can be used for other tetracycline compounds. Furthermore, other aryl coupling reactions known in the art may also be used. [0029]
    Figure US20020132798A1-20020919-C00010
  • As shown in Scheme 1, an iodosancycline compound can be synthesized from unsubstituted sancycline by treating it with at least one equivalent N-iodosuccinimide (NIS) under acidic conditions. The reaction is then quenched, and the resulting 7-iodosancycline can then be purified using standard techniques known in the art. The 7-iodosancycline can then be further reacted with a boronic acid, as shown in Scheme 1. 7-iodosancycline, a palladium catalyst (such as Pd(OAc)[0030] 2), is dissolved in a solvent and treated with aqueous sodium carbonate, and the boronic acid. The resulting compound can then be purified using techniques known in the art such as preparative HPLC and characterized.
  • The compounds of the invention can also be synthesized using Stille cross couplings. Stille cross couplings can be performed using an appropriate tin reagent (e.g., R—SnBu[0031] 3) and a halogenated tetracycline compound, (e.g., 7-iodosancycline). The tin reagent and the iodotetracycline compound can be treated with a palladium catalyst (e.g., Pd(PPh3)2Cl2 or Pd(AsPh3)2Cl2) and, optionally, with an additional copper salt, e.g., CuI. The resulting compound can then be purified using techniques known in the art. The synthesis of the compounds of the invention are described in more detail in Example 1.
  • The term “alkyl” includes saturated aliphatic groups, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), branched-chain alkyl groups (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl (alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. The term alkyl further includes alkyl groups, which comprise oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone. In certain embodiments, a straight chain or branched chain alkyl has 6 or fewer carbon atoms in its backbone (e.g., C[0032] 1-C6 for straight chain, C3-C6 for branched chain), and more preferably 4 or fewer. Likewise, preferred cycloalkyls have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure. The term C1-C6 includes alkyl groups containing 1 to 6 carbon atoms.
  • Moreover, the term alkyl includes both “unsubstituted alkyls” and “substituted alkyls”, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. Cycloalkyls can be further substituted, e.g., with the substituents described above. An “alkylaryl” or an “aralkyl” moiety is an alkyl substituted with an aryl (e.g., phenylmethyl (benzyl)). The term “alkyl” also includes the side chains of natural and unnatural amino acids. [0033]
  • The term “aryl” includes groups with aromaticity, including 5- and 6-membered single-ring aromatic groups that may include from zero to four heteroatoms as well as multicyclic systems with at least one aromatic ring. Examples of aryl groups include benzene, phenyl, pyrrole, furan, thiophene, thiazole, isothiazole, imidazole, triazole, tetrazole, pyrazole, oxazole, isooxazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like. Furthermore, the term “aryl” includes multicyclic aryl groups, e.g., tricyclic, bicyclic, e.g., naphthalene, benzoxazole, benzodioxazole, benzothiazole, benzoimidazole, benzothiophene, methylenedioxyphenyl, quinoline, isoquinoline, napthridine, indole, benzofuran, purine, benzofuran, deazapurine, or indolizine. Those aryl groups having heteroatoms in the ring structure may also be referred to as “aryl heterocycles”, “heterocycles,” “heteroaryls” or “heteroaromatics”. The aromatic ring can be substituted at one or more ring positions with such substituents as described above, as for example, halogen, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkylaminocarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. Aryl groups can also be fused or bridged with alicyclic or heterocyclic rings which are not aromatic so as to form a multicyclic system (e.g., tetralin, methylenedioxyphenyl). [0034]
  • The term “alkenyl” includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double bond. [0035]
  • For example, the term “alkenyl” includes straight-chain alkenyl groups (e.g., ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, etc.), branched-chain alkenyl groups, cycloalkenyl (alicyclic) groups (cyclopropenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl), alkyl or alkenyl substituted cycloalkenyl groups, and cycloalkyl or cycloalkenyl substituted alkenyl groups. The term alkenyl further includes alkenyl groups which include oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone. In certain embodiments, a straight chain or branched chain alkenyl group has 6 or fewer carbon atoms in its backbone (e.g., C[0036] 2-C6 for straight chain, C3-C6 for branched chain). Likewise, cycloalkenyl groups may have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure. The term C2-C6 includes alkenyl groups containing 2 to 6 carbon atoms.
  • Moreover, the term alkenyl includes both “unsubstituted alkenyls” and “substituted alkenyls”, the latter of which refers to alkenyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. [0037]
  • The term “alkynyl” includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but which contain at least one triple bond. [0038]
  • For example, the term “alkynyl” includes straight-chain alkynyl groups (e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.), branched-chain alkynyl groups, and cycloalkyl or cycloalkenyl substituted alkynyl groups. The term alkynyl further includes alkynyl groups which include oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone. In certain embodiments, a straight chain or branched chain alkynyl group has 6 or fewer carbon atoms in its backbone (e.g., C[0039] 2-C6 for straight chain, C3-C6 for branched chain). The term C2-C6 includes alkynyl groups containing 2 to 6 carbon atoms.
  • Moreover, the term alkynyl includes both “unsubstituted alkynyls” and “substituted alkynyls”, the latter of which refers to alkynyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. [0040]
  • Unless the number of carbons is otherwise specified, “lower alkyl” as used herein means an alkyl group, as defined above, but having from one to five carbon atoms in its backbone structure. “Lower alkenyl” and “lower alkynyl” have chain lengths of, for example, 2-5 carbon atoms. [0041]
  • The term “acyl” includes compounds and moieties which contain the acyl radical (CH[0042] 3CO—) or a carbonyl group. The term “substituted acyl” includes acyl groups where one or more of the hydrogen atoms are replaced by for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety.
  • The term “acylamino” includes moieties wherein an acyl moiety is bonded to an amino group. For example, the term includes alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido groups. [0043]
  • The term “aroyl” includes compounds and moieties with an aryl or heteroaromatic moiety bound to a carbonyl group. Examples of aroyl groups include phenylcarboxy, naphthyl carboxy, etc. [0044]
  • The terms “alkoxyalkyl”, “alkylaminoalkyl” and “thioalkoxyalkyl” include alkyl groups, as described above, which further include oxygen, nitrogen or sulfur atoms replacing one or more carbons of the hydrocarbon backbone, e.g., oxygen, nitrogen or sulfur atoms. [0045]
  • The term “alkoxy” includes substituted and unsubstituted alkyl, alkenyl, and alkynyl groups covalently linked to an oxygen atom. Examples of alkoxy groups include methoxy, ethoxy, isopropyloxy, propoxy, butoxy, and pentoxy groups. Examples of substituted alkoxy groups include halogenated alkoxy groups. The alkoxy groups can be substituted with groups such as alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moieties. Examples of halogen substituted alkoxy groups include, but are not limited to, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chloromethoxy, dichloromethoxy, trichloromethoxy, etc. [0046]
  • The term “amine” or “amino” includes compounds where a nitrogen atom is covalently bonded to at least one carbon or heteroatom. The term “alkylamino” includes groups and compounds wherein the nitrogen is bound to at least one additional alkyl group. The term “dialkylamino” includes groups wherein the nitrogen atom is bound to at least two additional alkyl groups. The term “arylamino” and “diarylamino” include groups wherein the nitrogen is bound to at least one or two aryl groups, respectively. The term “alkylarylamino,” “alkylaminoaryl” or “arylaminoalkyl” refers to an amino group which is bound to at least one alkyl group and at least one aryl group. The term “alkaminoalkyl” refers to an alkyl, alkenyl, or alkynyl group bound to a nitrogen atom which is also bound to an alkyl group. [0047]
  • The term “amide” or “aminocarboxy” includes compounds or moieties which contain a nitrogen atom which is bound to the carbon of a carbonyl or a thiocarbonyl group. The term includes “alkaminocarboxy” groups which include alkyl, alkenyl, or alkynyl groups bound to an amino group bound to a carboxy group. It includes arylaminocarboxy groups which include aryl or heteroaryl moieties bound to an amino group which is bound to the carbon of a carbonyl or thiocarbonyl group. The terms “alkylaminocarboxy,” “alkenylaminocarboxy,” “alkynylaminocarboxy,” and “arylaminocarboxy” include moieties wherein alkyl, alkenyl, alkynyl and aryl moieties, respectively, are bound to a nitrogen atom which is in turn bound to the carbon of a carbonyl group. [0048]
  • The term “carbonyl” or “carboxy” includes compounds and moieties which contain a carbon connected with a double bond to an oxygen atom. Examples of moieties which contain a carbonyl include aldehydes, ketones, carboxylic acids, amides, esters, anhydrides, etc. [0049]
  • The term “thiocarbonyl” or “thiocarboxy” includes compounds and moieties which contain a carbon connected with a double bond to a sulfur atom. [0050]
  • The term “ether” includes compounds or moieties which contain an oxygen bonded to two different carbon atoms or heteroatoms. For example, the term includes “alkoxyalkyl” which refers to an alkyl, alkenyl, or alkynyl group covalently bonded to an oxygen atom which is covalently bonded to another alkyl group. [0051]
  • The term “ester” includes compounds and moieties which contain a carbon or a heteroatom bound to an oxygen atom which is bonded to the carbon of a carbonyl group. The term “ester” includes alkoxycarboxy groups such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, etc. The alkyl, alkenyl, or alkynyl groups are as defined above. [0052]
  • The term “thioether” includes compounds and moieties which contain a sulfur atom bonded to two different carbon or hetero atoms. Examples of thioethers include, but are not limited to alkthioalkyls, alkthioalkenyls, and alkthioalkynyls. The term “alkthioalkyls” include compounds with an alkyl, alkenyl, or alkynyl group bonded to a sulfur atom which is bonded to an alkyl group. Similarly, the term “alkthioalkenyls” and “alkthioalkynyls” refer to compounds or moieties wherein an alkyl, alkenyl, or alkynyl group is bonded to a sulfur atom which is covalently bonded to an alkynyl group. [0053]
  • The term “hydroxy” or “hydroxyl” includes groups with an —OH or —O[0054] .
  • The term “halogen” includes fluorine, bromine, chlorine, iodine, etc. The term “perhalogenated” generally refers to a moiety wherein all hydrogens are replaced by halogen atoms. [0055]
  • The terms “polycyclyl” or “polycyclic radical” refer to two or more cyclic rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls) in which two or more carbons are common to two adjoining rings. Rings that are joined through non-adjacent atoms are termed “bridged” rings. Each of the rings of the polycycle can be substituted with such substituents as described above, as for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, alkylaminocarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, alkenylcarbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkyl, alkylaryl, or an aromatic or heteroaromatic moiety. [0056]
  • The term “heteroatom” includes atoms of any element other than carbon or hydrogen. Examples of heteroatoms include nitrogen, oxygen, sulfur and phosphorus. [0057]
  • It will be noted that the structure of some of the compounds of this invention includes asymmetric carbon atoms. It is to be understood accordingly that the isomers arising from such asymmetry (e.g., all enantiomers and diastereomers) are included within the scope of this invention, unless indicated otherwise. Such isomers can be obtained in substantially pure form by classical separation techniques and by stereochemically controlled synthesis. Furthermore, the structures and other compounds and moieties discussed in this application also include all tautomers thereof. [0058]
  • Prodrugs are compounds which are converted in vivo to active forms (see, e.g., R. B. Silverman, 1992, “The Organic Chemistry of Drug Design and Drug Action”, Academic Press, Chp. 8). Prodrugs can be used to alter the biodistribution (e.g., to allow compounds which would not typically enter the reactive site of the protease) or the pharmacokinetics for a particular compound. For example, a hydroxyl group, can be esterified, e.g., with a carboxylic acid group to yield an ester. When the ester is administered to a subject, the ester is cleaved, enzymatically or non-enzymatically, reductively or hydrolytically, to reveal the hydroxyl group. [0059]
  • The term “prodrug moiety” includes moieties which can be metabolized in vivo to yield an active drug. Preferably, the prodrugs moieties are metabolized in vivo by esterases or by other mechanisms to hydroxyl groups or other advantageous groups. Examples of prodrugs and their uses are well known in the art (See, e.g., Berge et al. (1977) “Pharmaceutical Salts”, [0060] J. Pharm. Sci. 66:1-19). The prodrugs can be prepared in situ during the final isolation and purification of the compounds, or by separately reacting the purified compound in its free acid form or hydroxyl with a suitable esterifying agent. Hydroxyl groups can be converted into esters via treatment with a carboxylic acid. Examples of prodrug moieties include substituted and unsubstituted, branch or unbranched lower alkyl ester moieties, (e.g., propionoic acid esters), lower alkenyl esters, di-lower alkyl-amino lower-alkyl esters (e.g., dimethylaminoethyl ester), acylamino lower alkyl esters (e.g., acetyloxymethyl ester), acyloxy lower alkyl esters (e.g., pivaloyloxymethyl ester), aryl esters (phenyl ester), aryl-lower alkyl esters (e.g., benzyl ester), substituted (e.g., with methyl, halo, or methoxy substituents) aryl and aryl-lower alkyl esters, amides, lower-alkyl amides, di-lower alkyl amides, and hydroxy amides. Preferred prodrug moieties are propionoic acid esters and acyl esters.
  • The invention also features a method for treating a tetracycline compound responsive state in a subject, by administering to the subject a 7-substituted tetracycline compound of the invention, e.g., a compound of formula I. Preferably, an effective amount of the tetracycline compound is administered. Examples of 7-substituted tetracycline compounds of the invention include 7-phenyl sancycline, 7,9 diphenyl sancycline, 7-(2-fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, 7-(2-iodophenyl) sancycline, 7-(3-fluorophenyl) sancycline, 7-(3-chlorophenyl) sancycline, 7-(3-bromophenyl) sancycline, 7-(3-iodophenyl) sancycline, 7-(4-fluorophenyl) sancycline, 7-(4-chlorophenyl) sancycline, 7-(4-bromophenyl) sancycline, 7-(4-iodophenyl) sancycline, 7-(4-trichloromethylphenyl) sancycline, 7-(4-trifluoromethylphenyl) sancycline, 7-(4-tribromomethylphenyl) sancycline, or 7-(4-triiodomethylphenyl) sancycline. The language “tetracycline compound responsive state” includes states which can be treated, prevented, or otherwise ameliorated by the administration of a tetracycline compound of the invention. Tetracycline compound responsive states include bacterial infections (including those which are resistant to other tetracycline compounds), cancer, diabetes, and other states for which tetracycline compounds have been found to be active (see, for example, U.S. Pat. Nos. 5,789,395; 5,834,450; and 5,532,227). Compounds of the invention can be used to prevent or control important mammalian and veterinary diseases such as diarrhea, urinary tract infections, infections of skin and skin structure, ear, nose and throat infections, wound infection, mastitis and the like. In addition, methods for treating neoplasms using tetracycline compounds of the invention are also included (van der Bozert et al., [0061] Cancer Res., 48:6686-6690 (1988)).
  • Bacterial infections may be caused by a wide variety of gram positive and gram negative bacteria. The compounds of the invention are useful as antibiotics against organisms which are resistant to other tetracycline compounds. The antibiotic activity of the tetracycline compounds of the invention may be determined using the method discussed in Example 2, or by using the in vitro standard broth dilution method described in Waitz, J. A., [0062] National Commission for Clinical Laboratory Standards, Document M7-A2, vol. 10, no. 8, pp. 13-20, 2nd edition, Villanova, Pa. (1990).
  • The tetracycline compounds may also be used to treat infections traditionally treated with tetracycline compounds such as, for example, rickettsiae; a number of gram-positive and gram-negative bacteria; and the agents responsible for lymphogranuloma venereum, inclusion conjunctivitis, psittacosis. The tetracycline compounds may be used to treat infections of, e.g., [0063] K. pneumoniae, Salmonella, E. hirae, A. baumanii, B. catarrhalis, H. influenzae, P. aeruginosa, E. faecium, E. coli, S. aureus or E. faecalis. In one embodiment, the tetracycline compound is used to treat a bacterial infection that is resistant to other tetracycline antibiotic compounds. The tetracycline compound of the invention may be administered with a pharmaceutically acceptable carrier.
  • The language “effective amount” of the compound is that amount necessary or sufficient to treat or prevent a tetracycline compound responsive state. The effective amount can vary depending on such factors as the size and weight of the subject, the type of illness, or the particular tetracycline compound. For example, the choice of the tetracycline compound can affect what constitutes an “effective amount”. One of ordinary skill in the art would be able to study the aforementioned factors and make the determination regarding the effective amount of the tetracycline compound without undue experimentation. [0064]
  • The invention also pertains to methods of treatment against microorganism infections and associated diseases. The methods include administration of an effective amount of one or more tetracycline compounds to a subject. The subject can be either a plant or, advantageously, an animal, e.g., a mammal, e.g., a human. [0065]
  • In the therapeutic methods of the invention, one or more tetracycline compounds of the invention may be administered alone to a subject, or more typically a compound of the invention will be administered as part of a pharmaceutical composition in mixture with conventional excipient, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral, oral or other desired administration and which do not deleteriously react with the active compounds and are not deleterious to the recipient thereof. [0066]
  • In one embodiment, the pharmaceutical composition comprises a 7-substituted tetracycline compound of the invention, e.g., of formula I. In a further embodiment, the 7-substituted tetracycline compound is 7-phenyl sancycline, 7, 9 diphenyl sancycline, 7-(2-fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, 7-(2-iodophenyl) sancycline, 7-(3-fluorophenyl) sancycline, 7-(3-chlorophenyl) sancycline, 7-(3-bromophenyl) sancycline, 7-(3-iodophenyl) sancycline, 7-(4-fluorophenyl) sancycline, 7-(4-chlorophenyl) sancycline, 7-(4-bromophenyl) sancycline, 7-(4-iodophenyl) sancycline, 7-(4-trichloromethylphenyl) sancycline, 7-(4-trifluoromethylphenyl) sancycline, 7-(4-tribromomethylphenyl) sancycline, or 7-(4-triiodomethylphenyl) sancycline. [0067]
  • The language “pharmaceutically acceptable carrier” includes substances capable of being coadministered with the tetracycline compound(s), and which allow both to perform their intended function, e.g., treat or prevent a tetracycline compound responsive state. Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions, alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethyl-cellulose, polyvinylpyrrolidone, etc. The pharmaceutical preparations can be sterilized and if desired mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously react with the active compounds of the invention. [0068]
  • The tetracycline compounds of the invention that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids. The acids that may be used to prepare pharmaceutically acceptable acid addition salts of the tetracycline compounds of the invention that are basic in nature are those that form non-toxic acid addition salts, i.e., salts containing pharmaceutically acceptable anions, such as the hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, acid citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and palmoate [i.e., 1,1′-methylene-bis-(2-hydroxy-3-naphthoate)] salts. Although such salts must be pharmaceutically acceptable for administration to a subject, e.g., a mammal, it is often desirable in practice to initially isolate a tetracycline compound of the invention from the reaction mixture as a pharmaceutically unacceptable salt and then simply convert the latter back to the free base compound by treatment with an alkaline reagent and subsequently convert the latter free base to a pharmaceutically acceptable acid addition salt. The acid addition salts of the base compounds of this invention are readily prepared by treating the base compound with a substantially equivalent amount of the chosen mineral or organic acid in an aqueous solvent medium or in a suitable organic solvent, such as methanol or ethanol. Upon careful evaporation of the solvent, the desired solid salt is readily obtained. The preparation of other tetracycline compounds of the invention not specifically described in the foregoing experimental section can be accomplished using combinations of the reactions described above that will be apparent to those skilled in the art. [0069]
  • The preparation of other tetracycline compounds of the invention not specifically described in the foregoing experimental section can be accomplished using combinations of the reactions described above that will be apparent to those skilled in the art. [0070]
  • The tetracycline compounds of the invention that are acidic in nature are capable of forming a wide variety of base salts. The chemical bases that may be used as reagents to prepare pharmaceutically acceptable base salts of those tetracycline compounds of the invention that are acidic in nature are those that form non-toxic base salts with such compounds. Such non-toxic base salts include, but are not limited to those derived from such pharmaceutically acceptable cations such as alkali metal cations (e.g., potassium and sodium) and alkaline earth metal cations (e.g., calcium and magnesium), ammonium or water-soluble amine addition salts such as N-methylglucamine-(meglumine), and the lower alkanolammonium and other base salts of pharmaceutically acceptable organic amines. The pharmaceutically acceptable base addition salts of tetracycline compounds of the invention that are acidic in nature may be formed with pharmaceutically acceptable cations by conventional methods. Thus, these salts may be readily prepared by treating the tetracycline compound of the invention with an aqueous solution of the desired pharmaceutically acceptable cation and evaporating the resulting solution to dryness, preferably under reduced pressure. Alternatively, a lower alkyl alcohol solution of the tetracycline compound of the invention may be mixed with an alkoxide of the desired metal and the solution subsequently evaporated to dryness. [0071]
  • The preparation of other tetracycline compounds of the invention not specifically described in the foregoing experimental section can be accomplished using combinations of the reactions described above that will be apparent to those skilled in the art. [0072]
  • The tetracycline compounds of the invention and pharmaceutically acceptable salts thereof can be administered via either the oral, parenteral or topical routes. In general, these compounds are most desirably administered in effective dosages, depending upon the weight and condition of the subject being treated and the particular route of administration chosen. Variations may occur depending upon the species of the subject being treated and its individual response to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval at which such administration is carried out. [0073]
  • The pharmaceutical compositions of the invention may be administered alone or in combination with other known compositions for treating tetracycline responsive states in a mammal. Preferred mammals include pets (e.g., cats, dogs, ferrets, etc.), farm animals (cows, sheep, pigs, horses, goats, etc.), lab animals (rats, mice, monkeys, etc.), and primates (chimpanzees, humans, gorillas). The language “in combination with” a known composition is intended to include simultaneous administration of the composition of the invention and the known composition, administration of the composition of the invention first, followed by the known composition and administration of the known composition first, followed by the composition of the invention. Any of the therapeutically composition known in the art for treating tetracycline responsive states can be used in the methods of the invention. [0074]
  • The compounds of the invention may be administered alone or in combination with pharmaceutically acceptable carriers or diluents by any of the routes previously mentioned, and the administration may be carried out in single or multiple doses. For example, the novel therapeutic agents of this invention can be administered advantageously in a wide variety of different dosage forms, i.e., they may be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges, troches, hard candies, powders, sprays, creams, salves, suppositories, jellies, gels, pastes, lotions, ointments, aqueous suspensions, injectable solutions, elixirs, syrups, and the like. Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents, etc. Moreover, oral pharmaceutical compositions can be suitably sweetened and/or flavored. In general, the therapeutically-effective compounds of this invention are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight. [0075]
  • For oral administration, tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes. Solid compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols. When aqueous suspensions and/or elixirs are desired for oral administration, the active ingredient may be combined with various sweetening or flavoring agents, coloring matter or dyes, and, if so desired, emulsifying and/or suspending agents as well, together with such diluents as water, ethanol, propylene glycol, glycerin and various like combinations thereof. [0076]
  • For parenteral administration (including intraperitoneal, subcutaneous, intravenous, intradermal or intramuscular injection), solutions of a therapeutic compound of the present invention in either sesame or peanut oil or in aqueous propylene glycol may be employed. The aqueous solutions should be suitably buffered (preferably pH greater than 8) if necessary and the liquid diluent first rendered isotonic. These aqueous solutions are suitable for intravenous injection purposes. The oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art. For parenteral application, examples of suitable preparations include solutions, preferably oily or aqueous solutions as well as suspensions, emulsions, or implants, including suppositories. Therapeutic compounds may be formulated in sterile form in multiple or single dose formats such as being dispersed in a fluid carrier such as sterile physiological saline or 5% saline dextrose solutions commonly used with injectables. [0077]
  • Additionally, it is also possible to administer the compounds of the present invention topically when treating inflammatory conditions of the skin. Examples of methods of topical administration include transdermal, buccal or sublingual application. For topical applications, therapeutic compounds can be suitably admixed in a pharmacologically inert topical carrier such as a gel, an ointment, a lotion or a cream. Such topical carriers include water, glycerol, alcohol, propylene glycol, fatty alcohols, triglycerides, fatty acid esters, or mineral oils. Other possible topical carriers are liquid petrolatum, isopropylpalmitate, polyethylene glycol, ethanol 95%, polyoxyethylene monolauriate 5% in water, sodium lauryl sulfate 5% in water, and the like. In addition, materials such as anti-oxidants, humectants, viscosity stabilizers and the like also may be added if desired. [0078]
  • For enteral application, particularly suitable are tablets, dragees or capsules having talc and/or carbohydrate carrier binder or the like, the carrier preferably being lactose and/or corn starch and/or potato starch. A syrup, elixir or the like can be used wherein a sweetened vehicle is employed. Sustained release compositions can be formulated including those wherein the active component is protected with differentially degradable coatings, e.g., by microencapsulation, multiple coatings, etc. [0079]
  • In addition to treatment of human subjects, the therapeutic methods of the invention also will have significant veterinary applications, e.g. for treatment of livestock such as cattle, sheep, goats, cows, swine and the like; poultry such as chickens, ducks, geese, turkeys and the like; horses; and pets such as dogs and cats. Also, the compounds of the invention may be used to treat non-animal subjects, such as plants. [0080]
  • It will be appreciated that the actual preferred amounts of active compounds used in a given therapy will vary according to the specific compound being utilized, the particular compositions formulated, the mode of application, the particular site of administration, etc. Optimal administration rates for a given protocol of administration can be readily ascertained by those skilled in the art using conventional dosage determination tests conducted with regard to the foregoing guidelines. [0081]
  • In general, compounds of the invention for treatment can be administered to a subject in dosages used in prior tetracycline therapies. See, for example, the [0082] Physicians' Desk Reference. For example, a suitable effective dose of one or more compounds of the invention will be in the range of from 0.01 to 100 milligrams per kilogram of body weight of recipient per day, preferably in the range of from 0.1 to 50 milligrams per kilogram body weight of recipient per day, more preferably in the range of 1 to 20 milligrams per kilogram body weight of recipient per day. The desired dose is suitably administered once daily, or several sub-doses, e.g. 2 to 5 sub-doses, are administered at appropriate intervals through the day, or other appropriate schedule.
  • It will also be understood that normal, conventionally known precautions will be taken regarding the administration of tetracyclines generally to ensure their efficacy under normal use circumstances. Especially when employed for therapeutic treatment of humans and animals in vivo, the practitioner should take all sensible precautions to avoid conventionally known contradictions and toxic effects. Thus, the conventionally recognized adverse reactions of gastrointestinal distress and inflammations, the renal toxicity, hypersensitivity reactions, changes in blood, and impairment of absorption through aluminum, calcium, and magnesium ions should be duly considered in the conventional manner. [0083]
  • Furthermore, the invention also pertains to the use of a tetracycline compound of formula I, for the preparation of a medicament. The medicament may include a pharmaceutically acceptable carrier and the tetracycline compound is an effective amount, e.g., an effective amount to treat a tetracycline responsive state. [0084]
  • In yet another embodiment, the invention also pertains to the use of a tetracycline compound of formula I to treat a tetracycline responsive state, e.g., in a subject, e.g., a mammal, e.g., a human. [0085]
  • Compounds of the invention may be made as described below, with modifications to the procedure below within the skill of those of ordinary skill in the art.[0086]
  • EXAMPLE 1 Synthesis of the 7-Substituted Tetracycline Compounds
  • Preparation of 7-iodosancycline and 7,9-diiodosancyline [0087]
  • Five grams of sancycline was dissolved in 85 mL of concentrated sulfuric acid that was cooled to 0° C. (on ice). N-iodosuccinimide (NIS) was added to the reaction in 300 mg portions every 15 minutes and reacted for 5 hours. The reaction is removed from the ice bath. The mixture, analyzed by HPLC or TLC, show the product of D-ring iodotetracyclines. After the reaction was complete, the sulfuric acid was dripped slowly 1 L of ice water and extracted 7 times with 300 mL of n-butanol. The solvent was removed in vacuo to produce a mixture of three products. The 7-iodo regioisomer, 9-regioisomer and 7,9-diiodosancycline derivative of sancycline were purified by preparative HPLC chromatography or by methods known in the art. [0088]
  • Rt: Hypersil C 18 BDS Column: 7 and 9 isomer mixture: in the ratio 40:60 for position 9/position 7 [0089]
  • 7-iodosancycline: Rt 14.45 min MS (M+H, formic acid solvent): 541.1 [0090] 1H NMR (Methanol d4-300 MHz) δ 7.89 (d, J=8.86 Hz, 1H), 6.67 (d, 8.87 Hz, 1H), 3.78 (s, 1H), 3.03 (s, 2H), 2.84 (s, 6H), 2.46 (m, 2H), 1.63 (m, 4H), 0.95 (m, 2H)
  • 9-iodosancycline: Rt 14.1 min: MS (M+H, formic acid solvent): 541.1 [0091] 1H NMR (Methanol d4-300 MHz)δ 7.87 (d, J=8.86 Hz, 1H), 6.64 (d, 8.87 Hz, 1H), 3.78 (s, 1H), 3.03 (s, 2H), 2.84 (s, 6H), 2.46 (m, 2H), 1.63 (m, 4H), 0.95 (m, 2H)
  • 7,9-diiodo sancycline: Rt 21.2 min MS (M+H, formic acid solvent): 667.3 [0092] 1H NMR (Methanol d4-300 MHz) δ 8.35, 3.78 (s, 1H), 3.33 (s, 2H), 2.88 (s, 7H), 2.41 (m, 2H), 1.41 (m, 5H).
  • 7-phenylsancycline [0093]
  • 7-iodosancycline, 150 mg (0.28 mM), Pd(OAc)[0094] 2 and 10 mL of MeOH are added to a flask with a stir bar and the system degassed 3× using argon. Na2CO3 (87 mg, 0.8 mM) dissolved in water and argon degassed is added via syringe is added along with phenylboronic acid (68 mg, 0.55 mM) in MeOH that was also degassed. The reaction was followed by HPLC for 2 hours and cooled to room temperature. The solution was filtered, and dried to produce a crude mixture. The solid was dissolved in dimethylformamide and injected onto a preparative HPLC system using C18 reverse-phase silica. The fraction at 36-38 minutes was isolated, and the solvent removed in vacuo to yield the product plus salts. The salts were removed before extraction into 50:25:25 water:butanol:ethyl acetate and dried in vacuo. This solid was dissolved in MeOH and the HCl salt made by bubbling in HCl gas. The solvent was removed to produce the product in 42% yield as a yellow solid.
  • 7-phenyl sancycline: Rt 21.6 min: MS (M+H, formic acid solvent): 491.3 [0095] 1H NMR (Methanol d4-300 MHz)δ 7.87 (d, J=8.86 Hz, 1H), 7.38 (m, 5H), 6.64 (d, 8.87 Hz, 1H), 4.00 (s, 1H), 3.84 (s, 2H), 3.01 (s, 6H), 2.46 (m, 2H), 1.63 (m, 4H), 0.95 (m, 2H)
  • 7-(4-chlorophenyl)sancycline [0096]
  • 7-iodosancycline, 500 mg (0.91 mM), Pd(OAc)[0097] 2 21 mg, and 20 mL of MeOH are added to a flask with a stir bar and the system degassed 3× using argon. Na2CO3 (293 mg, 2.8 mM) dissolved in water and argon degassed, is added via syringe is added along with 4-Cl-phenylboronic acid (289 mg, 1.85 mM) in MeOH that was also degassed. The reaction was followed by HPLC for 45 minutes and cooled to room temperature. The solution was filtered, and dried to produce a crude mixture. The solid was dissolved in dimethylformamide and injected onto a preparative HPLC system using C18 reverse-phase silica. The fraction at 39 minutes was isolated, and the solvent removed in vacuo to yield the product plus salts. The salts were removed by extraction into 50:25:25 water:butanol:ethyl acetate, and dried in vacuo. This solid was dissolved in MeOH and the HCl salt made by bubbling in HCl gas. The solvent was removed to produce the product in 57% yield as a yellow solid.
  • 7-(4-chlorophenyl)sancycline: Rt 20.3 min: MS (M+H, formic acid solvent): 525.7 [0098] 1H NMR (Methanol d4-300 MHz)δ 7.49-7.52 ( d, J=8.54 Hz, 1H), 6.99-7.01 (d, 8.61 Hz, 1H), 4.12 (s, 1H), 3.67 (m, 1H), 3.06 (s, 6H), 2.58 (m, 2H), 1.62(m, 4H), 1.01 (m, 2H)
  • 7-(4-fluorophenyl)sancycline [0099]
  • 7-iodosancycline, 200 mg (0.3 mM), Pd(OAc)[0100] 2 8.3 mg, and 10 mL of MeOH are added to a flask with a stir bar and the system degassed 3× using argon. Na2CO3 (104 mg, 1.1 mM) dissolved in water and argon degassed is added via syringe is added along with 4-F-phenylboronic acid (104 mg, 0.7 mM) in MeOH that was also degassed. The reaction was followed by HPLC for 20 minutes and cooled to room temperature. The solution was filtered, and dried to produce a crude mixture. The solid was dissolved in dimethylformamide and injected onto a preparative HPLC system using C18 reverse-phase silica. The fraction at 19-20 minutes was isolated, and the solvent removed in vacuo to yield the product plus salts. The salts were removed by extraction into 50:25:25 water:butanol:ethyl acetate and dried in vacuo. This solid was dissolved in MeOH and the HCl salt made by bubbling in HCl gas. The solvent was removed to produce the product in 47% yield as a yellow solid.
  • 7-(4-fluorophenyl)sancycline: Rt 19.5 min: MS (M+H, formic acid solvent): 509.4 [0101] 1H NMR (Methanol d4-300 MHz)δ 6.92-6.95 (d, 1H), 7.45-7.48 (d, 1H), 7.15-7.35 (m, 4H), 4.05 (s, 1H), 3.62 (m, 1H), 3.08 (s, 6H), 2.55 (m, 2H), 1.65(m, 4H), 1.00 (m, 2H)
  • EXAMPLE 2 In vitro Minimum Inhibitory Concentration (MIC) Assay
  • The following assay is used to determine the efficacy of tetracycline compounds against common bacteria. 2 mg of each compound is dissolved in 100 μl of DMSO. The solution is then added to cation-adjusted Mueller Hinton broth (CAMHB), which results in a final compound concentration of 200 μg per ml. The tetracycline compound solutions are diluted to 50 μL volumes, with a test compound concentration of 0.098 μg/ml. Optical density (OD) determinations are made from fresh log-phase broth cultures of the test strains. Dilutions are made to achieve a final cell density of 1×10[0102] 6 CFU/ml. At OD=1, cell densities for different genera should be approximately:
  • [0103] E. coli 1×109 CFU/ml
  • [0104] S. aureus 5×108 CFU/ml
  • [0105] Enterococcus sp. 2.5×109 CFU/ml
  • 50 μl of the cell suspensions are added to each well of microtiter plates. The final cell density should be approximately 5×10[0106] 5 CFU/ml. These plates are incubated at 35° C. in an ambient air incubator for approximately 18 hr. The plates are read with a microplate reader and are visually inspected when necessary. The MIC is defined as the lowest concentration of the tetracycline compound that inhibits growth. Compounds of the invention indicate good inhibition of growth.
  • EQUIVALENTS
  • Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of the present invention and are covered by the following claims. The contents of all references, issued patents, and published patent applications cited throughout this application are hereby incorporated by reference. The appropriate components, processes, and methods of those patents, applications and other documents may be selected for the present invention and embodiments thereof. [0107]

Claims (31)

1. A 7-substituted tetracycline compound of the formula:
Figure US20020132798A1-20020919-C00011
wherein:
R4 and R4′ are each alkyl;
R5 is hydrogen, hydroxyl, or a prodrug moiety;
R6 and R6′ are each independently hydrogen, hydroxyl, alkyl, or taken together, alkenyl;
R7 is halo substituted or unsubstituted phenyl; and pharmaceutically acceptable salts thereof.
2. The compound of claim 1, wherein R5, R6 and R6′ are each hydrogen and R4 and R4′ are each methyl.
3. The compound of claim 1, wherein R7 is unsubstituted phenyl.
4. The compound of claim 3, wherein said compound is 7-phenylsancycline.
5. The compound of claim 1, wherein R7 is 2-substituted phenyl.
6. The compound of claim 5, wherein said compound is selected from the group consisting of 7-(2-fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, and 7-(2-iodophenyl) sancycline.
7. The compound of claim 1, wherein R7 is 3-substituted phenyl.
8. The compound of claim 7, wherein said compound is selected from the group consisting of 7-(3-fluorophenyl) sancycline, 7-(3-chlorophenyl) sancycline, 7-(3-bromophenyl) sancycline, and 7-(3-iodophenyl) sancycline.
9. The compound of claim 1, wherein R7 is 4-substituted phenyl.
10. The compound of claim 9, wherein said compound is selected from the group consisting of 7-(4-fluorophenyl) sancycline, 7-(4-chlorophenyl) sancycline, 7-(4-bromophenyl) sancycline, 7-(4-iodophenyl) sancycline, 7-(4-trichloromethylphenyl) sancycline, 7-(4-trifluoromethylphenyl) sancycline, 7-(4-tribromomethylphenyl) sancycline, and 7-(4-triiodomethylphenyl) sancycline.
11. A method for treating a tetracycline responsive state in a mammal, comprising administering to said mammal a 7-substituted tetracycline compound of formula (I):
Figure US20020132798A1-20020919-C00012
wherein:
R4 and R4′ are each alkyl;
R5 is hydrogen, hydroxyl, or a prodrug moiety;
R6 and R6′ are each independently hydrogen, hydroxyl, alkyl, or taken together, alkenyl;
R7 is halo substituted or unsubstituted phenyl; and pharmaceutically acceptable salts thereof, such that the tetracycline responsive state is treated.
12. The method of claim 11, wherein R5, R6 and R6′0 are each hydrogen and R4 and R4′ are each methyl.
13. The method of claim 11, wherein R7 is unsubstituted phenyl.
14. The method of claim 13, wherein said compound is 7-phenylsancycline.
15. The method of claim 1, wherein R7 is 2-substituted phenyl.
16. The method of claim 15, wherein said compound is selected from the group consisting of 7-(2-fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, and 7-(2-iodophenyl) sancycline.
17. The method of claim 11, wherein R7 is 3-substituted phenyl.
18. The method of claim 17, wherein said compound is selected from the group consisting of 7-(3-fluorophenyl) sancycline, 7-(3-chlorophenyl) sancycline, 7-(3-bromophenyl) sancycline, and 7-(3-iodophenyl) sancycline.
19. The method of claim 11, wherein R7 is 4-substituted phenyl.
20. The method of claim 19, wherein said compound is selected from the group consisting of 7-(4-fluorophenyl) sancycline, 7-(4-chlorophenyl) sancycline, 7-(4-bromophenyl) sancycline, 7-(4-iodophenyl) sancycline, 7-(4-trichloromethylphenyl) sancycline, 7-(4-trifluoromethylphenyl) sancycline, 7-(4-tribromomethylphenyl) sancycline, and 7-(4-triiodomethylphenyl) sancycline.
21. The method of claim 11, wherein said tetracycline responsive state is a bacterial infection.
22. The method of claim 21, wherein said bacterial infection is associated with E. coli.
23. The method of claim 21, wherein said bacterial infection is associated with S. aureus.
24. The method of claim 21, wherein said bacterial infection is associated with E. faecalis.
25. The method of claim 21, wherein said bacterial infection is resistant to other tetracycline antibiotics.
26. The method of claim 11, wherein said compound is administered with a pharmaceutically acceptable carrier.
27. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
28. The pharmaceutical composition of claim 27, wherein said compound is selected from the group consisting of 7-phenyl sancycline, 7-(2-fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, 7-(2-iodophenyl) sancycline, 7-(3 -fluorophenyl) sancycline, 7-(3-chlorophenyl) sancycline, 7-(3 -bromophenyl) sancycline, 7-(3-iodophenyl) sancycline, 7-(4-fluorophenyl) sancycline, 7-(4-chlorophenyl) sancycline, 7-(4-bromophenyl) sancycline, 7-(4-iodophenyl) sancycline, 7-(4-trichloromethylphenyl) sancycline, 7-(4-trifluoromethylphenyl) sancycline, 7-(4-tribromomethylphenyl) sancycline, and 7-(4-triiodomethylphenyl) sancycline.
29. A tetracycline compound, wherein said compound is 7,9-diphenyl sancycline or a pharmaceutically acceptable salt thereof.
30. A method for treating a tetracycline responsive state in a mammal, comprising administering to said mammal an effective amount of 7,9-diphenyl sancycline or a pharmaceutically acceptable salt thereof, such that said mammal is treated.
31. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 29 and a pharmaceutically acceptable carrier.
US09/882,505 2000-06-16 2001-06-15 7-phenyl-substituted tetracycline compounds Abandoned US20020132798A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/882,505 US20020132798A1 (en) 2000-06-16 2001-06-15 7-phenyl-substituted tetracycline compounds
US10/819,343 US20050119235A1 (en) 2000-06-16 2004-04-05 7-phenyl-substituted tetracycline compounds
US11/706,111 US7521437B2 (en) 2000-06-16 2007-02-13 7-phenyl-substituted tetracycline compounds
US12/425,852 US7851460B2 (en) 2000-06-16 2009-04-17 7-phenyl-substituted tetracycline compounds
US12/967,906 US8168810B2 (en) 2000-06-16 2010-12-14 7-phenyl-substituted tetracycline compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US21247000P 2000-06-16 2000-06-16
PCT/US2000/016632 WO2001098259A1 (en) 2000-06-16 2000-06-16 7-phenyl-substituted tetracycline compounds
USPCT/US001/16632 2000-06-16
US09/882,505 US20020132798A1 (en) 2000-06-16 2001-06-15 7-phenyl-substituted tetracycline compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/016632 Continuation WO2001098259A1 (en) 2000-06-16 2000-06-16 7-phenyl-substituted tetracycline compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/819,343 Continuation US20050119235A1 (en) 2000-06-16 2004-04-05 7-phenyl-substituted tetracycline compounds

Publications (1)

Publication Number Publication Date
US20020132798A1 true US20020132798A1 (en) 2002-09-19

Family

ID=26907176

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/882,505 Abandoned US20020132798A1 (en) 2000-06-16 2001-06-15 7-phenyl-substituted tetracycline compounds
US10/819,343 Abandoned US20050119235A1 (en) 2000-06-16 2004-04-05 7-phenyl-substituted tetracycline compounds
US11/706,111 Expired - Fee Related US7521437B2 (en) 2000-06-16 2007-02-13 7-phenyl-substituted tetracycline compounds
US12/425,852 Expired - Fee Related US7851460B2 (en) 2000-06-16 2009-04-17 7-phenyl-substituted tetracycline compounds
US12/967,906 Expired - Lifetime US8168810B2 (en) 2000-06-16 2010-12-14 7-phenyl-substituted tetracycline compounds

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10/819,343 Abandoned US20050119235A1 (en) 2000-06-16 2004-04-05 7-phenyl-substituted tetracycline compounds
US11/706,111 Expired - Fee Related US7521437B2 (en) 2000-06-16 2007-02-13 7-phenyl-substituted tetracycline compounds
US12/425,852 Expired - Fee Related US7851460B2 (en) 2000-06-16 2009-04-17 7-phenyl-substituted tetracycline compounds
US12/967,906 Expired - Lifetime US8168810B2 (en) 2000-06-16 2010-12-14 7-phenyl-substituted tetracycline compounds

Country Status (1)

Country Link
US (5) US20020132798A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138183A1 (en) * 2001-03-13 2004-07-15 Paratek Pharmaceuticals, Inc. 7,9-substituted tetracycline compounds
US20040157806A1 (en) * 2002-01-08 2004-08-12 Nelson Mark L. 4-Dedimethylamino tetracycline compounds
US20040176334A1 (en) * 2000-03-31 2004-09-09 Paratek Pharmaceuticals, Inc. 7-and 9- carbamate, urea, thiourea, thiocarbamate, and heteroaryl-amino substituted tetracycline compounds
US20040214800A1 (en) * 2002-10-24 2004-10-28 Levy Stuart B. Methods of using substituted tetracycline compounds to modulate RNA
US20040242548A1 (en) * 2001-04-24 2004-12-02 Michael Draper Substituted tetracycline compounds for the treatment of malaria
US20040266740A1 (en) * 2001-08-02 2004-12-30 Sophie Huss 7-pyrollyl 9-aminoacyl tetracycline compounds and methods of use thereof
US20050187198A1 (en) * 1999-09-14 2005-08-25 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US20050282787A1 (en) * 2004-05-21 2005-12-22 Myers Andrew G Synthesis of tetracyclines and analogues thereof
US20060148765A1 (en) * 2000-05-15 2006-07-06 Paratek Pharmaceuticals, Inc. 7-Substituted fused ring tetracycline compounds
US20060166946A1 (en) * 1999-09-14 2006-07-27 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US20060194773A1 (en) * 2001-07-13 2006-08-31 Paratek Pharmaceuticals, Inc. Tetracyline compounds having target therapeutic activities
US20060287283A1 (en) * 2003-07-09 2006-12-21 Paratek Pharmaceuticals, Inc. Prodrugs of 9-aminomethyl tetracycline compounds
US20070155708A1 (en) * 2000-06-16 2007-07-05 Trustees Of Tufts College 7-phenyl-substituted tetracycline compounds
US20090093640A1 (en) * 2006-10-11 2009-04-09 Myers Andrew G Synthesis of enone intermediate
US7595309B2 (en) 2000-07-07 2009-09-29 Trustees Of Tufts College 7-substituted tetracycline compounds
US20100130451A1 (en) * 2006-04-07 2010-05-27 Presidents And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US7820641B2 (en) 2002-03-21 2010-10-26 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
US7858601B2 (en) 2004-10-25 2010-12-28 Paratek Pharmaceuticals, Inc. 4-substituted tetracyclines and methods of use thereof
US7960366B2 (en) 2001-03-14 2011-06-14 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds as synergistic antifungal agents
US8440646B1 (en) 2006-10-11 2013-05-14 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds for treatment of Bacillus anthracis infections
US8466132B2 (en) 2004-10-25 2013-06-18 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
US8518912B2 (en) 2007-11-29 2013-08-27 Actelion Pharmaceuticals Ltd. Phosphonic acid derivates and their use as P2Y12 receptor antagonists
US9073829B2 (en) 2009-04-30 2015-07-07 President And Fellows Of Harvard College Synthesis of tetracyclines and intermediates thereto

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756365B2 (en) * 1991-11-06 2004-06-29 Trustees Of Tufts College Reducing tetracycline resistance in living cells
WO2001052858A1 (en) * 2000-01-24 2001-07-26 Trustees Of Tufts College Tetracycline compounds for treatment of cryptosporidium parvum related disorders
US20020128238A1 (en) * 2000-06-16 2002-09-12 Nelson Mark L. 7-phenyl-substituted tetracycline compounds
US20040224927A1 (en) * 2000-06-16 2004-11-11 Trustees Of Tufts College 7-N-substituted phenyl tetracycline compounds
CN1690047B (en) 2000-07-07 2010-10-06 塔夫茨大学信托人 9-substituted minocycline compounds
US7094806B2 (en) 2000-07-07 2006-08-22 Trustees Of Tufts College 7, 8 and 9-substituted tetracycline compounds
WO2002072506A2 (en) * 2001-03-13 2002-09-19 Paratek Pharmaceuticals, Inc. 7-pyrollyl tetracycline compounds and methods of use thereof
KR101014918B1 (en) * 2002-03-08 2011-02-15 파라테크 파마슈티컬스, 인크. Amino-Methyl Substituted Tetracycline Compounds
WO2004006850A2 (en) * 2002-07-12 2004-01-22 Paratek Pharmaceuticals, Inc 3, 10, AND 12a SUBSTITUTED TETRACYCLINE COMPOUNDS
CN1845897A (en) 2003-07-09 2006-10-11 帕拉特克药品公司 Substituted tetracycline compounds
TWI261038B (en) * 2004-08-11 2006-09-01 Bo-Cheng Chen Bicycle gear-shifting handgrip
EP1848685A1 (en) 2005-02-04 2007-10-31 Paratek Pharmaceuticals, Inc. 11a, 12-derivatives of tetracycline compounds
US20070093455A1 (en) * 2005-07-21 2007-04-26 Paul Abato 10-substituted tetracyclines and methods of use thereof
AU2007249695A1 (en) * 2006-05-15 2007-11-22 Paratek Pharmaceuticals, Inc. Methods of regulating expression of genes or of gene products using substituted tetracycline compounds
KR101538175B1 (en) 2006-12-21 2015-07-20 파라테크 파마슈티컬스, 인크. Tetracycline derivatives for the treatment of bacterial, viral and parasitic infections
US8513223B2 (en) 2006-12-21 2013-08-20 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds for treatment of inflammatory skin disorders
US7935687B2 (en) 2007-04-12 2011-05-03 Paratek Pharmaceuticals, Inc. Methods for treating spinal muscular atrophy using tetracycline compounds
JP2010525069A (en) * 2007-04-27 2010-07-22 パラテック ファーマシューティカルズ インコーポレイテッド Method for synthesizing and purifying aminoalkyltetracycline compound
CN101784517A (en) 2007-07-06 2010-07-21 帕拉特克药品公司 The method of the synthetic tetracycline compound that replaces
AU2009220171A1 (en) * 2008-03-05 2009-09-11 Paratek Pharmaceuticals, Inc. Minocycline compounds and methods of use thereof
WO2009128913A1 (en) * 2008-04-14 2009-10-22 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
AU2009292986A1 (en) * 2008-09-19 2010-03-25 Paratek Pharmaceuticals, Inc. Tetracycline compounds for the treatment of rheumatoid arthritis and related methods of treatment
WO2013181391A2 (en) * 2012-05-30 2013-12-05 Paratek Pharmaceuticals, Inc. 7-disubstituted-phenyl tetracycline derivatives
SG11201903846TA (en) 2016-11-01 2019-05-30 Paratek Pharm Innc 9-aminomethyl minocycline compounds and use thereof in treating community-acquired bacterial pneumonia (cabp)

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE26271E (en) * 1967-09-26 Reductive alkylation process
US2990331A (en) * 1956-11-23 1961-06-27 Pfizer & Co C Stable solutions of salts of tetracyclines for parenteral administration
US2980584A (en) * 1957-10-29 1961-04-18 Pfizer & Co C Parenteral magnesium oxytetracycline acetic or lactic acid carboxamide vehicle preparation
US3062717A (en) * 1958-12-11 1962-11-06 Pfizer & Co C Intramuscular calcium tetracycline acetic or lactic acid carboxamide vehicle preparation
US3007965A (en) * 1959-02-13 1961-11-07 American Cyanamid Co New tetracyclines produced by streptomyces aureofaciens
US3043875A (en) * 1959-10-22 1962-07-10 Pfizer & Co C Halogenated tetracycline derivatives and processes for their preparation
FR1003M (en) 1960-03-09 1961-12-18 Erba Carlo Spa Tetracycline-based antibiotic derivatives.
FR1430859A (en) * 1960-05-23 1966-05-25
US3338963A (en) * 1960-10-28 1967-08-29 American Cyanamid Co Tetracycline compounds
US3219671A (en) * 1961-04-14 1965-11-23 American Cyanamid Co Substituted 6-deoxytetracyclines and 6-demethyl-6-deoxytetracyclines
US3862225A (en) 1961-08-18 1975-01-21 Pfizer D-ring substituted tetracyclines
US3069467A (en) 1961-08-28 1962-12-18 Pfizer & Co C Hydrolysis of 2-decarboxamido-2-cyano-6-deoxy-tetracycline derivatives
US3165531A (en) * 1962-03-08 1965-01-12 Pfizer & Co C 13-substituted-6-deoxytetracyclines and process utilizing the same
US3183267A (en) * 1962-09-06 1965-05-11 Pfizer & Co C 6-methylenetetracycline derivatives
USRE26253E (en) * 1963-05-17 1967-08-15 And z-alkylamino-g-deoxytetracycline
GB1108310A (en) 1964-04-30 1968-04-03 Pfizer & Co C Derivatives of 6-methylene-tetracycline and process for their preparation
US3277172A (en) * 1964-07-10 1966-10-04 Squibb & Sons Inc Tetraphenylboron derivatives of tetracycline antibiotics
US3609188A (en) * 1964-10-29 1971-09-28 American Cyanamid Co 4-dedimethylamino-4-substituted-amino-6-demethyltetracyclines
US3345379A (en) * 1965-02-26 1967-10-03 American Cyanamid Co 7-imidomethyl-6-demethyl-6-deoxytetracyclines
US3454697A (en) * 1965-06-08 1969-07-08 American Cyanamid Co Tetracycline antibiotic compositions for oral use
US3350557A (en) * 1965-06-09 1967-10-31 Szymanski Ronald Fog lens attachments for vehicle headlights
US3397230A (en) * 1966-03-14 1968-08-13 American Cyanamid Co Nitration of tetracyclines
US3433834A (en) * 1966-03-14 1969-03-18 American Cyanamid Co Nitration of 11a-chloro tetracyclines
US3341585A (en) * 1966-05-06 1967-09-12 American Cyanamid Co Substituted 7-and/or 9-amino-6-deoxytetracyclines
NL6607516A (en) * 1966-05-31 1967-12-01
US3345410A (en) * 1966-12-01 1967-10-03 American Cyanamid Co Substituted 7- and/or 9-amino tetracyclines
US3403179A (en) * 1967-01-10 1968-09-24 American Cyanamid Co Novel 7-(1, 2-bis-substituted-hydrazino)-tetracyclines and methods of preparing same
US3483251A (en) 1967-03-03 1969-12-09 American Cyanamid Co Reductive alkylation process
US3373196A (en) * 1967-03-21 1968-03-12 American Cyanamid Co 7-and/or 9-(lower alkyl) amino-5a, 6-anhydrotetracyclines
US3360561A (en) 1967-06-19 1967-12-26 American Cyanamid Co Nitration of tetracyclines
US3518306A (en) * 1968-02-19 1970-06-30 American Cyanamid Co 7- and/or 9-(n-nitrosoalkylamino)-6-demethyl-6-deoxytetracyclines
US3579579A (en) * 1968-04-18 1971-05-18 American Cyanamid Co Substituted 7- and/or 9-amino-6-demethyl-6-deoxytetracyclines
DE1767891C3 (en) * 1968-06-28 1980-10-30 Pfizer Process for the preparation of aqueous medicinal solutions for parenteral, peroral and local use containing a tetracycline derivative
US3795707A (en) * 1970-12-28 1974-03-05 Rachelle Labor Italia Spa Manufacture of alpha-6-deoxytetracyclines
CA999855A (en) * 1972-09-18 1976-11-16 Societa' Farmaceutici Italia S.P.A. Process for the preparation of tetracyclines derivatives in the 7 position
US3957980A (en) * 1972-10-26 1976-05-18 Pfizer Inc. Doxycycline parenteral compositions
DE2418142A1 (en) * 1974-04-13 1975-11-06 Hoechst Ag TETRACYCLIN DERIVATIVES AND THE PROCESS FOR THEIR PRODUCTION
GB1469384A (en) 1974-06-25 1977-04-06 Farmaceutici Italia Tetracyclines
DE2442829A1 (en) * 1974-09-06 1976-03-18 Merck Patent Gmbh TETRACYCLIC COMPOUNDS AND PROCEDURES FOR THEIR PRODUCTION
US4018889A (en) * 1976-01-02 1977-04-19 Pfizer Inc. Oxytetracycline compositions
US4126680A (en) * 1977-04-27 1978-11-21 Pfizer Inc. Tetracycline antibiotic compositions
US5589470A (en) * 1990-02-26 1996-12-31 Trustees Of Tufts College Reducing tetracycline resistance in living cells
US4806529A (en) 1982-11-18 1989-02-21 Trustees Of Tufts College, Tufts University Tetracycline activity enhancement
US5064821A (en) 1982-11-18 1991-11-12 Trustees Of Tufts College Method and compositions for overcoming tetracycline resistance within living cells
US4935412A (en) * 1983-12-29 1990-06-19 The Research Foundation Of State University Of New York Non-antibacterial tetracycline compositions possessing anti-collagenolytic properties and methods of preparing and using same
US4704383A (en) 1983-12-29 1987-11-03 The Research Foundation Of State University Of New York Non-antibacterial tetracycline compositions possessing anti-collagenolytic properties and methods of preparing and using same
US4666897A (en) * 1983-12-29 1987-05-19 Research Foundation Of State University Inhibition of mammalian collagenolytic enzymes by tetracyclines
US4925833A (en) * 1983-12-29 1990-05-15 The Research Foundation Of State University Of New York Use of tetracycline to enhance bone protein synthesis and/or treatment of osteoporosis
US4806372A (en) * 1985-02-15 1989-02-21 Georgia Oil & Gas Co., Inc. Nitrite-free-curing of bacon and product thereof
US5308839A (en) * 1989-12-04 1994-05-03 The Research Foundation Of State University Of New York Composition comprising non-steroidal anti-inflammatory agent tenidap and effectively non-antibacterial tetracycline
JP3016587B2 (en) * 1989-12-04 2000-03-06 ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク Combination of non-steroidal anti-inflammatory drug and tetracycline
US5770588A (en) * 1991-02-11 1998-06-23 The Research Foundation Of State University Of New York Non-antibacterial tetracycline compositions of the prevention and treatment of root caries
US5494903A (en) * 1991-10-04 1996-02-27 American Cyanamid Company 7-substituted-9-substituted amino-6-demethyl-6-deoxytetracyclines
US5281628A (en) * 1991-10-04 1994-01-25 American Cyanamid Company 9-amino-7-(substituted)-6-demethyl-6-deoxytetracyclines
US6756365B2 (en) * 1991-11-06 2004-06-29 Trustees Of Tufts College Reducing tetracycline resistance in living cells
US5442059A (en) * 1992-08-13 1995-08-15 American Cyanamid Company 9-[(substituted glycyl)amido)]-6-demethyl-6-deoxytetracyclines
US5420272A (en) * 1992-08-13 1995-05-30 American Cyanamid Company 7-(substituted)-8-(substituted)-9-](substituted glycyl)amido]-6-demethyl-6-deoxytetracyclines
US5328902A (en) * 1992-08-13 1994-07-12 American Cyanamid Co. 7-(substituted)-9-[(substituted glycyl)amido]-6-demethyl-6-deoxytetracyclines
US5284963A (en) * 1992-08-13 1994-02-08 American Cyanamid Company Method of producing 7-(substituted)-9-[(substituted glycyl)-amidol]-6-demethyl-6-deoxytetra-cyclines
SG47520A1 (en) * 1992-08-13 1998-04-17 American Cyanamid Co New method for the production of 9-amino-6-demethyl-6-deoxytetracycline
US5248797A (en) * 1992-08-13 1993-09-28 American Cyanamid Company Method for the production of 9-amino-6-demethyl-6-deoxytetracycline
CA2103189C (en) * 1992-11-17 2005-05-03 Lorne M. Golub Tetracyclines including non-antimicrobial chemically-modified tetracyclines inhibit excessive collagen crosslinking during diabetes
US5371076A (en) 1993-04-02 1994-12-06 American Cyanamid Company 9-[(substituted glycyl)amido]-6-(substituted)-5-hydroxy-6-deoxytetracyclines
MX9603508A (en) 1994-02-17 1997-03-29 Pfizer 9-(substituted amino)-alpha-6-deoxy-5-oxy tetracycline derivatives, their preparation and their use as antibiotics.
US5675030A (en) * 1994-11-16 1997-10-07 American Cyanamid Company Method for selective extracting a 7-(hydrogen or substituted amino)-9- (substituted glycyl) amido!-6-demethyl-6-deoxytetracycline compound
US5567693A (en) * 1994-12-13 1996-10-22 American Cyanamid Company Method for inhibiting angiogenesis, proliferation of endothelial or tumor cells and tumor growth
US5843925A (en) * 1994-12-13 1998-12-01 American Cyanamid Company Methods for inhibiting angiogenesis, proliferation of endothelial or tumor cells and tumor growth
US6710033B1 (en) * 1996-08-14 2004-03-23 Vanderbilt University Methods and treatment of multiple sclerosis
US5789395A (en) * 1996-08-30 1998-08-04 The Research Foundation Of State University Of New York Method of using tetracycline compounds for inhibition of endogenous nitric oxide production
US5773430A (en) * 1997-03-13 1998-06-30 Research Foundation Of State University Of New York Serine proteinase inhibitory activity by hydrophobic tetracycline
US6068972A (en) * 1997-10-03 2000-05-30 Trustees Of Tufts College Methods and compositions for reducing bacterial tolerance to antibacterials, disinfectants and organic solvents
AU2466099A (en) 1998-01-23 1999-08-09 Trustees Of Tufts College Pharmaceutically active compounds and methods of use thereof
US6015804A (en) * 1998-09-11 2000-01-18 The Research Foundation Of State University Of New York Method of using tetracycline compounds to enhance interleukin-10 production
US5998390A (en) 1998-09-28 1999-12-07 The Research Foundation Of State University Of New York Combination of bisphosphonate and tetracycline
US6506740B1 (en) * 1998-11-18 2003-01-14 Robert A. Ashley 4-dedimethylaminotetracycline derivatives
US6946453B2 (en) * 1998-11-18 2005-09-20 Collagenex Pharmaceuticals, Inc. 4-dedimethylaminotracycline derivatives
US6256365B1 (en) * 1999-08-16 2001-07-03 Analogic Corporation Apparatus and method for reconstruction of images in a computed tomography system using oblique slices
US6500812B2 (en) 1999-09-14 2002-12-31 Paratek Pharmaceuticals, Inc. 13-substituted methacycline compounds
US6849615B2 (en) * 1999-09-14 2005-02-01 Paratek Pharmaceuticals, Inc. 13-substituted methacycline compounds
CN102336680A (en) * 1999-09-14 2012-02-01 塔夫茨大学信托人 Methods of preparing substituted tetracyclines with transition metal-based chemistries.
WO2001052858A1 (en) * 2000-01-24 2001-07-26 Trustees Of Tufts College Tetracycline compounds for treatment of cryptosporidium parvum related disorders
EP1272459B1 (en) 2000-03-31 2007-06-27 Trustees Of Tufts College 7- and 9-carbamate, urea, thiourea, thiocarbamate, and heteroaryl-amino substituted tetracycline compounds
US6613756B2 (en) * 2000-05-05 2003-09-02 Wisconsin Alumni Research Foundation Use of tetracycline derivatives in treating multiple sclerosis
AU2001259701A1 (en) 2000-05-15 2001-11-26 Paratek Pharmaceuticals, Inc 7-substituted fused ring tetracycline compounds
US20020128238A1 (en) 2000-06-16 2002-09-12 Nelson Mark L. 7-phenyl-substituted tetracycline compounds
US20020128237A1 (en) * 2000-06-16 2002-09-12 Nelson Mark L. 7-N-substituted phenyl tetracycline compounds
US20020132798A1 (en) * 2000-06-16 2002-09-19 Nelson Mark L. 7-phenyl-substituted tetracycline compounds
US20040224927A1 (en) * 2000-06-16 2004-11-11 Trustees Of Tufts College 7-N-substituted phenyl tetracycline compounds
US20050143353A1 (en) * 2000-07-07 2005-06-30 Paratek Pharmaceuticals, Inc. 13-Substituted methacycline compounds
EP1303479B1 (en) * 2000-07-07 2011-04-06 Trustees Of Tufts College 7-, 8- and 9-substituted tetracycline compounds
CN1690047B (en) 2000-07-07 2010-10-06 塔夫茨大学信托人 9-substituted minocycline compounds
KR100997596B1 (en) 2000-07-07 2010-11-30 파라테크 파마슈티컬스, 인크. 7-substituted tetracycline compounds
US7094806B2 (en) * 2000-07-07 2006-08-22 Trustees Of Tufts College 7, 8 and 9-substituted tetracycline compounds
EP1241160A1 (en) 2001-03-13 2002-09-18 Glaxo Group Limited Tetracycline derivatives and their use as antibiotic agents
EP2301914A1 (en) * 2001-03-13 2011-03-30 Paratek Pharmaceuticals, Inc. 7,9-Substituted tetracycline compounds
WO2002072506A2 (en) * 2001-03-13 2002-09-19 Paratek Pharmaceuticals, Inc. 7-pyrollyl tetracycline compounds and methods of use thereof
US7553828B2 (en) * 2001-03-13 2009-06-30 Paratek Pharmaceuticals, Inc. 9-aminomethyl substituted minocycline compounds
CA2440757A1 (en) * 2001-03-14 2002-09-19 Michael Draper Substituted tetracycline compounds as synergistic antifungal agents
WO2002072022A2 (en) * 2001-03-14 2002-09-19 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds as antifungal agents
US8088820B2 (en) 2001-04-24 2012-01-03 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds for the treatment of malaria
EP1399414B1 (en) * 2001-04-24 2010-01-13 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds for the treatment of malaria
US20060194773A1 (en) 2001-07-13 2006-08-31 Paratek Pharmaceuticals, Inc. Tetracyline compounds having target therapeutic activities
WO2003055441A2 (en) * 2001-08-02 2003-07-10 Paratek Pharmaceuticals, Inc. Medicaments
US20030069721A1 (en) * 2001-09-10 2003-04-10 Paratek Pharmaceuticals, Inc. Computational method for determining oral bioavailability
MY133403A (en) * 2001-10-05 2007-11-30 Tetragenex Pharmaceuticals Inc Tetracycline derivatives and methods of use thereof
EP2311799A1 (en) * 2002-01-08 2011-04-20 Paratek Pharmaceuticals, Inc. 4-dedimethylamino tetracycline compounds
KR101014918B1 (en) * 2002-03-08 2011-02-15 파라테크 파마슈티컬스, 인크. Amino-Methyl Substituted Tetracycline Compounds
CN1653037A (en) * 2002-03-21 2005-08-10 帕拉特克药品公司 Substituted tetracycline compounds
WO2004006850A2 (en) 2002-07-12 2004-01-22 Paratek Pharmaceuticals, Inc 3, 10, AND 12a SUBSTITUTED TETRACYCLINE COMPOUNDS
CA2503446C (en) 2002-10-24 2012-12-18 Paratek Pharmaceuticals, Inc. Methods of using substituted tetracycline compounds to modulate rna
US7553827B2 (en) * 2003-08-13 2009-06-30 Depuy Spine, Inc. Transdiscal administration of cycline compounds
US20060287283A1 (en) 2003-07-09 2006-12-21 Paratek Pharmaceuticals, Inc. Prodrugs of 9-aminomethyl tetracycline compounds
CA2553510C (en) * 2004-01-15 2012-09-25 Paratek Pharmaceuticals, Inc. Aromatic a-ring derivatives of tetracycline compounds
WO2005082860A1 (en) 2004-02-27 2005-09-09 National Research Council Of Canada Tetracyclines and their use as calpain inhibitors
KR101171408B1 (en) 2004-05-21 2012-08-08 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Synthesis of tetracyclines and analogues thereof
EP2287140A3 (en) * 2004-10-25 2011-09-21 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
CA2585418A1 (en) * 2004-10-25 2006-05-04 Paratek Pharmaceuticals, Inc. 4-aminotetracyclines and methods of use thereof
EP1848685A1 (en) 2005-02-04 2007-10-31 Paratek Pharmaceuticals, Inc. 11a, 12-derivatives of tetracycline compounds
US20070093455A1 (en) * 2005-07-21 2007-04-26 Paul Abato 10-substituted tetracyclines and methods of use thereof
EP2298324A1 (en) * 2006-01-24 2011-03-23 Paratek Pharmaceuticals, Inc. Methods of increasing oral bioavailability of tetracyclines
AU2007249695A1 (en) * 2006-05-15 2007-11-22 Paratek Pharmaceuticals, Inc. Methods of regulating expression of genes or of gene products using substituted tetracycline compounds
US8513223B2 (en) 2006-12-21 2013-08-20 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds for treatment of inflammatory skin disorders
US7935687B2 (en) * 2007-04-12 2011-05-03 Paratek Pharmaceuticals, Inc. Methods for treating spinal muscular atrophy using tetracycline compounds
JP2010525069A (en) 2007-04-27 2010-07-22 パラテック ファーマシューティカルズ インコーポレイテッド Method for synthesizing and purifying aminoalkyltetracycline compound
CN101784517A (en) * 2007-07-06 2010-07-21 帕拉特克药品公司 The method of the synthetic tetracycline compound that replaces

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106225B2 (en) 1999-09-14 2012-01-31 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US7696187B2 (en) 1999-09-14 2010-04-13 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US20060166946A1 (en) * 1999-09-14 2006-07-27 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US20050187198A1 (en) * 1999-09-14 2005-08-25 Trustees Of Tufts College Methods of preparing substituted tetracyclines with transition metal-based chemistries
US7858600B2 (en) 2000-03-31 2010-12-28 Paratek Pharmaceuticals, Inc. 7- and 9- carbamate, urea, thiourea, thiocarbamate, and heteroaryl-amino substituted tetracycline compounds
US20040176334A1 (en) * 2000-03-31 2004-09-09 Paratek Pharmaceuticals, Inc. 7-and 9- carbamate, urea, thiourea, thiocarbamate, and heteroaryl-amino substituted tetracycline compounds
US20110092467A1 (en) * 2000-03-31 2011-04-21 Paratek Pharmaceuticals, Inc. 7-And 9-Carbamate, Urea, Thiourea, Thiocarbamate, And Heteroaryl-Amino Substituted Tetracycline Compounds
US7612053B2 (en) 2000-05-15 2009-11-03 Paratek Pharmaceuticals, Inc. 7-Substituted fused ring tetracycline compounds
US20060148765A1 (en) * 2000-05-15 2006-07-06 Paratek Pharmaceuticals, Inc. 7-Substituted fused ring tetracycline compounds
US8288570B2 (en) 2000-05-15 2012-10-16 Paratek Pharmaceuticals, Inc. 7-iodo tetracyclines and related methods
US7893282B2 (en) 2000-05-15 2011-02-22 Paratek Pharmaceuticals, Inc. 7-substituted fused ring tetracycline compounds
US20110207951A1 (en) * 2000-05-15 2011-08-25 Paratek Pharmaceuticals, Inc. 7-Iodo Tetracyclines and Related Methods
US20080300424A1 (en) * 2000-05-15 2008-12-04 Paratek Pharmaceuticals, Inc. 7-substituted fused ring tetracycline compounds
US8168810B2 (en) 2000-06-16 2012-05-01 Trustees Of Tufts College 7-phenyl-substituted tetracycline compounds
US7851460B2 (en) 2000-06-16 2010-12-14 Trustees Of Tufts College 7-phenyl-substituted tetracycline compounds
US20070155708A1 (en) * 2000-06-16 2007-07-05 Trustees Of Tufts College 7-phenyl-substituted tetracycline compounds
US8492365B2 (en) 2000-07-07 2013-07-23 Trustees Of Tufts College 7-substituted tetracycline compounds
US7595309B2 (en) 2000-07-07 2009-09-29 Trustees Of Tufts College 7-substituted tetracycline compounds
US20090306022A1 (en) * 2000-07-07 2009-12-10 Trustees Of Tufts College 7-substituted tetracycline compounds
US20040138183A1 (en) * 2001-03-13 2004-07-15 Paratek Pharmaceuticals, Inc. 7,9-substituted tetracycline compounds
US7696186B2 (en) 2001-03-13 2010-04-13 Paratek Pharmaceuticals, Inc. 7,9-substituted tetracycline compounds
US7960366B2 (en) 2001-03-14 2011-06-14 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds as synergistic antifungal agents
US20040242548A1 (en) * 2001-04-24 2004-12-02 Michael Draper Substituted tetracycline compounds for the treatment of malaria
US8088820B2 (en) 2001-04-24 2012-01-03 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds for the treatment of malaria
US20060194773A1 (en) * 2001-07-13 2006-08-31 Paratek Pharmaceuticals, Inc. Tetracyline compounds having target therapeutic activities
US8211937B2 (en) 2001-08-02 2012-07-03 Paratek Pharmaceuticals, Inc. 7-pyrollyl 9-aminoacyl tetracycline compounds and methods of use thereof
US7323492B2 (en) 2001-08-02 2008-01-29 Paratek Pharmaceuticals, Inc. 7-pyrollyl 9-aminoacyl tetracycline compounds and methods of use thereof
US20040266740A1 (en) * 2001-08-02 2004-12-30 Sophie Huss 7-pyrollyl 9-aminoacyl tetracycline compounds and methods of use thereof
US20040157806A1 (en) * 2002-01-08 2004-08-12 Nelson Mark L. 4-Dedimethylamino tetracycline compounds
US7056902B2 (en) 2002-01-08 2006-06-06 Paratek Pharmaceuticals, Inc. 4-dedimethylamino tetracycline compounds
US7820641B2 (en) 2002-03-21 2010-10-26 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
US9562003B2 (en) 2002-10-24 2017-02-07 Paratek Pharmaceuticals, Inc. Methods of using substituted tetracycline compounds to modulate RNA
US20040214800A1 (en) * 2002-10-24 2004-10-28 Levy Stuart B. Methods of using substituted tetracycline compounds to modulate RNA
US8173624B2 (en) 2002-10-24 2012-05-08 Paratek Pharmaceuticals, Inc. Methods of using substituted tetracycline compounds to modulate RNA
US20060287283A1 (en) * 2003-07-09 2006-12-21 Paratek Pharmaceuticals, Inc. Prodrugs of 9-aminomethyl tetracycline compounds
US8598148B2 (en) 2004-05-21 2013-12-03 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US7807842B2 (en) 2004-05-21 2010-10-05 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US11192866B2 (en) 2004-05-21 2021-12-07 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US20050282787A1 (en) * 2004-05-21 2005-12-22 Myers Andrew G Synthesis of tetracyclines and analogues thereof
US10669244B2 (en) 2004-05-21 2020-06-02 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US20110009371A1 (en) * 2004-05-21 2011-01-13 Myers Andrew G Synthesis of tetracyclines and analogues thereof
US9884830B2 (en) 2004-05-21 2018-02-06 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US9365493B2 (en) 2004-05-21 2016-06-14 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US20110077225A1 (en) * 2004-10-25 2011-03-31 Paratek Pharmaceuticals, Inc. 4-Substituted Tetracyclines and Methods of Use Thereof
US7858601B2 (en) 2004-10-25 2010-12-28 Paratek Pharmaceuticals, Inc. 4-substituted tetracyclines and methods of use thereof
US8466132B2 (en) 2004-10-25 2013-06-18 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds
US20100130451A1 (en) * 2006-04-07 2010-05-27 Presidents And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US8486921B2 (en) 2006-04-07 2013-07-16 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US7763735B2 (en) 2006-10-11 2010-07-27 President And Fellows Of Harvard College Synthesis of enone intermediate
US8580969B2 (en) 2006-10-11 2013-11-12 President And Fellows Of Harvard College Synthesis of enone intermediate
US8907104B2 (en) 2006-10-11 2014-12-09 President And Fellows Of Harvard College Synthesis of enone intermediate
US20110009639A1 (en) * 2006-10-11 2011-01-13 Myers Andrew G Synthesis of enone intermediate
US8440646B1 (en) 2006-10-11 2013-05-14 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds for treatment of Bacillus anthracis infections
US8293920B2 (en) 2006-10-11 2012-10-23 President And Fellows Of Harvard College Synthesis of enone intermediate
US20090093640A1 (en) * 2006-10-11 2009-04-09 Myers Andrew G Synthesis of enone intermediate
US7960559B2 (en) 2006-10-11 2011-06-14 President And Fellows Of Harvard College Synthesis of enone intermediate
US8518912B2 (en) 2007-11-29 2013-08-27 Actelion Pharmaceuticals Ltd. Phosphonic acid derivates and their use as P2Y12 receptor antagonists
US9073829B2 (en) 2009-04-30 2015-07-07 President And Fellows Of Harvard College Synthesis of tetracyclines and intermediates thereto
US9688644B2 (en) 2009-04-30 2017-06-27 President And Fellows Of Harvard College Synthesis of Tetracyclines and intermediates thereto

Also Published As

Publication number Publication date
US7521437B2 (en) 2009-04-21
US20050119235A1 (en) 2005-06-02
US20090258842A1 (en) 2009-10-15
US20070155708A1 (en) 2007-07-05
US8168810B2 (en) 2012-05-01
US20110082305A1 (en) 2011-04-07
US7851460B2 (en) 2010-12-14

Similar Documents

Publication Publication Date Title
US7521437B2 (en) 7-phenyl-substituted tetracycline compounds
US8119622B2 (en) 7-phenyl-substituted tetracycline compounds
US8012951B2 (en) 7-N-substituted phenyl tetracycline compounds
US8288570B2 (en) 7-iodo tetracyclines and related methods
US7875649B2 (en) 7, 8 and 9-substituted tetracycline compounds
US6624168B2 (en) 7,8 and 9-substituted tetracycline compounds
US6500812B2 (en) 13-substituted methacycline compounds
US20020128237A1 (en) 7-N-substituted phenyl tetracycline compounds
US20030166952A1 (en) 13-substituted methacycline compounds
WO2001098259A1 (en) 7-phenyl-substituted tetracycline compounds
WO2001098260A1 (en) 7-n-substituted phenyl tetracycline compounds
EP2204361B1 (en) 13-substituted methacycline compounds
EP1426369A1 (en) 7-Substituted fused ring tetracycline compounds

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRUSTEES OF TUFTS COLLEGE, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NELSON, MARK L.;REEL/FRAME:014524/0482

Effective date: 20011026

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION