Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20020134090 A1
Publication typeApplication
Application numberUS 09/813,637
Publication dateSep 26, 2002
Filing dateMar 21, 2001
Priority dateMar 21, 2001
Publication number09813637, 813637, US 2002/0134090 A1, US 2002/134090 A1, US 20020134090 A1, US 20020134090A1, US 2002134090 A1, US 2002134090A1, US-A1-20020134090, US-A1-2002134090, US2002/0134090A1, US2002/134090A1, US20020134090 A1, US20020134090A1, US2002134090 A1, US2002134090A1
InventorsArthur Rudick, Jean-Marc Rotsaert, James Graber, Joseph Lehman, Dwight Musgrave
Original AssigneeRudick Arthur G., Jean-Marc Rotsaert, Graber James M., Lehman Joseph M., Musgrave Dwight S.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Stirling-based heating and cooling device
US 20020134090 A1
Abstract
A device for heating a first article and cooling a second article. The device may include an enclosure with a hot compartment and a cold compartment. The device also may include a Stirling cooler with a hot end and a cold end. The hot end may be positioned in communication with the hot compartment so as to heat the first article and the cold end may be positioned in communication with the cold compartment so as to cool the second article.
Images(5)
Previous page
Next page
Claims(34)
We claim:
1. A device for heating a first article and cooling a second article, said device comprising:
an enclosure;
said enclosure comprising a hot compartment and a cold compartment; and
a Stirling cooler;
said Stirling cooler comprising a hot end and a cold end and wherein said hot end is positioned in communication with said hot compartment so as to heat said first article and wherein said cold end is positioned in communication with said cold compartment so as to cool said second article.
2. The device of claim 1, wherein said enclosure comprises an insulated divider positioned between said hot compartment and said cold compartment.
3. The device of claim 2, wherein said Stirling cooler comprises a regenerator positioned between said hot end and said cold end and wherein said regenerator is positioned within said insulated divider.
4. The device of claim 1, wherein said enclosure comprises a handle for carrying said enclosure.
5. The device of claim 1, wherein said cold end of said Stirling cooler comprises a cold end heat exchanger in communication therewith.
6. The device of claim 1, wherein said cold compartment comprises a Stirling cooler section with a fan.
7. The device of claim 6, wherein said cold compartment comprises a product section with a product support for positioning said second article thereon.
8. The device of claim 7, wherein said cold compartment comprises an airflow path for circulating air through said Stirling cooler section and said product section.
9. The device of claim 8, wherein said product support comprises a plurality of apertures therein in communication with said airflow path.
10. The device of claim 1, wherein said cold compartment comprises a sensor for determining the temperature therein, said sensor in communication with a controller.
11. The device of claim 10, wherein said enclosure comprises an external vent positioned adjacent to said cold compartment and wherein said controller is in communication with said external vent so as to open said external vent when the temperature within said cold compartment drops below a predetermined temperature.
12. The device of claim 10, wherein said enclosure comprises an external sensor for determining the external temperature, said external sensor in communication with said controller.
13. The device of claim 12, wherein said cold compartment comprises a Stirling cooler section, a product section, and a divider positioned therebetween.
14. The device of claim 13, wherein said divider comprises an internal vent therein, said internal vent comprising an open position to allow communication between said Stirling cooler section and said product section and a closed position blocking communication between said Stirling cooler section and said product section.
15. The device of claim 14, wherein said internal vent comprises a first internal vent positioned on a first side of said divider and a second internal vent positioned on a second side of said divider.
16. The device of claim 14, wherein the enclosure comprises a plurality of external vents and wherein said controller is in communication with said internal vent and said plurality of external vents so as to close said internal vent and so as to open said plurality of external vents when the temperature within said cold compartment drops below a predetermined temperature and the ambient temperature is below freezing.
17. The device of claim 1, wherein said hot end of said Stirling cooler comprises a hot end heat exchanger in communication therewith.
18. The device of claim 1, wherein said hot compartment comprises a Stirling cooler section with a fan.
19. The device of claim 18, wherein said hot compartment comprises a product section with a product support for positioning said first article thereon.
20. The device of claim 19, wherein said hot compartment comprises an airflow path for circulating air through said Stirling cooler section and said product section.
21. The device of claim 1, wherein said hot compartment comprises a sensor for determining the temperature therein.
22. The device of claim 21, wherein said enclosure comprises an external vent positioned adjacent to said hot compartment and wherein said sensor is in communication with said external vent so as to open said external vent when the temperature within said hot compartment rises above a predetermined temperature.
23. The device of claim 1, further comprising a wick extending from about said cold end of said Stirling cooler in said cold compartment to about said hot end of said Stirling cooler in said hot compartment.
24. The device of claim 23, wherein said cold compartment comprises a condensate collector positioned adjacent to said cold end of said Stirling cooler and said wick.
25. A Stirling cooler driven device for use with ambient temperatures above and below freezing, comprising:
an enclosure;
said enclosure comprising a Stirling cooler section for positioning said Stirling cooler therein, a product section, and a divider positioned therebetween;
said divider comprising an internal vent therein; and
said enclosure comprising a plurality of external vents positioned adjacent to said Stirling cooler section.
26. The Stirling cooler driven device of claim 25, further comprising an internal temperature sensor positioned within said enclosure in communication with a controller and an external temperature sensor positioned on said enclosure in communication with said controller, said controller in communication with said interior vent and said plurality of external vents.
27. The Stirling cooler driven device of claim 26, wherein said controller opens at least a first one of said plurality of external vents when the temperature within said enclosure drops below a predetermined temperature and the ambient temperature is above freezing.
28. The Stirling cooler driven device of claim 26, wherein said controller closes said internal vent and opens said plurality of external vents when the temperature within said enclosure drops below a predetermined temperature and the ambient temperature is below freezing.
29. The Stirling cooler driven device of claim 28, wherein said predetermined temperature is below about thirty-two degrees Fahrenheit (zero degrees Celsius).
30. The Stirling cooler driven device of claim 25, wherein said internal vent comprising an open position to allow communication between said Stirling cooler section and said product section and a closed position blocking communication between said Stirling cooler section and said product section.
31. The Stirling cooler device of claim 30, wherein said internal vent comprises a first internal vent positioned on a first side of said divider and a second internal vent positioned on a second side of said divider.
32. A device for heating a first article with a hot end of a Stirling cooler and cooling a second article with a cold end of the Stirling cooler, said device comprising:
a hot compartment with said hot end of said Stirling cooler positioned therein;
a cold compartment with said cold end of said Stirling cooler positioned therein;
a hot compartment vent positioned adjacent to said hot compartment;
a cold compartment vent positioned adjacent to said cold compartment;
a hot compartment sensor positioned within said hot compartment, said hot compartment sensor in communication with said hot compartment vent so as to open said hot compartment vent when the temperature within said hot compartment rises above a first predetermined temperature; and
a cold compartment sensor positioned within said cold compartment, said cold compartment sensor in communication with said cold compartment vent so as to open said cold compartment vent when the temperature within said cold compartments falls below a second predetermined temperature.
33. A temperature-controlled device for use with an electrical receptacle of a vehicle, comprising:
a portable enclosure,
said portable enclosure comprising an interior space to be heated or cooled;
a Stirling cooler positioned about said enclosure and providing heating or cooling to said interior space; and
an electrical line for powering said Stirling cooler via said electrical receptacle.
34. A heating and cooling device comprising:
an enclosure;
said enclosure comprising a hot compartment and a cold compartment;
a Stirling cooler;
said Stirling cooler comprising a hot end heat exchanger positioned in communication with said hot compartment and a cold end heat exchanger positioned in communication with said cold compartment;
said hot compartment comprising a fan therein positioned adjacent to said hot end heat exchanger;
said cold compartment comprising a condensate collector therein positioned adjacent to said cold end heat exchanger so as to collect condensate from said cold end heat exchanger; and
a wick, said wick extending from said condensate collector in said cold compartment to said hot compartment so as to wick condensate from said condensate collector to said hot compartment and so as to evaporate said condensate via an air stream produced by said fan.
Description
FIELD OF THE INVENTION

[0001] The present invention relates generally to refrigeration and heating systems and more specifically relates to an apparatus driven by a Stirling cooler and having a heated area and a cooled area.

BACKGROUND OF THE INVENTION

[0002] Known refrigeration systems generally have used conventional vapor compression Rankine cycle devices to chill a given space. In a typical Rankine cycle apparatus, the refrigerant in the vapor phase is compressed in a compressor so as to cause an increase in temperature. The hot, high-pressure refrigerant is circulated through a heat exchanger, called a condenser, where it is cooled by heat transfer to the surrounding environment. As a result, the refrigerant condenses from a gas back to a liquid. After leaving the condenser, the refrigerant passes through a throttling device where the pressure and the temperature are reduced. The cold refrigerant leaves the throttling device and enters a second heat exchanger, called an evaporator, located in or near the refrigerated space. Heat transfer with the evaporator and the refrigerated space causes the refrigerant to evaporate or to change from a saturated mixture of liquid and vapor into a superheated vapor. The vapor leaving the evaporator is then drawn back into the compressor so as to repeat the refrigeration cycle.

[0003] Attempts to use such a Rankine cycle system to refrigerate a portable device, however, have been largely unsuccessful. The typical components of a Rankine cycle system are generally too large, too heavy, and too loud. Further, such systems generally contain noxious or greenhouse gases. As a result, most Rankine cycle systems are used for stationary refrigeration devices.

[0004] Similarly, attempts have been made to use the waste heat generated in a Rankine cycle system to provide heat to a warming compartment spaced apart from the refrigeration area. Although waste heat is generated, the relatively large and cumbersome configuration required by a Rankine cycle system, may make it difficult to transfer effectively the waste heat to the warming compartment. Separating the refrigeration components and the warming compartment generally may lessen the efficiency of the system as a whole.

[0005] One alternative to the use of a Rankine cycle system is a Stirling cycle cooler. The Stirling cycle cooler is also a well-known heat transfer mechanism. Briefly described, a Stirling cycle cooler compresses and expands a gas (typically helium) to produce cooling. This gas shuttles back and forth through a regenerator bed to develop much greater temperature differentials than may be produced through the normal Rankine compression and expansion process. Specifically, a Stirling cooler may use a displacer to force the gas back and forth through the regenerator bed and a piston to compress and expand the gas. The regenerator bed may be a porous element with significant thermal inertia. During operation, the regenerator bed develops a temperature gradient. One end of the device thus becomes hot and the other end becomes cold. See David Bergeron, Heat Pump Technology Recommendation for a Terrestrial Battery-Free Solar Refrigerator, September 1998. Patents relating to Stirling coolers include U.S. Pat. Nos. 5,678,409; 5,647,217; 5,638,684; 5,596,875 and 4,922,722, all incorporated herein by reference.

[0006] Stirling cooler units are desirable because they are nonpolluting, efficient, and have very few moving parts. The use of Stirling coolers units has been proposed for conventional refrigerators. See U.S. Pat. No. 5,438,848, incorporated herein by reference. The integration of a free-piston Stirling cooler into a conventional refrigerated cabinet, however, requires different manufacturing, installation, and operational techniques than those used for conventional compressor systems. See D. M. Berchowitz et al., Test Results for Stirling Cycle Cooler Domestic Refrigerators, Second International Conference. As a result, the use of the Stirling coolers in refrigerators or similar devices is not well known.

[0007] Likewise, the use of Stirling coolers in portable refrigeration devices is not well known to date. Further, the use of Stirling coolers to heat and to cool simultaneously separate compartments of a device is not known. A need exists therefore for adapting Stirling cooler technology to portable refrigeration and heating devices.

SUMMARY OF THE INVENTION

[0008] The present invention thus provides for a device for heating a first article and cooling a second article. The device may include an enclosure with a hot compartment and a cold compartment. The device also may include a Stirling cooler with a hot end and a cold end. The hot end may be positioned in communication with the hot compartment so as to heat the first article and the cold end may be positioned in communication with the cold compartment so as to cool the second article.

[0009] Specific embodiments of the present invention include the use of an insulated divider positioned between the hot compartment and the cold compartment. The Stirling cooler may include a regenerator positioned between the hot end and the cold end. The regenerator may be positioned within the insulated divider. The enclosure may include a handle for carrying the enclosure.

[0010] The cold end of the Stirling cooler may include a cold end heat exchanger. The cold compartment may include a Stirling cooler section with a fan, a product section with a product support for positioning the second article thereon, and an airflow path for circulating air through the Stirling cooler section and the product section. The product support may include a number of apertures therein in communication with the airflow path.

[0011] The cold compartment may include a sensor for determining the temperature therein. The sensor may be in communication with a controller. The enclosure may include an external vent positioned adjacent to the cold compartment. The controller may be in communication with the external vent so as to open the vent when the temperature within the cold compartment drops below a predetermined temperature.

[0012] The cold compartment also may include a divider positioned between the Stirling cooler section and the product section. The divider may include an internal vent therein. The internal vent may include a first internal vent positioned on a first side of the divider and a second internal vent positioned on a second side of the divider. The enclosure may include a number of external vents positioned adjacent to the cold compartment. The controller may be in communication with the internal vent and the external vents so as to close the internal vent and so as to open the external vents when the temperature within the cold compartment drops below a predetermined temperature and the ambient temperature is below freezing.

[0013] The hot end of the Stirling cooler may include a hot end heat exchanger. The hot compartment may include a Stirling cooler section with a fan, a product section with a product support for positioning the first article thereon, and an airflow path for circulating air through the Stirling cooler section and the product section. The hot compartment may include a sensor for determining the temperature therein. The enclosure may include an external vent positioned adjacent to the hot compartment. The sensor may be in communication with the external vent so as to open the vent when the temperature within the hot compartment rises above a predetermined temperature.

[0014] The device may further include a wick extending from about the cold end of the Stirling cooler in the cold compartment to about the hot end of the Stirling cooler in the hot compartment. The cold compartment may include a condensate collector positioned adjacent to the cold end of the Stirling cooler and the wick so as to collect condensate and wick it to the hot compartment.

[0015] A further embodiment of the present invention may provide for a Stirling cooler driven device for use with ambient temperatures above and below freezing. The device may include an enclosure. The enclosure may include a Stirling cooler section for positioning the Stirling cooler therein, a product section, and a divider positioned therebetween. The divider may include an internal vent. The enclosure may include a number of external vents positioned adjacent to the Stirling cooler section.

[0016] The device also may include an internal temperature sensor positioned within the enclosure and an external temperature sensor positioned on the enclosure. The sensors may be in communication with a controller. The controller may open at least a first one of the external vents when the temperature within the enclosure drops below a predetermined temperature and the ambient temperature is above freezing. The controller may close the internal vent and open the external vents when the temperature within the enclosure drops below the predetermined temperature and the ambient temperature is below freezing. The predetermined temperature may be below about thirty-two degrees Fahrenheit (zero degrees Celsius).

[0017] A further embodiment of the present invention may provide for a device for heating a first article with a hot end of a Stirling cooler and cooling a second article with a cold end of the Stirling cooler. The device may include a hot compartment with the hot end of the Stirling cooler positioned therein and a cold compartment with the cold end of the Stirling cooler positioned therein. A hot compartment vent may be positioned adjacent to the hot compartment and a cold compartment vent may be positioned adjacent to the cold compartment. A hot compartment sensor may be positioned within the hot compartment. The hot compartment sensor may be in communication with the hot compartment vent so as to open the vent when the temperature within the hot compartment rises above a first predetermined temperature. A cold compartment sensor may be positioned within the cold compartment. The cold compartment sensor may be in communication with the cold compartment vent so as to open the vent when the temperature within the cold compartments falls below a second predetermined temperature.

[0018] A further embodiment of the present invention provides for a temperature-controlled device for use with an electrical receptacle of a vehicle. The device may include a portable enclosure. The portable enclosure may have an interior space to be heated or cooled, a Stirling cooler positioned about the enclosure for providing heating or cooling to the interior space, and an electrical line for powering the Stirling cooler via the electrical receptacle.

[0019] A further embodiment of the present invention may provide for a heating and cooling device. The device may include an enclosure with a Stirling cooler, a hot compartment, and a cold compartment. The Stirling cooler may have a hot end heat exchanger positioned in communication with the hot compartment and a cold end heat exchanger positioned in communication with the cold compartment. The hot compartment may include a fan positioned adjacent to the hot end heat exchanger. The cold compartment may include a condensate collector positioned adjacent to the cold end heat exchanger so as to collect condensate from the cold end heat exchanger. The device also may include a wick. The wick may extend from the condensate collector in the cold compartment to the hot compartment so as to wick condensate from the condensate collector to the hot compartment and so as to evaporate the condensate via an air stream produced by the fan.

[0020] Other objects, features, and advantages of the present invention will become apparent upon review of the following specification, when taken in conjunction with the drawings and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021]FIG. 1 is a top plan view of a Stirling cooler unit.

[0022]FIG. 2 is an end plan view of the Stirling cooler unit of FIG. 1.

[0023]FIG. 3 is a perspective view of the heating/cooling device of the present invention.

[0024]FIG. 4 is a side cross-sectional view of the heating/cooling device taken along line 4-4 of FIG. 3.

[0025]FIG. 5 is a side cross-sectional view of the heating/cooling device taken along line 4-4 of FIG. 3 with the cooling compartment vent open.

[0026]FIG. 6 is a side cross-sectional view of the heating/cooling device taken along line 4-4 of FIG. 3 with the heating compartment vent open.

[0027]FIG. 7 is a partial side cross-sectional view of an alternative embodiment of the heating/cooling device with the external vents closed and the internal vents open.

[0028]FIG. 8 is a partial side cross-sectional view of the alternative embodiment of the heating/cooling device of FIG. 7 with one of the external vents open.

[0029]FIG. 9 is a partial side cross-sectional view of the alternative embodiment of the heating/cooling device of FIG. 7 showing the external vents open and the internal vents closed.

[0030]FIG. 10 is a partial side cross-sectional view of an alternative embodiment of the present invention showing a condensate collection system.

DETAILED DESCRIPTION OF THE INVENTION

[0031] Referring now to the drawings in which like numerals indicate like elements throughout the several views, FIGS. 1 and 2 show a Stirling cooler 100 for use with the present invention. As is well known, the Stirling cooler 100 may include a cold end 110 and a hot end 120. A regenerator 130 may separate the cold end 110 and the hot end 120. The Stirling cooler 100 may be driven by a free piston (not shown) positioned within a casing 140. The Global Cooling Company of Athens, Ohio may manufacture a Stirling cooler 100 suitable for use with the present invention. Any conventional type of free piston Stirling cooler 100, however, may be used herein. Any numbers of the Stirling coolers 100 also may be used. The size and the number of the Stirling coolers 100 used herein may depend upon the size and the capacity of the refrigeration system as a whole.

[0032] A cold end heat exchanger 150 may be located on the cold end 110 of the Stirling cooler 100. The cold end heat exchanger 150 may be a cross-flow finned heat exchanger or any conventional type of heat exchange device. The heat exchanger 150 may be made out of copper, aluminum, or similar types of materials. A hot end heat exchanger 160 may be positioned on the hot end 120 of the Stirling cooler 100. The hot end heat exchanger 160 also may be a cross-flow finned heat exchanger or a similar type of device. The heat exchanger 160 also may be made out of copper, aluminum, or similar types of materials. The size of the heat exchangers 150, 160 may depend upon the size of the Stirling cooler 100 as a whole.

[0033] FIGS. 3-6 show a heating/cooling container 200 of the present invention. The heating/cooling container 200 may include an insulated outer shell 210. The insulated outer shell 210 may be made out of expanded polystyrene foam, polyurethane foam, or similar types of insulated materials. The insulated outer shell 210 may include a number of doors 220. For example, a hot compartment door 230 and a cold compartment door 240 are shown. The doors 220 may each have a handle 250 and may be attached to the insulated outer shell 210 by a conventional hinge 260 or a similar device. The insulated outer shell 210 also may have a handle 270 for carrying the heater/cooler container 200. The container 200 also may have a power cord 280 to power the Stirling cooler or coolers 100 therein. The power cord 280 may plug into a conventional electric outlet or into an electrical receptacle such as, for example, an automobile lighter compartment. Alternatively, a conventional battery pack also may be used.

[0034] A temperature sensor 285 may be positioned on the outer shell 210 so as to determine the ambient temperature. The sensor 285 may be a conventional temperature sensor such as a thermocouple, a thermistor, or similar types of devices. The sensor 285 also may be in communication with a controller as described in more detail below.

[0035] The container 200 may have a hot compartment 290 and a cold compartment 300. The hot compartment door 230 may be positioned adjacent to the hot compartment 290 while the cold compartment door 240 may be positioned adjacent to the cold compartment 300. An insulated divider 310 may separated the hot compartment 290 and the cold compartment 300. The insulated divider 310 may be out of expanded polystyrene foam, polyurethane foam, or similar types of materials with good insulating characteristics.

[0036] The Stirling cooler 100 may be positioned within the container 200 such that the hot end 120 and the hot end heat exchanger 160 are within or adjacent to the hot compartment 290 while the cold end 110 and the cold end heat exchanger 150 are within or adjacent to the cold compartment 300. The regenerator 130 may be positioned, in whole or in part, within the insulated divider 310.

[0037] The cold compartment 300 may have a non-insulated divider 320 and a support plate 330 positioned therein. The non-insulated divider 320 may define a Stirling cooler section 340 and a product section 350. The Stirling cooler section 340 may house the cold end 110 of the Stirling cooler 100 while the product section 350 may house a number of products 355. The products 355 may include any item intended to be chilled, such as a beverage container. Likewise, the support plate 330 also defines the product section 350 and an airflow path 360. The support plate 330 may have a number of apertures 370 therein that lead from the airflow path 360 to the product section 350. The airflow path 360 may extend through the Stirling cooler section 340 and the product section 350.

[0038] Positioned within the Stirling cooler section 340 may be a fan 380. Although the term “fan” 380 is used herein, the fan may be any type of air movement device, such as a pump, a bellows, a screw, and the like known to those skilled in the art. The Stirling cooler section 340 also may include a shroud 390 positioned therein. The shroud 390 may direct the flow of air through the fan 380 and into the airflow path 360.

[0039] A vent 410 may be formed in the outer insulated shell 210 adjacent to the Stirling cooler section 340 of the cold compartment 300. The vent 410 may be an open or shut door type device with a door 412 and a movable hinge 414. The vent 410 may be in communication with a sensor 420. The sensor 420 may be a conventional temperature sensor such as a thermocouple, a thermistor, or similar types of devices. The vent 410 and the sensor 420 also may be in communication with a controller 430 so as to open or shut the vent 410 depending upon the temperature as sensed by the sensor 420 in relationship to the ambient temperature as sensed by the external sensor 285. The controller 430 may be a conventional microprocessor. The programming of the controller 430 may be in any conventional programming language. The controller 430 may be programmed so as to open the vent 410 if the temperature within the cold compartment 300 drops below a given set point temperature.

[0040] The hot compartment 290 also may include a non-insulated divider 450 and a support plate 460. The non-insulated divider 450 may define a Stirling cooler section 470 and a product section 480 similar to that described above. The support plate 460 may define an airflow path 490 communicating between the Stirling cooler section 470 and the product section 480. The Stirling cooler section 470 may include a fan 500. As described above, although the term “fan” 500 is used herein, the fan 500 may be any type of air movement device, such as a pump, a bellows, a screw, and the like known to those skilled in the art. The fan 500 may circulate air through the hot end heat exchanger 160, into the product section 480, and back through the air flow path 490. A number of hot products 510 may be positioned on the support plate 460. The hot products 510 may include any item intended to be heated, such as a number of pizza boxes or other types of hot food containers.

[0041] The hot compartment 290 also may include a hot compartment vent 520. As described above with respect to vent 410, the vent 520 may be an open or shut type device with a door 522 and a movable hinge 524. The vent 520 may be in communication with a sensor 530 and the controller 430. The sensor 530 may be similar to the sensor 420 described above. The controller 430 may open the vent 520 when the temperature as sensed by the sensor 530 rises above a given set point.

[0042] In use, the cold products 355 that are either cold or intended to be chilled are positioned on the support plate 330 within the cold compartment 300. Once the cold products 355 are positioned therein, the fan 380 directs a flow of air through the cold end heat exchanger 150 into the airflow path 360. The chilled air then flows through the apertures 370 of the support plate 330 and across the cold products 355. The air then returns through the cold end heat exchanger 150. This flow of air thus keeps the cold products 355 chilled.

[0043] If the sensors 420 determine that the temperature within the cold compartment 300 drops below a given temperature, for example about 34 degrees Fahrenheit (1.1 degrees Celsius), the controller 430 may open the vent 410 to allow ambient air to circulate through the cold compartment 300 if the ambient air temperature as sensed by the external sensor 285 is above freezing. The vent 410 may remain open until the temperature therein again rises above the set point as determined by the sensor 420. Alternatively, the vent 410 may be opened proportionally to let in a varying amount of ambient air. This system as a whole is designed for use where the ambient temperature is above freezing.

[0044] Likewise, the hot products 510 or the products that are to be warmed may be inserted onto the support plate 460 within the hot compartment 290. The fan 500 may circulate air through the hot end heat exchanger 160, into the product section 480, around the products 510, through the air flow path 490, and back through the fan 500. This flow of air thus keeps the hot products 510 warm.

[0045] If the sensor 530 determines that the temperature within the hot compartment 290 is above a given set point, for example about 150 degrees Fahrenheit (65.6 degrees Celsius), the controller 430 may open the vent 520 so as to allow ambient air to circulate through the hot compartment 290. The vent 520 may remain open until the temperature therein again falls below the set point as determined by the sensor 530. Alternatively, the vent 520 may be opened proportionally to let in a varying amount of ambient air.

[0046] The container 200 as a whole may be designed such that the heat leak between the hot compartment 290 and the cold compartment 300, the heat leak from within the insulated inner shell 210 and the ambient air, and the refrigeration lift of the Stirling cooler 100 are about in balance. For example, the following variables may be used:

[0047] QH=Heat flow through the wall 210 and the door 230 from the hot compartment 290 to ambient;

[0048] QC=Heat flow through the wall 210 and the door 240 from ambient to the cold compartment 300;

[0049] QD=Heat flow through the divider 310 from the hot compartment 290 to the cold compartment 300;

[0050] QS=Heat pumped by the Stirling cooler 100 from the cold compartment 300 to the hot compartment 290;

[0051] QW=Waste heat generated by the Stirling cooler 100 and dumped into the hot compartment 290;

[0052] QFH=Waste heat generated by the fan 500 and dumped into the hot compartment 290; and

[0053] QFC=Waste heat generated by the fan 380 and dumped into the cold compartment 300.

[0054] Given a cold compartment 300 temperature (TC) of about 34 degrees Fahrenheit (1.1 degrees Celsius), a hot compartment temperature (TH) of about 150 degrees Fahrenheit (65.6 degrees Celsius), and an ambient temperature (TA) of about 75 degrees Fahrenheit (24 degrees Celsius), the insulation of the container 200 and the power level of the Stirling cooler 100 may be selected such that the following relationship is in place:

Q S =Q C +Q D +Q FC =Q H +Q D −Q W −Q FC

[0055] Specifically, the Stirling cooler 100 may have a capacity of about 40 Watts with a hot compartment 290 having an area of about 2,000 cubic inches (about 32,744 cm3) and a cold compartment 300 having an area of about 1,000 cubic inches (about 16,387 cm3). Given these variables, the system as a whole can be used in stabilized conditions with the hot compartment 290 and the cold compartment 300 at their respective set points with little or no need for opening the vents 410, 520.

[0056] FIGS. 7-9 show an alternative embodiment of the present invention. The container 200 of FIGS. 3-6 may not be effective when the ambient air temperature is below freezing. A container 550, however, may be adapted to deal with such an environment. The container 550 may be identical to the container 200 with the exception that the non-insulated divider 320 is replaced with a first divider 560 and a second divider 570. The dividers 560, 570 may be made out of plastic, metal, or similar materials. The dividers 560, 570 may form an air pathway 580 therebetween.

[0057] Positioned on one of the dividers 560, 570 may be a first internal vent 590. Positioned on the other end of the dividers 560, 570 may be a second internal vent 600. When closed, the internal vents 590, 600 may separate the Stirling cooler section 340 from the product section 300. The Stirling cooler section 340 also may have an additional exterior vent 610 positioned within the insulated outer shell 210. The vents 410, 590, 600, 610 may all operate under the control of the controller 430 based upon the temperature as sensed by the sensor 420 and the external sensor 285.

[0058]FIG. 7 shows the normal operating environment for the container 550. In this environment, the exterior vents 410, 610 are closed while the internal vents 590, 600 are opened. The cold compartment 300 thus operates as described above with respect to FIG. 4. Likewise, FIG. 8 shows the configuration of the container 500 when the ambient temperature is above freezing but the internal temperature is below the set point. In this case, one or both of the external vents 410, 610 may be open so as to allow ambient air to circulate within the cold compartment 300 as shown in FIG. 6.

[0059]FIG. 9 shows the configuration of the container 500 when the ambient temperature is below freezing and the temperature within the cold compartment 300 is below the set point. In this situation, the external vents 410, 610 may be open while the internal vents 590, 600 are closed. Closing the internal vents 590, 600 effectively isolates the product section 350 from the Stirling cooler section 340. Air is thus drawn into the Stirling cooler section 340 by the fan 380 and is directed through the air pathway 580 and through the cold end heat exchanger 150. The cold air is then circulated back out through the second exterior vent 610. In this case, the Stirling cooler 100 acts largely as a heat pump without adding any additional refrigeration to the cold compartment 300.

[0060]FIG. 10 shows an alternative embodiment of the present invention having a condensate collection system 700. The condensate collection system 700 may use the heating/cooling container 200 as described in detail herein with the Stirling cooler 100. The condensate collection system 700 also may include a condensate collector 710 attached to the non-insulated divider 320. The condensate collector 710 may be made out of metal, plastic, or similar types of somewhat rigid materials. The condensate collector 710 may extend from the non-insulated divider 320 along the length of cold end heat exchanger 150.

[0061] The condensate collection system 700 also may have a wick 720 positioned adjacent to the condensate collector 710. The wick 720 may be made out of hydra chamois, polyester fabrics, synthetic sponge (polyvinyl alcohol), or similar materials with wicking characteristics. The wick 720 may extend from the condensate collector 710, through the insulated divider 310, and into the hot compartment 290 adjacent to the hot end heat exchanger 160. The condensate collector 710 may be angled somewhat downward such that the condensate will flow towards the wick 720. The wick 720 may be mounted directly to the condensate collector 710 or to the inner wall of the outer shell 210 so as to not interfere with the cold air stream. The wick 720 may cover part of the condensate collector 710 so as to assist in absorption of the condensate.

[0062] Any condensate developed in the cold compartment 300 may form about the cold end heat exchanger 150. The condensate then may drip on to the condensate collector 710. The condensate may flow down the condensate collector 710 towards the wick 720. The condensate may then be absorbed by the wick 720. The wick 720 may then carry the condensate through the insulated divider 310 and into the hot compartment 290 adjacent to the hot end heat exchanger 160. The wick 720 may move the condensate by capillary action. As such, the condensate is wicked to the hot compartment 290 regardless of the orientation of the heating/cooling container 200 as a whole, i.e., normal gravity does not play a significant role in the wicking action. Once the condensate within the wick 720 reaches the hot compartment 290, the condensate may be evaporated via the hot air stream flowing through the hot end heat exchanger 160.

[0063] It should be apparent that the foregoing relates only to the preferred embodiments of the present invention and that numerous changes and modifications may be made herein without departing from the spirit and scope of the invention as defined by the following claims.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7913498Jul 18, 2006Mar 29, 2011Schlumberger Technology CorporationElectrical submersible pumping systems having stirling coolers
US20070246187 *Apr 24, 2007Oct 25, 2007Behr America, Inc.Housing for an air conditioning module and method for producing such a housing
Classifications
U.S. Classification62/6, 62/238.2
International ClassificationF25B9/14, F25D21/14, F25D23/12, F25D16/00, F25D17/06, F25D31/00, F25D25/00
Cooperative ClassificationF25D31/005, F25D31/007, F25D23/12, F25D25/00, F25B9/14, F25D2331/805, F25D2400/12, F25D2317/0661, F25D17/06, F25D16/00, F25D2331/803, F25D21/14
European ClassificationF25D21/14, F25B9/14, F25D17/06, F25D23/12, F25D16/00
Legal Events
DateCodeEventDescription
Jun 11, 2001ASAssignment
Owner name: COCA-COLA COMPANY, THE, GEORGIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUDICK, ARTHUR G.;ROTSAERT, MARC;GRABER, JAMES M.;AND OTHERS;REEL/FRAME:011885/0111;SIGNING DATES FROM 20010319 TO 20010530