US20020150688A1 - Process for applying a topcoat to a porous basecoat - Google Patents

Process for applying a topcoat to a porous basecoat Download PDF

Info

Publication number
US20020150688A1
US20020150688A1 US09/491,642 US49164200A US2002150688A1 US 20020150688 A1 US20020150688 A1 US 20020150688A1 US 49164200 A US49164200 A US 49164200A US 2002150688 A1 US2002150688 A1 US 2002150688A1
Authority
US
United States
Prior art keywords
basecoat
topcoat
wet liquid
coating
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/491,642
Other versions
US6475612B1 (en
Inventor
Douglas Knight
Yi-Hua Tsao
Eric Burch
Yubai Bi
Bor-Jiunn Niu
Peter Zahrobsky
Barbara Kumpf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/491,642 priority Critical patent/US6475612B1/en
Assigned to HEWLETT-PACKARD COMPANY reassignment HEWLETT-PACKARD COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZAHROBSKY, PETER C., KUMPF, BARBARA A., KNIGHT, DOUGLAS E., NIU, BOR-JIU, TSAO, YI-HUA, BI, YUBAI, BURCH, ERIC L.
Priority to US09/545,934 priority patent/US6451379B1/en
Priority to US09/693,676 priority patent/US6423375B1/en
Priority to US09/693,531 priority patent/US6432523B1/en
Priority to EP01300345A priority patent/EP1120278B1/en
Priority to EP20010300346 priority patent/EP1120279B1/en
Priority to DE60113572T priority patent/DE60113572T2/en
Priority to DE2001611655 priority patent/DE60111655T2/en
Priority to EP20010300347 priority patent/EP1120280B1/en
Priority to DE2001607300 priority patent/DE60107300T2/en
Priority to JP2001019853A priority patent/JP3741958B2/en
Priority to JP2001019837A priority patent/JP3973841B2/en
Publication of US20020150688A1 publication Critical patent/US20020150688A1/en
Publication of US6475612B1 publication Critical patent/US6475612B1/en
Application granted granted Critical
Assigned to HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. reassignment HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEWLETT-PACKARD COMPANY
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/502Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
    • B41M5/506Intermediate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5218Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5227Macromolecular coatings characterised by organic non-macromolecular additives, e.g. UV-absorbers, plasticisers, surfactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5236Macromolecular coatings characterised by the use of natural gums, of proteins, e.g. gelatins, or of macromolecular carbohydrates, e.g. cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5254Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5263Macromolecular coatings characterised by the use of polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B41M5/5281Polyurethanes or polyureas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the present invention relates generally to ink-jet printing, and, more particularly, to improving the properties of an ink-receiving layer applied to a non-absorbent substrate.
  • Ink-jet receiving layers need to absorb the ink vehicle delivered during the printing process.
  • the substrate provides no absorption capacity and as a result, the ink-receiving layer must be the sole absorbing material.
  • an absorbent precoat has been described in the prior art that serves to increase the capacity of the coating, much as a substrate functions in paper-based ink-jet media.
  • a topcoat is applied to control surface properties such as gloss, tackiness, surface energy, and durability, as well as to function in concert with the adsorbent precoat.
  • the topcoat must be free of defects that would contribute to perceived irregularities or non-uniformities in the coating.
  • U.S. Pat. No. 5,275,867 describes a two-layer coating and a coating process where a topcoat is laminated on the precoat.
  • U.S. Pat. No. 5,605,750 describes a three-layer coating and a coating process where the topcoats are applied to the precoat by coating both fluids before drying in a multi-slot hopper or a slide hopper.
  • U.S. Pat. No. 5,576,088 describes a two layer coating and a coating process where a topcoat is cast coated on a precoat. All these examples describe a process that involves specialized equipment and coatings engineered to be compatible with the processes. In addition, production efficiencies may be lower.
  • the present inventors describe herein a process that allows the production of multi-layer coatings in which one or more topcoats can be applied to a porous basecoat to produce a uniform and defect-free coating layer.
  • a process is provided in which a liquid is applied to the basecoat prior to topcoating such that the air in the basecoat is removed prior to topcoating.
  • This process can occur in-line with a simple apparatus described herein.
  • An added benefit of this method is that it also allows the possibility of adding functionality or performing chemistry to the coatings after the basecoat is dried and before the topcoat is applied in a single process.
  • the wetting liquid may contain, but is not limited to, surfactants, pH modifiers, polymers, crosslinkers, pigments, and/or dye stabilizers.
  • Advantages of the invention over what has been done before include the use of re-wetting process that allows a topocoat to be applied to a porous basecoat that is coated on a non-porous, or non-permeable, substrate such that bubbles are not formed in the topcoat. This allows the production of defect-free coatings. In addition, there is added flexibility of incorporating functionality or chemistry in the re-wetting process. Finally, the process of the present invention is simple to implement and is compatible with many general coating methods, such as slot-die coating, rod coating, blade coating, gravure coating, knife-over-roll coating, or the like.
  • An additional benefit of the above technique is that chemicals may be added to a coating which would otherwise be incompatible in the coating solution itself or the dried coating.
  • a still further benefit of the above technique is that two coating layers may be applied where incompatibilities may present difficulties in a wet-on-wet coating application technique.
  • the basecoat and the topcoat each comprise one or more pigments and one or more binders, which are polymeric compounds soluble or dispersible in the solvent in which the basecoat and topcoat are applied to the substrate.
  • pigments indude silica and alumina and its various hydrates, titania, carbonates (e.g., calcium carbonate, magnesium carbonate), glass beads, and organic pigments (e.g., plastic or polymer pigments such as cross-linked SBR latexes, micronized polyethylene or polypropylene wax, acrylic beads, and methacrylic beads).
  • the pigment may be the same in both the basecoat and topcoat or different.
  • the binder is a polymeric matrix which serves, among other things, to hold the pigment(s) in place.
  • the binder can be water-soluble or water-dispersible.
  • water-soluble binders include polyvinyl alcohol and its derivatives, polyvinyl pyrrolidone/polyvinyl acetate copolymer, cellulose derivatives, polyamides, and polyethylene oxide.
  • water-dispersed binders include styrene-butadiene latexes, polyacrylics, polyurethanes, and the like.
  • the binder may be the same in both the basecoat and topcoat or different.
  • the basecoat and topcoat are separately applied in solution to the substrate and allowed to dry.
  • the substrate comprises non-permeable (non-air permeable) material, such as a film-based material, e.g., Mylar, or a resin-coated papers (e.g., photobase paper).
  • non-permeable (non-air permeable) material such as a film-based material, e.g., Mylar, or a resin-coated papers (e.g., photobase paper).
  • pores in the basecoat are saturated, or nearly saturated, with a liquid, also called a re-wetting solution herein, before the topcoat solution is applied.
  • a liquid also called a re-wetting solution herein
  • the pores in the basecoat are saturated with liquid before the topcoat solution is applied.
  • a solvent that is compatible with the solvent in the topcoating is believed to give the best adhesion between coating layers.
  • the liquid may comprise one or more solvents.
  • the liquid may be heated or chemically modified to increase the penetration rate in the precoat.
  • the liquid is heated to any temperature below its boiling point (or the minimum boiling point if two or more solvents are used).
  • chemically modified is meant the addition of one or more surfactants, adhesion promoters, pH modifiers, polymers, crosslinkers, pigments, and/or dye stabilizers to the liquid.
  • the chemically modified re-wet solution thus serves to modify the properties of the basecoat, topcoat, the coating process, or the performance of the coatings as it relates to its use as a printing media.
  • Any of the usual surfactants, pH modifiers, and/or crosslinkers may be used in the practice of the present invention.
  • a suitable crosslinker added to the liquid is a borate glyoxyl. This process is especially useful for chemistries that are not compatible with the coating fluids or process.
  • excess fluid on the surface of the basecoat be removed before topcoating. This can be accomplished by a nip, doctoring blade, or the like.
  • the sole Figure shows apparatus 10 useful in the process of the present invention.
  • the apparatus 10 which is a conventional coater, comprises a container 12 for containing a re-wetting solution 14 .
  • a web 16 comprises the non-absorbent substrate and a porous basecoat thereon and the solution 14 is introduced onto the surface of the porous basecoat by means of an applicator roller 18 .
  • a hold-down roller 20 urges the web 16 against the top of the applicator roller 18 .
  • the applicator roller 18 applies the liquid 14 to the web 16 .
  • the liquid 14 is metered onto the applicator roller 18 by a metering roller 22 , provided with a doctor 24 , or other suitable means.
  • the excess re-wet solution may be doctored off of the web.
  • the re-wet solution can be metered by a pump directly onto the moving web 16 , thus eliminating the need for doctoring.
  • the uptake of the liquid 14 depends on the speed of the web 16 . It is desired to move the web 16 as fast as possible to maximize the coating efficiency.
  • the dwell time of the re-wet fluid is defined as the time interval between application of the re-wet fluid and application of the coating.
  • the dwell time thus determines the length of time available for the re-wet solution to penetrate into the basecoat.
  • the dwell time can be modified by the web speed and web distance between the re-wet station and the coating station.
  • the length of time required to obtain adequate saturation of the basecoat is determined by the design of the re-wet station, the basecoat properties, the topcoat properties, and the re-wet fluid properties. For this process to be effective, all of these parameters need to be accounted for when designing the coating process.
  • the present invention provides a number of advantages. First, the invention permits applying a topcoat solution on porous basecoats formed on non-porous substrates. Second, the invention permits incorporation of materials for either the basecoat or the topcoat that would otherwise be incompatible with each other. Third, the invention allows incompatible liquids to be coated in multilayer systems.
  • a coating was prepared on either a film-based substrate (Mylar) or a resin-coated paper substrate (photobase paper) that contained the following components: Chemical Manufacturer Grade Parts by weight Basecoat silica Grace Davison 0.2 ⁇ m porous 100 polyvinyl alcohol Air Products Airvol 350 26 acrylic Dow XUR 1540 2494-6 5 water (solids at 17 wt %) Topcoat alumina Condea Vista Dispal 14N4-25 100 polyvinyl pyrroli- BASF Luviquat FC370 2 done/polyvinyl acetate polyvinyl alcohol Nippon Gohesfeimer Z200 12 polyethylene Union Carbide Carbowax 8000 7 glycol (surfactant) water (solids at 22 wt %)
  • the basecoat was mixed in water by adding the components to the water to a level of 17 wt %.
  • the basecoat was then coated on a resin coated substrate with a mayer rod.
  • the coating was dried at 100° C. for 5 minutes to yield a coating with 20 g/m 2 coatweight and 0.9 cm 3 /g porosity.
  • the topcoat materials were also mixed together in water by adding the components to the water, this time to a level of 22 wt %.
  • the topcoat was then de-aerated overnight to remove retained air, and then coated.
  • topcoat was applied as above except that the topcoat was applied after the basecoat was wetted with excess water (the re-wetting solution) and then the surface was dried with a towel. In this instance, water alone was used; no chemical modifiers were used. The result after drying was a defect-free coating.
  • Comparative Example 2 and Example 2 demonstrate the occurrence of gelling and the alleviation of gelling, respectively.
  • topcoat and the basecoat had the following formulations, where DI-H 2 O means deionized water: Parts Chemicals Manufacturer Grade by Weight Topcoat: alumina Condea Vista Dispal 14N4-25 36 polyamide Georgia-Pacific Amres 8855 2.5 glycerol Aldrich 1.2 DI-H 2 O 120 Basecoat: silica Grace Davison 0.2 ⁇ m porous 100 polyvinyl alcohol Air Products Airvol 350 26 styrene-butadiene Dow XUR 1540 2494-6 5 latex
  • the basecoat had a solids concentration of 14.2% and a pH of 8.5, while the topcoat had a solids concentration of 15% and a pH of 4.1.
  • the topcoat and the basecoat had the same formulations as in Comparative Example 2 and were formulated as described therein.
  • the basecoat was applied to the substrate and dried.
  • the topcoat was applied as above except that the topcoat was applied after wetting the basecoat with water (the re-wetting solution). Excess re-wetting solution was removed with a metering device prior to applying the topcoat. This process enabled long coating runs without streaks. The result after drying was a defect-free coating.
  • topcoat and basecoat had the same formulations as in Comparative Example 1 and were formulated as described therein.
  • a chemically-modified re-wet solution comprising 1.52 parts by weight citric acid (Aldrich) in 100 parts deionized water was used to adjust the pH of the coatings in the re-wetting step. Waterfastness was measured by the following procedure (after the coatings were printed on an HP CP2500 printer using UV-pigmented inks):
  • the ink-receiving coating was able to achieve good image waterfastness with pigment ink after 2 hours delay time, whereas significant color smearing was observed after testing the waterfastness of the coating prepared in Example 1.
  • topcoat had the following formulations and were coated as in Examples 1 or 2.
  • Parts Chemicals Manufacturer Grade by Weight Topcoat polyvinyl alcohol Aldrich Airvol 165 100 polyurethane Dainippon Ink & IJ-60 25
  • Chemicals Re-wet solution DI-H 2 O 100 polyethyleneimine Aldrich MW 800 1
  • Basecoat silica Grace Davison 0.2 ⁇ m porous 100 polyvinyl alcohol Air Products Airvol 350 26 styrene-butadiene Dow XUR 1540 2494-6 5 latex
  • test method for measuring water resistance was identical to that described in Example 3 above, except that after Step 4 , the test was performed on an unimaged coating and there was an additional step as follows:
  • samples were treated only with the basecoat and the topcoat solutions, using water as a re-wet fluid.
  • the samples were also treated with the re-wet solution after application of the basecoat and before application of the topcoat.
  • the polyethyleneimine was added directly to the basecoat solution or the topcoat solution.
  • the measuring gloss number decreased from 63% at 20 degrees to 13% at 20 degrees.
  • the reading was 52 to 55% at 20 degrees, indicating improved water resistance of the coating.
  • the solutions gelled and were un-coatable.
  • Example 4 The basecoat of Example 4 was applied to a clear mylar film (Melinex, DuPont). Pore saturation time was measured by applying a 20 ⁇ l drop to the basecoat and measuring the time until the basecoat became transparent and unchanging, which indicated full pore saturation. The following re-wet solutions were tested, with the saturation time as indicated: Re-Wet Solution Saturation Time, sec. Water 25 1% tetrahydrofuran (Aldrich) in water 15 1% polyvinylalcohol (Aldrich) in water 15
  • the topcoating process of the present invention is expected to find use in providing ink-receiving coatings on non-absorbent substrates.

Abstract

A process is provided that allows the production of multi-layer coatings in which one or more topcoats can be applied to a porous basecoat to produce a uniform and defect-free coating layer. Specifically, a process is provided in which a liquid is applied to the basecoat prior to topcoating such that the air in the basecoat is removed prior to topcoating. This process can occur in-line with a simple apparatus described herein. An added benefit of this method is that it also allows the possibility of adding functionality or performing chemistry to a basecoat after the basecoat is dried and before the topcoat is applied in a single process. For example, the wetting fluid may contain, but is not limited to, surfactants, pH modifiers, polymers, crosslinkers, pigments, and/or dye stabilizers. Advantages over what has been done before include the use of re-wetting process that allows a topcoat to be applied to a porous basecoat that is coated on a non-porous substrate such that bubbles are not formed in the topcoat. In addition, there is added flexibility of incorporating functionality or chemistry in the re-wetting process. Finally, the process is simple to implement and is compatible with many general coating methods, such as slot-die coating, rod coating, blade coating, gravure coating, knife-over-roll coating, or the like.

Description

    TECHNICAL FIELD
  • The present invention relates generally to ink-jet printing, and, more particularly, to improving the properties of an ink-receiving layer applied to a non-absorbent substrate. [0001]
  • BACKGROUND ART
  • Ink-jet receiving layers need to absorb the ink vehicle delivered during the printing process. When the ink-receiving layer is applied to non-absorbent substrate, the substrate provides no absorption capacity and as a result, the ink-receiving layer must be the sole absorbing material. To increase the absorbing capacity of the coating, an absorbent precoat has been described in the prior art that serves to increase the capacity of the coating, much as a substrate functions in paper-based ink-jet media. [0002]
  • A topcoat is applied to control surface properties such as gloss, tackiness, surface energy, and durability, as well as to function in concert with the adsorbent precoat. In addition, the topcoat must be free of defects that would contribute to perceived irregularities or non-uniformities in the coating. [0003]
  • U.S. Pat. No. 5,275,867 describes a two-layer coating and a coating process where a topcoat is laminated on the precoat. U.S. Pat. No. 5,605,750 describes a three-layer coating and a coating process where the topcoats are applied to the precoat by coating both fluids before drying in a multi-slot hopper or a slide hopper. U.S. Pat. No. 5,576,088 describes a two layer coating and a coating process where a topcoat is cast coated on a precoat. All these examples describe a process that involves specialized equipment and coatings engineered to be compatible with the processes. In addition, production efficiencies may be lower. [0004]
  • An on-going problem in the application of a topcoat with basic coating equipment such as mayer rod and slot die coaters is the formation of bubbles in the topcoat when it is coated on a porous basecoat that has been applied to a non-porous substrate. [0005]
  • These bubbles are formed when the air voids in the pores of the precoat are filled with fluid from the topcoat application process which results in the air being forced to surface of the precoat where they coalesce into bubbles in a still fluid topcoat. These bubbles can then form defects in the topcoat as that coating is dried. Another challenge when developing coating fluids and chemistries is avoiding problems associated with incompatible chemistries that result in solution gelling or phase separation in the dried coatings. [0006]
  • Thus, what is needed is a process that avoids the problems of the prior art and provides a uniform and defect-free topcoat layer, and thus allows the incorporation of incompatible chemistries into the coating. [0007]
  • DISCLOSURE OF INVENTION
  • The present inventors describe herein a process that allows the production of multi-layer coatings in which one or more topcoats can be applied to a porous basecoat to produce a uniform and defect-free coating layer. Specifically, a process is provided in which a liquid is applied to the basecoat prior to topcoating such that the air in the basecoat is removed prior to topcoating. This process can occur in-line with a simple apparatus described herein. An added benefit of this method is that it also allows the possibility of adding functionality or performing chemistry to the coatings after the basecoat is dried and before the topcoat is applied in a single process. For example, the wetting liquid may contain, but is not limited to, surfactants, pH modifiers, polymers, crosslinkers, pigments, and/or dye stabilizers. [0008]
  • Advantages of the invention over what has been done before include the use of re-wetting process that allows a topocoat to be applied to a porous basecoat that is coated on a non-porous, or non-permeable, substrate such that bubbles are not formed in the topcoat. This allows the production of defect-free coatings. In addition, there is added flexibility of incorporating functionality or chemistry in the re-wetting process. Finally, the process of the present invention is simple to implement and is compatible with many general coating methods, such as slot-die coating, rod coating, blade coating, gravure coating, knife-over-roll coating, or the like. [0009]
  • An additional benefit of the above technique is that chemicals may be added to a coating which would otherwise be incompatible in the coating solution itself or the dried coating. [0010]
  • A still further benefit of the above technique is that two coating layers may be applied where incompatibilities may present difficulties in a wet-on-wet coating application technique.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The sole Figure illustrates apparatus useful in the practice of the present invention.[0012]
  • BEST MODES FOR CARRYING OUT THE INVENTION
  • Reference is made now in detail to a specific embodiment of the present invention, which illustrates the best mode presently contemplated by the inventors for practicing the invention. Alternative embodiments are also briefly described as applicable. [0013]
  • The basecoat and the topcoat each comprise one or more pigments and one or more binders, which are polymeric compounds soluble or dispersible in the solvent in which the basecoat and topcoat are applied to the substrate. Examples of pigments indude silica and alumina and its various hydrates, titania, carbonates (e.g., calcium carbonate, magnesium carbonate), glass beads, and organic pigments (e.g., plastic or polymer pigments such as cross-linked SBR latexes, micronized polyethylene or polypropylene wax, acrylic beads, and methacrylic beads). The pigment may be the same in both the basecoat and topcoat or different. [0014]
  • The binder is a polymeric matrix which serves, among other things, to hold the pigment(s) in place. The binder can be water-soluble or water-dispersible. Examples of water-soluble binders include polyvinyl alcohol and its derivatives, polyvinyl pyrrolidone/polyvinyl acetate copolymer, cellulose derivatives, polyamides, and polyethylene oxide. Examples of water-dispersed binders include styrene-butadiene latexes, polyacrylics, polyurethanes, and the like. The binder may be the same in both the basecoat and topcoat or different. [0015]
  • The basecoat and topcoat are separately applied in solution to the substrate and allowed to dry. [0016]
  • The substrate comprises non-permeable (non-air permeable) material, such as a film-based material, e.g., Mylar, or a resin-coated papers (e.g., photobase paper). [0017]
  • In accordance with the present invention, pores in the basecoat are saturated, or nearly saturated, with a liquid, also called a re-wetting solution herein, before the topcoat solution is applied. Preferably, the pores in the basecoat are saturated with liquid before the topcoat solution is applied. Also preferably, a solvent that is compatible with the solvent in the topcoating is believed to give the best adhesion between coating layers. [0018]
  • The liquid may comprise one or more solvents. The liquid may be heated or chemically modified to increase the penetration rate in the precoat. [0019]
  • If heated, the liquid is heated to any temperature below its boiling point (or the minimum boiling point if two or more solvents are used). [0020]
  • By “chemically modified” is meant the addition of one or more surfactants, adhesion promoters, pH modifiers, polymers, crosslinkers, pigments, and/or dye stabilizers to the liquid. The chemically modified re-wet solution thus serves to modify the properties of the basecoat, topcoat, the coating process, or the performance of the coatings as it relates to its use as a printing media. Any of the usual surfactants, pH modifiers, and/or crosslinkers may be used in the practice of the present invention. For example, where the binder in the basecoat is polyvinyl alcohol, a suitable crosslinker added to the liquid is a borate glyoxyl. This process is especially useful for chemistries that are not compatible with the coating fluids or process. [0021]
  • It is also preferred that excess fluid on the surface of the basecoat be removed before topcoating. This can be accomplished by a nip, doctoring blade, or the like. [0022]
  • The sole Figure shows [0023] apparatus 10 useful in the process of the present invention. The apparatus 10, which is a conventional coater, comprises a container 12 for containing a re-wetting solution 14. A web 16 comprises the non-absorbent substrate and a porous basecoat thereon and the solution 14 is introduced onto the surface of the porous basecoat by means of an applicator roller 18. A hold-down roller 20 urges the web 16 against the top of the applicator roller 18. The applicator roller 18 applies the liquid 14 to the web 16. The liquid 14 is metered onto the applicator roller 18 by a metering roller 22, provided with a doctor 24, or other suitable means.
  • In an alternate embodiment, the excess re-wet solution may be doctored off of the web. [0024]
  • In another alternative embodiment, the re-wet solution can be metered by a pump directly onto the moving [0025] web 16, thus eliminating the need for doctoring.
  • The uptake of the liquid [0026] 14 depends on the speed of the web 16. It is desired to move the web 16 as fast as possible to maximize the coating efficiency.
  • The dwell time of the re-wet fluid is defined as the time interval between application of the re-wet fluid and application of the coating. The dwell time thus determines the length of time available for the re-wet solution to penetrate into the basecoat. The dwell time can be modified by the web speed and web distance between the re-wet station and the coating station. The length of time required to obtain adequate saturation of the basecoat is determined by the design of the re-wet station, the basecoat properties, the topcoat properties, and the re-wet fluid properties. For this process to be effective, all of these parameters need to be accounted for when designing the coating process. [0027]
  • The present invention provides a number of advantages. First, the invention permits applying a topcoat solution on porous basecoats formed on non-porous substrates. Second, the invention permits incorporation of materials for either the basecoat or the topcoat that would otherwise be incompatible with each other. Third, the invention allows incompatible liquids to be coated in multilayer systems. [0028]
  • EXAMPLES Comparative Example 1 Preparation of Coating—Base Case, No Re-Wet, Bubbles
  • A coating was prepared on either a film-based substrate (Mylar) or a resin-coated paper substrate (photobase paper) that contained the following components: [0029]
    Chemical Manufacturer Grade Parts by weight
    Basecoat
    silica Grace Davison 0.2 μm porous 100
    polyvinyl alcohol Air Products Airvol 350 26
    acrylic Dow XUR 1540 2494-6 5
    water (solids
    at 17 wt %)
    Topcoat
    alumina Condea Vista Dispal 14N4-25 100
    polyvinyl pyrroli- BASF Luviquat FC370 2
    done/polyvinyl
    acetate
    polyvinyl alcohol Nippon Gohesfeimer Z200 12
    polyethylene Union Carbide Carbowax 8000 7
    glycol (surfactant)
    water (solids
    at 22 wt %)
  • The basecoat was mixed in water by adding the components to the water to a level of 17 wt %. The basecoat was then coated on a resin coated substrate with a mayer rod. The coating was dried at 100° C. for 5 minutes to yield a coating with 20 g/m[0030] 2 coatweight and 0.9 cm3/g porosity. The topcoat materials were also mixed together in water by adding the components to the water, this time to a level of 22 wt %. The topcoat was then de-aerated overnight to remove retained air, and then coated.
  • After coating the topcoat, bubbles appeared almost immediately. After drying as above, these bubbles produce visible coating defects where craters had formed. [0031]
  • Example 1 Base Case, With Re-Wet, No Bubbles
  • The topcoat was applied as above except that the topcoat was applied after the basecoat was wetted with excess water (the re-wetting solution) and then the surface was dried with a towel. In this instance, water alone was used; no chemical modifiers were used. The result after drying was a defect-free coating. [0032]
  • Comparative Example 2 Gelling—Base Case, Cascade Coating, Gelling Process Incompatibility
  • Comparative Example 2 and Example 2 demonstrate the occurrence of gelling and the alleviation of gelling, respectively. [0033]
  • The topcoat and the basecoat had the following formulations, where DI-H[0034] 2O means deionized water:
    Parts
    Chemicals Manufacturer Grade by Weight
    Topcoat:
    alumina Condea Vista Dispal 14N4-25 36
    polyamide Georgia-Pacific Amres 8855 2.5
    glycerol Aldrich 1.2
    DI-H2O 120
    Basecoat:
    silica Grace Davison 0.2 μm porous 100
    polyvinyl alcohol Air Products Airvol 350 26
    styrene-butadiene Dow XUR 1540 2494-6 5
    latex
  • In both instances, the non-water components were added to water. The basecoat had a solids concentration of 14.2% and a pH of 8.5, while the topcoat had a solids concentration of 15% and a pH of 4.1. [0035]
  • Cascade coating was employed, with one wet coating placed on top of another wet coating. Here, it was found that the two solutions gelled on the die even before the fluids hit the web at low web speed. In order to minimize the contact time between the two incompatible fluids, the web speed was increased and the pump for the topcoat was started only after the base layer coating reached steady state. The pump settings for both fluids were adjusted so that a better coating was obtained. [0036]
  • After time, so-called “ice cap” formation was observed on the die. This “ice cap” formed where the two incompatible fluids first came into contact. The “ice cap” built up with time, then it started to break down into pieces as time went on. The break-down of the ice cap led to streaks in the coating and was difficult to recover. [0037]
  • Example 2 Base Case, With Re-Wet, No Gelling (or Bubbles)
  • The topcoat and the basecoat had the same formulations as in Comparative Example [0038] 2 and were formulated as described therein. The basecoat was applied to the substrate and dried. In a subsequent process, the topcoat was applied as above except that the topcoat was applied after wetting the basecoat with water (the re-wetting solution). Excess re-wetting solution was removed with a metering device prior to applying the topcoat. This process enabled long coating runs without streaks. The result after drying was a defect-free coating.
  • Incompatible Chemistry Examples
  • The following Examples 3-4 describe the use of the re-wet solution where incompatible chemistries are used with each other. [0039]
  • Example 3 Image Waterfastness·pH Adjustment.
  • The topcoat and basecoat had the same formulations as in Comparative Example 1 and were formulated as described therein. A chemically-modified re-wet solution comprising 1.52 parts by weight citric acid (Aldrich) in 100 parts deionized water was used to adjust the pH of the coatings in the re-wetting step. Waterfastness was measured by the following procedure (after the coatings were printed on an HP CP2500 printer using UV-pigmented inks): [0040]
  • 1. Drop 250 μl of DI water on an ink-receiving coating by utilizing a micro pipette. [0041]
  • 2. Use index finger to rub the coating area containing the 250 μl of DI water for 1 minute. [0042]
  • 3. Wipe the excess water with a paper towel. [0043]
  • 4. Use a heat gun to dry the wet area for 30 seconds. [0044]
  • 5. Observe how much colorant smeared outside the colored area due to rubbing. [0045]
  • Following the above procedure, the ink-receiving coating was able to achieve good image waterfastness with pigment ink after 2 hours delay time, whereas significant color smearing was observed after testing the waterfastness of the coating prepared in Example 1. [0046]
  • Comparative Example 3
  • If citric acid is added to either the basecoat or topcoat, the coating fluid gels into a non-flocculated gel. [0047]
  • Example 4 Water Resistance of Coating—Crosslinker Addition
  • The topcoat, the re-wet solution, and the basecoat had the following formulations and were coated as in Examples 1 or 2. [0048]
    Parts
    Chemicals Manufacturer Grade by Weight
    Topcoat:
    polyvinyl alcohol Aldrich Airvol 165 100
    polyurethane Dainippon Ink & IJ-60 25
    Chemicals
    Re-wet solution:
    DI-H2O 100
    polyethyleneimine Aldrich MW 800 1
    Basecoat:
    silica Grace Davison 0.2 μm porous 100
    polyvinyl alcohol Air Products Airvol 350 26
    styrene-butadiene Dow XUR 1540 2494-6 5
    latex
  • The test method for measuring water resistance was identical to that described in Example 3 above, except that after Step [0049] 4, the test was performed on an unimaged coating and there was an additional step as follows:
  • 5. [0050] Measure 20 degree gloss on both rubbed and unrubbed areas and compare the results.
  • In one series of experiments, samples were treated only with the basecoat and the topcoat solutions, using water as a re-wet fluid. In another series of experiments, the samples were also treated with the re-wet solution after application of the basecoat and before application of the topcoat. [0051]
  • In still another series of experiments, the polyethyleneimine was added directly to the basecoat solution or the topcoat solution. [0052]
  • For samples that were not treated with the re-wet solution, the measuring gloss number decreased from 63% at 20 degrees to 13% at 20 degrees. For samples that were treated with the chemically-modified re-wet solution in accordance with the present invention, the reading was 52 to 55% at 20 degrees, indicating improved water resistance of the coating. In the samples where the polyethyleneimine was added directly to the basecoat or topcoat solution, the solutions gelled and were un-coatable. [0053]
  • The results show that the chemical property such as water resistance of the ink-receiving coating is significantly improved by employing the re-wet process of the present invention, incorporating appropriate chemicals in the re-wet solution. [0054]
  • Example 5 Re-Wet Uptake
  • The basecoat of Example [0055] 4 was applied to a clear mylar film (Melinex, DuPont). Pore saturation time was measured by applying a 20 μl drop to the basecoat and measuring the time until the basecoat became transparent and unchanging, which indicated full pore saturation. The following re-wet solutions were tested, with the saturation time as indicated:
    Re-Wet Solution Saturation Time, sec.
    Water 25
    1% tetrahydrofuran (Aldrich) in water 15
    1% polyvinylalcohol (Aldrich) in water 15
  • These examples demonstrate the increase in re-wet solution absorption rate upon modification of the re-wet solution. [0056]
  • Industrial Applicability
  • The topcoating process of the present invention is expected to find use in providing ink-receiving coatings on non-absorbent substrates. [0057]
  • The foregoing description of the preferred embodiment of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. Similarly, any process steps described might be interchangeable with other steps in order to achieve the same result. The embodiment was chosen and described in order to best explain the principles of the invention and its best mode practical application, thereby to enable others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents. [0058]

Claims (24)

What is claimed is:
1. An improved process for applying at least one ink-receiving layer to a non-permeable substrate, said process comprising:
(a) applying a porous basecoat to a surface of said non-permeable substrate, said porous basecoat comprising a plurality of pores;
(b) applying a topcoat on said porous basecoat, the improvement comprising
applying a re-wet liquid to said porous basecoat prior to applying said topcoat thereon.
2. The process of claim 1 wherein said basecoat comprises at least one pigment and at least one binder.
3. The process of claim 1 wherein said topcoat comprises at least one pigment and at least one binder.
4. The process of claim 1 wherein said topcoat contains at least one solvent.
5. The process of claim 4 wherein said re-wet liquid contains at least one solvent.
6. The process of claim 5 wherein said at least one solvent of said re-wet liquid is compatible with said at least one solvent of said topcoat.
7. The process of claim 1 wherein said re-wet liquid is heated to a temperature below its boiling point.
8. The process of claim 1 wherein said re-wet liquid modifies at least one property of at least one of said basecoat, said topcoat, said improved process, and performance of said basecoat or said topcoat.
9. The process of claim 8 wherein said re-wet liquid is chemically modified by the addition of at least member selected from the group consisting of (1) at least one surfactant, (2) at least one pH modifier, (3) at least one polymer, (4) at least one crosslinker, (5) at least one pigment, and (6) at least one dye stabilizer, said at least one crosslinker operatively associated with at least one binder of either said basecoat, said topcoat, or both.
10. The process of claim 1 wherein an excess of said re-wet liquid is applied to said porous basecoat to ensure saturation or near-saturation of said pores.
11. The process of claim 10 wherein said excess re-wet liquid is removed prior to applying said topcoat.
12. The process of claim 1 wherein said basecoat and said topcoat each contain at least one pigment independently selected from the group consisting of silica, alumina, hydrates of alumina, titania, carbonates, glass beads, and organic pigments selected from the group consisting of cross-linked SBR latexes, micronized polyethylene wax, micronized polypropylene wax, acrylic beads, and methacrylic beads.
13. The process of claim 1 wherein said basecoat and said topcoat each contain at least one binder, wherein said re-wet liquid includes water, and wherein said at least one binder of said basecoat and said at least one binder of said topcoat are independently selected from the group consisting of polyvinyl alcohol and its derivatives, polyvinyl pyrrolidone/polyvinyl acetate copolymer, cellulose derivatives, styrene-butadiene latexes, acrylics, and polyurethanes.
14. Product produced by the process of claim 1.
15. A process for applying at least one ink-receiving layer to a non-permeable substrate, said process comprising:
(a) applying a porous basecoat to a surface of said non-permeable substrate, said porous basecoat comprising at least one pigment and at least one binder and further comprising a plurality of pores;
(b) applying an excess of a re-wet liquid to said porous basecoat to form a liquid-coated basecoat and to ensure saturation of said pores;
(c) removing said excess; and
(d) applying a topcoat on said liquid-coated basecoat, said topcoat comprising at least one pigment and at least one binder.
16. The process of claim 15 wherein said topcoat as applied on said liquid-coated basecoat contains at least one solvent.
17. The process of claim 16 wherein said re-wet liquid contains at least one solvent.
18. The process of claim 17 wherein said at least one solvent of said re-wet liquid is compatible with said at least one solvent of said topcoat.
19. The process of claim 15 wherein said re-wet liquid is heated to a temperature below its boiling point.
20. The process of claim 15 wherein said re-wet liquid modifies at least one property of at least one of said basecoat, said topcoat, said improved process, and performance of said basecoat or said topcoat.
21. The process of claim 20 wherein said re-wet liquid is chemically modified by the addition of at least member selected from the group consisting of (1) at least one surfactant, (2) at least one pH modifier, (3) at least one polymer, (4) at least one crosslinker, (5) at least one pigment, and (6) at least one dye stabilizer, said at least one crosslinker operatively associated with at least one binder of either said basecoat, said topcoat, or both.
22. The process of claim 15 wherein said pigment for said basecoat and said pigment for said topcoat are each independently selected from the group consisting of silica, alumina, hydrates of alumina, titania, carbonates, glass beads, and organic pigments selected from the group consisting of cross-linked SBR latexes, micronized polyethylene wax, micronized polypropylene wax, acrylic beads, and methacrylic beads.
23. The process of claim 15 wherein said re-wet liquid contains water and said at least one binder of said basecoat and said at least one binder of said topcoat are independently selected from the group consisting of polyvinyl alcohol and its derivatives, polyvinyl pyrrolidone/polyvinyl acetate copolymer, cellulose derivatives, styrene-butadiene latexes, acrylics, and polyurethanes.
24. Product produced by the process of claim 15.
US09/491,642 2000-01-27 2000-01-27 Process for applying a topcoat to a porous basecoat Expired - Fee Related US6475612B1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US09/491,642 US6475612B1 (en) 2000-01-27 2000-01-27 Process for applying a topcoat to a porous basecoat
US09/545,934 US6451379B1 (en) 2000-01-27 2000-04-10 Increasing dot size on porous media printed with pigmented inks
US09/693,676 US6423375B1 (en) 2000-01-27 2000-10-19 Light fastness of inkjet images by adding salts into inkjet media
US09/693,531 US6432523B1 (en) 2000-01-27 2000-10-19 Light fastness of inkjet images by adding salts into inkjet inks and print media
EP20010300347 EP1120280B1 (en) 2000-01-27 2001-01-16 Method for increasing dot size on porous media printed with pigmented inks
EP20010300346 EP1120279B1 (en) 2000-01-27 2001-01-16 Method for improving light fastness of inkjet images by adding salts into inkjet inks and print media
DE60113572T DE60113572T2 (en) 2000-01-27 2001-01-16 Method for applying a cover layer to a porous substrate
DE2001611655 DE60111655T2 (en) 2000-01-27 2001-01-16 Method for increasing the dot size on a porous substrate printed with pigmented inks
EP01300345A EP1120278B1 (en) 2000-01-27 2001-01-16 Process for applying a topcoat to a porous basecoat
DE2001607300 DE60107300T2 (en) 2000-01-27 2001-01-16 Improvement of the light stability of ink-jet print images by adding salts in ink jet ink and printing medium
JP2001019837A JP3973841B2 (en) 2000-01-27 2001-01-29 Method for providing ink receiving layer on non-porous substrate
JP2001019853A JP3741958B2 (en) 2000-01-27 2001-01-29 Inkjet ink and print media selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/491,642 US6475612B1 (en) 2000-01-27 2000-01-27 Process for applying a topcoat to a porous basecoat

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/545,934 Continuation-In-Part US6451379B1 (en) 2000-01-27 2000-04-10 Increasing dot size on porous media printed with pigmented inks
US09/693,531 Continuation-In-Part US6432523B1 (en) 2000-01-27 2000-10-19 Light fastness of inkjet images by adding salts into inkjet inks and print media
US09/693,676 Continuation-In-Part US6423375B1 (en) 2000-01-27 2000-10-19 Light fastness of inkjet images by adding salts into inkjet media

Publications (2)

Publication Number Publication Date
US20020150688A1 true US20020150688A1 (en) 2002-10-17
US6475612B1 US6475612B1 (en) 2002-11-05

Family

ID=23953055

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/491,642 Expired - Fee Related US6475612B1 (en) 2000-01-27 2000-01-27 Process for applying a topcoat to a porous basecoat
US09/545,934 Expired - Fee Related US6451379B1 (en) 2000-01-27 2000-04-10 Increasing dot size on porous media printed with pigmented inks
US09/693,531 Expired - Fee Related US6432523B1 (en) 2000-01-27 2000-10-19 Light fastness of inkjet images by adding salts into inkjet inks and print media
US09/693,676 Expired - Fee Related US6423375B1 (en) 2000-01-27 2000-10-19 Light fastness of inkjet images by adding salts into inkjet media

Family Applications After (3)

Application Number Title Priority Date Filing Date
US09/545,934 Expired - Fee Related US6451379B1 (en) 2000-01-27 2000-04-10 Increasing dot size on porous media printed with pigmented inks
US09/693,531 Expired - Fee Related US6432523B1 (en) 2000-01-27 2000-10-19 Light fastness of inkjet images by adding salts into inkjet inks and print media
US09/693,676 Expired - Fee Related US6423375B1 (en) 2000-01-27 2000-10-19 Light fastness of inkjet images by adding salts into inkjet media

Country Status (3)

Country Link
US (4) US6475612B1 (en)
EP (1) EP1120278B1 (en)
DE (1) DE60113572T2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142305A1 (en) * 2003-11-06 2005-06-30 Mitsuru Kobayashi Ink jet recording sheet and method for producing thereof
US20080297573A1 (en) * 2004-02-12 2008-12-04 Canon Kabushiki Kaisha Liquid applying apparatus and ink jet printing apparatus
WO2014070196A1 (en) * 2012-11-02 2014-05-08 Empire Technology Development Llc Cement slurries having pyranose polymers
US9174871B2 (en) 2012-11-02 2015-11-03 Empire Technology Development Llc Cement slurries having pyranose polymers
US9212245B2 (en) 2012-12-04 2015-12-15 Empire Technology Development Llc High performance acrylamide adhesives
US9238774B2 (en) 2012-11-02 2016-01-19 Empire Technology Development Llc Soil fixation, dust suppression and water retention
US9468595B2 (en) 2012-11-02 2016-10-18 Empire Technology Development Llc Acrylamide derivatives
US20210198499A1 (en) * 2018-05-18 2021-07-01 Karl Wörwag Lack- Und Farbenfabrik Gmbh & Co. Kg Multilayer color and/or effect giving coating and method of forming a basecoat layer

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824598B2 (en) 2000-06-20 2004-11-30 Hewlett-Packard Development Company, L.P. Inkjet ink sets with combinations of light dye load and dark dye load
US20030119940A1 (en) * 2001-11-07 2003-06-26 Xerox Corporation Ink composition with improved lightfastness
KR100407475B1 (en) * 2002-02-27 2003-11-28 한미필름테크주식회사 The method of preparation for digital color ink jet printing paper and film
JP3826818B2 (en) * 2002-03-12 2006-09-27 ソニー株式会社 Ink jet recording sheet, method for producing the same, and image forming method
US7077516B2 (en) * 2003-03-26 2006-07-18 Eastman Kodak Company Inkjet printing method
US6908186B2 (en) * 2003-03-26 2005-06-21 Eastman Kodak Company Inkjet ink composition and an ink/receiver combination
US7906187B2 (en) * 2003-04-03 2011-03-15 Hewlett-Packard Development Company, L.P. Ink jet recording sheet with photoparity
US20050069692A1 (en) * 2003-09-25 2005-03-31 Koichi Ito Method for coating porous polyurethane resin
ITSV20030041A1 (en) 2003-10-27 2005-04-28 Ferrania Spa MICROPOROUS MATERIAL FOR INKJET RECORDING.
US7914864B2 (en) * 2004-02-27 2011-03-29 Hewlett-Packard Development Company, L.P. System and a method for forming a heat fusible microporous ink receptive coating
FR2869039B1 (en) * 2004-04-16 2007-11-30 Essilor Int PIGMENT COLORED LATEX AND PROCESS FOR TREATING A TRANSPARENT SUBSTRATE USING THE COLOR LATEX.
US20060068666A1 (en) * 2004-09-30 2006-03-30 Varunesh Sharma Printed nonwoven substrates for use in personal care articles
US7687120B2 (en) * 2004-10-21 2010-03-30 Hewlett-Packard Development Company, L.P. Print media and methods for making the same
ITSV20050003A1 (en) * 2005-01-19 2006-07-20 Ferrania Spa MATERIAL FOR INKJET RECORDING
WO2008055245A2 (en) 2006-10-31 2008-05-08 Sensient Colors Inc. Inks comprising modified pigments and methods for making and using the same
EP2201072B1 (en) 2007-08-23 2018-11-14 Sensient Colors LLC Self-dispersed pigments and methods for making and using the same
WO2010118187A2 (en) 2009-04-07 2010-10-14 Sensient Colors Inc. Self-dispersing particles and methods for making and using the same
WO2010115225A1 (en) * 2009-04-07 2010-10-14 Berndorf Band Engineering Gmbh Double belt press for continuously producing panels from artificial stone material
US9507249B2 (en) 2010-05-11 2016-11-29 Xerox Corporation Non-sticky erasable media with overcoat

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3463520D1 (en) 1983-02-15 1987-06-11 Burroughs Corp Ink jet printing ink containing iodine and potassium iodide
US4746543A (en) * 1985-12-10 1988-05-24 Zinkan Enterprises, Inc. Composition and method for dust control
US5275867A (en) 1991-02-19 1994-01-04 Asahi Glass Company Ltd. Recording film and recording method
US5773182A (en) 1993-08-05 1998-06-30 Kimberly-Clark Worldwide, Inc. Method of light stabilizing a colorant
US5700850A (en) 1993-08-05 1997-12-23 Kimberly-Clark Worldwide Colorant compositions and colorant stabilizers
US5576088A (en) * 1994-05-19 1996-11-19 Mitsubishi Paper Mills Limited Ink jet recording sheet and process for its production
EP0685345B1 (en) 1994-05-25 1998-09-09 Asahi Glass Company Ltd. Recording sheet and record
JPH08300804A (en) 1995-04-28 1996-11-19 Mitsubishi Paper Mills Ltd Production of ink jet cast coated paper
CA2183723C (en) * 1995-08-21 2006-11-21 Bo Liu Ink jet recording material and producing process thereof
US5855655A (en) * 1996-03-29 1999-01-05 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5605750A (en) 1995-12-29 1997-02-25 Eastman Kodak Company Microporous ink-jet recording elements
US5919291A (en) 1996-04-10 1999-07-06 Minolta Co., Ltd. Aqueous recording solution for ink jet
DE19618088B4 (en) * 1996-05-06 2006-08-17 Agfa-Gevaert Ag An ink-jet recording material
DE19637016B4 (en) * 1996-09-12 2006-06-14 Agfa-Gevaert Ag Inkjet ink
US5858075A (en) * 1997-03-03 1999-01-12 Hewlett-Packard Company Dye set for improved ink-jet image quality
US6465086B1 (en) 1997-05-15 2002-10-15 Oji Paper Co., Ltd. Ink jet recording material and process for producing same
EP0879709B1 (en) * 1997-05-22 2001-03-14 Oji Paper Company Limited Ink jet recording sheet containing silica particles and process for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142305A1 (en) * 2003-11-06 2005-06-30 Mitsuru Kobayashi Ink jet recording sheet and method for producing thereof
US20080057190A1 (en) * 2003-11-06 2008-03-06 Oji Paper Co., Ltd. Method for producing an ink jet recording sheet
US20080297573A1 (en) * 2004-02-12 2008-12-04 Canon Kabushiki Kaisha Liquid applying apparatus and ink jet printing apparatus
US8038268B2 (en) * 2004-02-12 2011-10-18 Canon Kabushiki Kaisha Liquid applying apparatus and ink jet printing apparatus
WO2014070196A1 (en) * 2012-11-02 2014-05-08 Empire Technology Development Llc Cement slurries having pyranose polymers
US9174871B2 (en) 2012-11-02 2015-11-03 Empire Technology Development Llc Cement slurries having pyranose polymers
US9238774B2 (en) 2012-11-02 2016-01-19 Empire Technology Development Llc Soil fixation, dust suppression and water retention
US9468595B2 (en) 2012-11-02 2016-10-18 Empire Technology Development Llc Acrylamide derivatives
US9212245B2 (en) 2012-12-04 2015-12-15 Empire Technology Development Llc High performance acrylamide adhesives
US20210198499A1 (en) * 2018-05-18 2021-07-01 Karl Wörwag Lack- Und Farbenfabrik Gmbh & Co. Kg Multilayer color and/or effect giving coating and method of forming a basecoat layer

Also Published As

Publication number Publication date
EP1120278A2 (en) 2001-08-01
US6432523B1 (en) 2002-08-13
US6423375B1 (en) 2002-07-23
EP1120278A3 (en) 2001-09-05
US6475612B1 (en) 2002-11-05
EP1120278B1 (en) 2005-09-28
DE60113572T2 (en) 2006-07-13
DE60113572D1 (en) 2005-11-03
US6451379B1 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US6475612B1 (en) Process for applying a topcoat to a porous basecoat
EP3028867B1 (en) Sublimation transfer paper for inkjet printing
CN103153635B (en) Print media comprising latex ink film-forming aid
JP5296833B2 (en) Inkjet recording element
WO2011146323A1 (en) Inkjet recording medium and methods therefor
US6534123B1 (en) Recording material for ink jet printing and method for making the same
WO2011049583A1 (en) Glossy medium for inkjet printing
US20020009576A1 (en) Specialty microporous films and laminated media with applications in ink jet and digital printing
JP4162324B2 (en) High gloss type ink jet recording paper and method for producing the same
JP3954327B2 (en) High gloss inkjet recording paper for photo printing
EP1120280B1 (en) Method for increasing dot size on porous media printed with pigmented inks
EP1120279B1 (en) Method for improving light fastness of inkjet images by adding salts into inkjet inks and print media
JPH0229515B2 (en)
JP5910053B2 (en) Sublimation transfer image receiving sheet and method for producing sublimation transfer image receiving sheet
JPH02117880A (en) Recording material and recording method
JPH0343290A (en) Ink jet recording paper
EP1193079B1 (en) Lightfastness improvements of inkjet print media through the addition of photoinitiators
WO2004054813A1 (en) Ink-jet recording medium
Rosalen et al. Cardboards printed with water-based inkjet Inks
JP3155267B2 (en) Manufacturing method of inkjet recording paper
JP3755198B2 (en) Inkjet recording medium
JPH0216078A (en) Ink jet recording method
JPH09131964A (en) Recording sheet
JP2016120719A (en) Print media comprising latex ink film-forming aid
WO2004081285A1 (en) Method for producing coated paper or board

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEWLETT-PACKARD COMPANY, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNIGHT, DOUGLAS E.;TSAO, YI-HUA;BURCH, ERIC L.;AND OTHERS;REEL/FRAME:010486/0776;SIGNING DATES FROM 19991222 TO 20000124

CC Certificate of correction
AS Assignment

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:015583/0106

Effective date: 20050111

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20141105