Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20020152348 A1
Publication typeApplication
Application numberUS 10/103,782
Publication dateOct 17, 2002
Filing dateMar 25, 2002
Priority dateMar 28, 2001
Also published asDE60211243D1, DE60211243T2, EP1246071A1, EP1246071B1, US8738834, US8751721, US20090094400, US20090157924, US20140122750
Publication number10103782, 103782, US 2002/0152348 A1, US 2002/152348 A1, US 20020152348 A1, US 20020152348A1, US 2002152348 A1, US 2002152348A1, US-A1-20020152348, US-A1-2002152348, US2002/0152348A1, US2002/152348A1, US20020152348 A1, US20020152348A1, US2002152348 A1, US2002152348A1
InventorsJames Scales, Varley Bullard, Petri Syrjala
Original AssigneeJames Scales, Varley Bullard, Petri Syrjala
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of configuring electronic devices
US 20020152348 A1
Abstract
A multifunctional mobile telephone handset is connected to a PC using a Universal Serial Bus. During bus enumeration, a device class descriptor is returned by the handset to the PC. The PC's operating system receives information relating to one of the functions of the handset and assigns an appropriate device driver.
Images(7)
Previous page
Next page
Claims(33)
1. A method of configuring first and second electronic devices, said second device being able to perform a plurality of predefined functions, the method comprising:
receiving, at said second device, preference information relating to one of said plurality of functions of said second device,
providing said first device with information relating to said one function and
providing, at said first device, an interface for interfacing with said one function so as to allow said first device to use said one function.
2. A method according to claim 1, wherein the first device is a Universal Serial Bus host.
3. A method according to claim 1, wherein the first device is a personal computer.
4. A method according to claim 1, wherein the second device is a Universal Serial Bus device.
5. A method according to claim 1, wherein the second device is a mobile telephone handset.
6. A method according to claim 1, further comprising connecting said first and second devices together by a bus for transmitting signals.
7. A method according to claim 6, further comprising exchanging configuration signals between said first and second devices through said bus for establishing addressable communication between said first and second devices.
8. A method according to claim 7, wherein said exchanging of configuration signals includes said providing said first device with information relating to said one function.
9. A method according to claim 1, wherein said providing said first device with information comprises sending a message from said second device to the first device.
10. A method according to claim 1, further comprising said first device requesting information relating to a function from said second device.
11. A method according to claim 1, wherein said providing said first device with information includes providing data identifying said one function.
12. A method according to claim 1, wherein said providing said interface comprises assigning a device driver.
13. A method according to claim 1, wherein said providing said interface comprises executing a computer program.
14. A method of using data processor for communication with an electronic device, the method comprising:
receiving first information relating to a first function of said device;
providing a first interface for interfacing with said first function so as to allow said data processor to use said first function;
receiving second information relating to a second function of said device and
providing a second interface for interfacing with said second function so as to allow said data processor to use said second function in preference to said first function.
15. A method of configuring an electronic device for communication with data processor, the method comprising:
receiving preference information relating to one of a plurality of predefined functions of said device and
providing information relating to a first function to said data processor.
16. A method according to claim 15 further comprising allowing said data processor to use said one function.
17. A computer program comprising computer code for a data processor configured for communication with an electronic device, to make said data processor:
receive preference information relating to a first function of said device;
provide a first interface for interfacing with said first function so as to allow said data processor to use said function;
receive second information relating to a second function of said device and
provide a second interface for interfacing with said second function so as to allow said data processor to use said second function in preference to said first function.
18. A computer program comprising computer code for an electronic device able to perform a plurality of predefined functions and configured for communication with a data processor, to make said device:
receive information relating to one of said plurality of functions and
provide information relating to said function to said data processor.
19. A computer program according to claim 18 further to make said device allow said data processor to use said one function.
20. Apparatus comprising first and second electronic devices, said second device being able to perform a plurality of functions, said apparatus including:
an input for receiving preference information relating to one of said plurality of functions of said second device,
a link for providing to said first device information relating to said one function and
a controller for providing an interface for interfacing with said one function so as to allow said first device to use said one function.
21. Apparatus according to claim 20, wherein the first device is a Universal Serial Bus host.
22. Apparatus according to claim 21, wherein the first device is a personal computer.
23. Apparatus according to claim 20, wherein the second device is a Universal Serial Bus device.
24. Apparatus according to claim 20, wherein the second device is a mobile telephone handset.
25. Apparatus according to claim 20, wherein said link for providing said first device with information comprises an output for sending a message from said second device to the first device.
26. Apparatus according to claim 20, wherein said controller for providing an interface for interfacing includes an operating system for controlling operation of said first device.
27. Apparatus according to claim 20, wherein said interface comprises a device driver.
28. An electronic device which is able to perform a plurality of functions comprising:
an input for receiving preference information relating to one of said plurality of functions and
an output for providing to another device information relating to said one function.
29. A device according to claim 28 further comprising a link for allowing said other device to use said one function.
30. A device according to claim 28 which is a mobile telephone handset.
31. A Universal Serial Bus device able to perform a plurality of predefined functions comprising:
an input for receiving preference information relating to one of said plurality of functions and
an output for providing to a host information relating to said one function.
32. A device according to claim 31 further comprising a link for allowing said host to use said one function.
33. A device according to claim 31 which is a mobile telephone handset.
Description
FIELD OF THE INVENTION

[0001] The present invention relates to a method of configuring electronic devices, having particular although not exclusive application to configuring a Universal Serial Bus device and a host.

BACKGROUND ART

[0002] A Universal Serial Bus (USB) standard has been developed which allows up to 127 peripheral devices such as printers, scanners, keyboards, modems, cameras and storage devices to be attached to a host, usually a personal computer (PC), through a 4-wire bus. These devices can be connected to the PC either directly or via hubs which provide additional connections. USB has the advantage that connection of different types of devices becomes standardised. Furthermore, a device can be connected while the PC is switched on and while other devices are in use. USB supports user data rates of up to 8 Mbit/s for each device which is suitable for low to medium data rate applications. An overview of USB may be found in “USB Hardware & Software” by J. Garney et al. (Anna Books, 1998) [ISBN 0-929392-3-X] and a current version of the USB specification is available at www.usb.org or from USB-IF Administration, 5440 SW Westgate Drive, Suite 217, Portland, Oreg. 97221 USA.

[0003] A device is connected to a USB port provided by the PC or a hub. Once physically connected to the device, the PC controls attachment and configuration of the device. To achieve this, the PC is installed with a USB driver which is usually provided by the PC's operating system. The PC is also installed with a device driver to control the device once it is attached and configured so that application software on the PC can use the device. The device driver is often provided by the operating system although for unusual devices, a user may need to install a specific device driver using installation disks.

[0004] Devices fall into two main categories, namely hubs and functions. Hubs provide additional attachment points to the USB. Functions extend the capabilities of the computer. Most devices which are not a hub, such as a mouse, implement a single function. Some devices, such as a monitor having in-built speakers, implement multiple functions and have an embedded hub. Such a device is known as a compound device and appears to the PC as a hub with a collection of individual, non-removable functions.

[0005] The USB standard was originally designed to accommodate simple peripheral devices which fulfil a single function. When a single function device, such as a mouse, is plugged into a PC for the first time, the USB driver detects, identifies and configures the device and the operating system automatically assigns a device driver, which in the case of a mouse is a mouse driver. Alternatively, a user may install and/or assign a specific device driver. When a compound device is plugged in for the first time the same process of detection, identification and configuration is carried out for each respective function so that all the functions of the compound device are available to the PC.

[0006] However, a problem arises if a device implements multiple disconnectable functions. Such a device appears to the PC as a single function device. When the device is plugged into the PC for the first time, the operating system assigns a device driver according to this function. Once assigned, the device is tied to the device driver so that whenever the device is disconnected from the PC and then reconnected, the same device driver is assigned to the device. This abrogates the multifunctionality of the device.

[0007] The present invention seeks to help overcome this problem.

SUMMARY OF THE INVENTION

[0008] According to a first aspect of the present invention there is provided a method of configuring first and second electronic devices, said second device being able to perform a plurality of predefined functions, the method comprising receiving, at said second device, preference information relating to one of said plurality of functions of said second device, providing said first device with information relating to said one function and providing, at said first device, an interface for interfacing with said one function so as to allow said first device to use said one function.

[0009] The first device may be a Universal Serial Bus host, such as a personal computer and the second device may be a Universal Serial Bus device, such as a mobile telephone handset.

[0010] The method may further comprise connecting said first and second devices together by a bus for transmitting signals and exchanging configuration signals between said first and second devices through said bus for establishing addressable communication between said first and second devices. The exchange of configuration signals may include said provision of information relating to said one function. The provision of information may comprise sending a message from said second device to said first device. The provision of information may include providing data identifying said one function.

[0011] The method may comprise said first device requesting information from said second device.

[0012] The provision of said interface may comprise assigning a device driver and may comprise executing a computer program.

[0013] According to a second aspect of the present invention there is provided a method of using data processor for communication with an electronic device, the method comprising receiving first information relating to a first function of said device, providing a first interface for interfacing with said first function so as to allow said data processor to use said first function, receiving second information relating to a second function of said device and providing a second interface for interfacing with said second function so as to allow said data processor to use said second function in preference to said first function.

[0014] According to a third aspect of the present invention there is provided a method of configuring an electronic device for communication with data processor, the method comprising receiving preference information relating to one of a plurality of predefined functions of said device and providing information relating to a first function to said data processor. The method may further comprise allowing said data processor to use said one function.

[0015] According to a fourth aspect of the present invention there is provided a computer program comprising computer code for a data processor configured for communication with an electronic device, to make said data processor receive preference information relating to a first function of said device, provide a first interface for interfacing with said first function so as to allow said data processor to use said function, receive second information relating to a second function of said device and provide a second interface for interfacing with said second function so as to allow said data processor to use said second function in preference to said first function.

[0016] According to a fifth aspect of the present invention there is provided a computer program comprising computer code for an electronic device able to perform a plurality of predefined functions and configured for communication with a data processor, to make said device receive information relating to one of said plurality of functions and provide information relating to said function to said data processor. The program may further make said device allow said data processor to use said one function.

[0017] According to a sixth aspect of the present invention there is provided an apparatus comprising first and second electronic devices, said second device being able to perform a plurality of functions, said apparatus including an input for receiving preference information relating to one of said plurality of functions of said second device, a link for providing to said first device information relating to said one function and a controller for providing an interface for interfacing with said one function so as to allow said first device to use said one function.

[0018] The first device may be Universal Serial Bus host, such as a personal computer and the second device may be a Universal Serial Bus device, such as a mobile telephone handset.

[0019] According to a seventh aspect of the present invention there is provided an electronic device which is able to perform a plurality of function comprising an input for receiving preference information relating to one of said plurality of functions and an output for providing to another device information relating to said one function. The device may further comprise a link for allowing said other device to use said one function. The device may be a mobile telephone handset.

[0020] According to an eighth aspect of the present invention there is provided a Universal Serial Bus device able to perform a plurality of predefined functions comprising an input for receiving preference information relating to one of said plurality of functions and output for providing to a host information relating to said one function. The device may further comprise a link for allowing said host to use said to use said one function. The device may be a mobile telephone handset.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] An embodiment of the present invention will now be described, by way of example, with reference to the accompanying drawings in which:

[0022]FIG. 1 is schematic diagram of a general Universal Serial Bus (USB) arrangement;

[0023]FIG. 2 shows a personal computer (PC) and peripheral devices attached to the computer using a USB;

[0024]FIG. 3 shows a bus topology for the apparatus shown in FIG. 2;

[0025]FIG. 4 shows a perspective view of a mobile telephone handset;

[0026]FIG. 5 is a schematic diagram of mobile telephone circuitry of the handset shown in FIG. 4;

[0027]FIG. 6 is a process flow diagram by which a user is allowed to select a function of the mobile telephone handset shown in FIG. 4;

[0028]FIG. 7 shows the mobile telephone handset shown in FIG. 4 being connected to a USB hub;

[0029]FIG. 8 is a process flow diagram by which the mobile telephone handset shown in FIG. 7 is attached and configured to the PC shown in FIG. 2;

[0030]FIG. 9 is a process flow diagram of the mobile telephone handset and PC of FIG. 8 exchanging device information;

[0031]FIG. 10 is a schematic diagram of a request for a device descriptor and

[0032]FIG. 11 is a schematic diagram of a device descriptor.

PREFERRED EMBODIMENT OF THE INVENTION

[0033] Referring to FIG. 1, a general USB arrangement 1 comprises a host 2, such as a personal computer (PC), connected to a peripheral device 3, for instance a mouse, by means of a Universal Serial Bus (USB). The USB comprises hardware and software which allows a capability of the device 3, in this example cursor control, to be provided to the host 2. In FIG. 1, the USB arrangement 1 is represented as a three-layered communication system.

[0034] A bottom layer 4 handles the electrical connection between the host 2 and the device 3. The host 2 and device 3 each have USB interfaces 5, 6 providing ports (not shown) by which they are connected using a USB cable 7.

[0035] A middle layer 8 is concerned with controlling data transfer between the host 2 and device 3. A USB system 9 on the host side is responsible for managing the USB by coordinating with a USB device 10 on the device side. In order to establish a connection and to configure the device 3, a logical control link, called a default pipe 11, is defined.

[0036] A top layer 12 is concerned with utilisation of the device 3. Application software 13 on the host 2 interfaces with a function 14 of the device 3 through a logical connection called a pipe 15.

[0037] Further information regarding the USB arrangement may be found in Chapter 10 of the USB Specification Revision 2.0.

[0038] Referring to FIG. 2, a PC system 16 comprises a PC 17 connected to a plurality of peripheral devices 18 including a monitor 19, a keyboard 20, a mouse 21, a printer 22, first and second speakers 23 1, 23 2, a microphone 24 and a USB hub 25 using the USB. A plurality of USB cables 26 connect the PC 17 to the peripheral devices 18. The USB hub 25 provides a means for connecting a mobile telephone handset 27 to the PC 17.

[0039] Referring to FIG. 3, the PC 17 serves as the USB host and has a hub, called a root hub 28, directly connected to it, for extending the USB. In this example, the root hub 28 provides four ports (not shown). The monitor 19 is a compound device having an embedded hub 29 and implements a monitor function 30. The keyboard 20 is also a compound device having an embedded hub 31 and implements a keyboard function 32. The mobile telephone handset 27 is multifunctional. In this example, it has a microphone function 33 for providing audio signals, a modem 34 for dial-up networking and a controller 35 for implementing Infrared Data Association's (IrDA) Object Exchange Protocol (OBEX) which allows synchronising of personal information management (PIM). In this example, functions such as the modem 34 and the controller 35 are implemented in software by the handset's controller (FIG. 5). It will be appreciated that other functions may be implemented in the handset 27.

[0040] The monitor 19, keyboard 20, mouse 21, printer 22, speakers 23 1, 23 2 and the microphone 24 are attached to the PC 17 and configured in manner well known per se.

[0041] Referring to FIGS. 4 and 5, the mobile telephone handset 27 comprises a casing 36, a battery pack 37, liquid crystal display (LCD) panel 38, a microphone 39, an earpiece 40, keypad 41, USB port 42, antenna 43, subscriber identification module (SIM) card 44 and SIM card reader 45. Mobile telephone circuitry includes radio interface circuitry 46, codec circuitry 47, controller 48, memory 49 and USB transceiver circuitry 50. The USB transceiver circuitry 50, together with the USB port 34 provide the hardware for implementing a device USB interface (FIG. 1).

[0042] A method by which a user can select a function of the mobile telephone handset 27 and attach the handset 27 to the PC 17 so that it is configured with an appropriate device driver will now be described.

[0043] Referring to FIG. 6, the handset 27 receives preference information relating to one of the plurality of functions 33, 34, 35 the user enters a functions menu on the handset 27 (step S1) and selects one of a plurality of functions which the handset can execute (step S2). In this example, the user wants to access a dial-up internet service provider and so they select the modem function 34. A handset operating system configures the handset (step S3). In addition, the controller 48 sets a pointer to one of a plurality of device descriptors DEVICE held in memory 49 corresponding to the modem function 34 (step S4). The nature and purpose of the device descriptors DEVICE will be described in more detail hereinafter. It will be appreciated that electromechanical switches may be used to select one of the functions 33, 34, 35.

[0044] Referring to FIGS. 7 and 8, the user attaches the handset 27 to one of four hub ports 51 using a USB cable 52 and bus enumeration takes place. The USB hub 25 senses that the handset 27 has been connected to one of the four ports 51 and changes the state of the port from disconnected to connected (step S5). The handset 27 provides its own power and so is deemed to be in a powered state (step S6). The PC 17 periodically polls the USB hub 25, which indicates that there is a change in status of one of the four hub ports 51 (step S6.1). The PC 17 issues commands to hub 25 to indicate the nature of change (step S6.2) and the hub replies with the identity of the port (step S6.3). The PC 17 issues a port enable signal and sends a reset command (step S7). At this point, the port 51 to which the handset 27 is connected is enabled and the handset 27 is in a default state and is addressable only through a default pipe at a default address. The PC 17 and the handset 27 exchange descriptor information (step S7.1) which will be described in greater detail below. At this point the PC 17 is informed which function 33, 34, 35 the handset 27 implements and selects an appropriate device driver. The PC 17 assigns a unique address to the handset 27 (step S8). At this stage the handset 27 is in an addressed state. The PC 17 reads configuration information from the handset (step S9). The handset 27 is now configured and the PC 17 can receive data from it.

[0045] The exchange of descriptor information at step S7.1 above will now be described.

[0046] Referring to FIGS. 9 and 10, the PC 17 sends a request GET_DESCRIPTOR over the default pipe to the handset 27 (step S7.1.1). The request GET_DESCRIPTOR comprises a request type field 53, a request field 54, a descriptor type 55 which in this example is set to “device”, a descriptor index field 56 which is set to zero, a length field 57 which specifies the number of bytes which the handset should return and a data field 58.

[0047] Referring to FIGS. 9 and 11, the handset 27 looks up the device descriptor DEVICE from memory 49 (Step S7.1.2) and returns it to the PC 17 (step S7.1.3). The device descriptor comprises a length field 59, a descriptor type field 60, a USB specification release number field 61, a device class code field 62, a device sub-class code field 63, a protocol code field 64, a maximum packet size field 65, a vendor ID field 66, a product ID field 67, a device release number field 68, an index of string descriptor 69 describing the manufacturer, an index of string descriptor describing the product 70, an index of string descriptor describing the device's serial number 71 and a field indicating the number of possible configurations 72. In this example, the device class code field 62 is set to 02 indicating a modem.

[0048] Once the USB system (see FIG. 1) of the PC 17 receives the device descriptor is DEVICE through the default pipe, it passes information relating to the device class 62 to the PC's operating system. The PC's operating system selects and assigns a modem driver in a manner well known per se. Alternatively, the operating system may prompt the user to install a modem driver. Once the modem driver is installed and appropriate browser software is operating, the PC 17 is able to control the modem 34 and receive data.

[0049] If the user disconnects the handset 27 and wishes to use a different function, such as the microphone function 33, they re-enter the functions menu on the handset 27 and select the microphone function (steps S1-S5). When handset 27 is re-attached to the PC 17, a different device descriptor DEVICE is returned to the PC 17 during bus enumeration and so a different driver, this time a microphone driver, is assigned.

[0050] This has the advantage that all the functions of the handset 27 are available to PC 17 and are easily configured by the user.

[0051] It will be appreciated that many modifications may be made to the embodiments hereinbefore described. Instead of a PC, the host may be another mobile telephone handset, a games console or a network computer. The device need not be a mobile telephone handset, but a data communicator or another PC.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7073010 *Dec 2, 2003Jul 4, 2006Super Talent Electronics, Inc.USB smart switch with packet re-ordering for interleaving among multiple flash-memory endpoints aggregated as a single virtual USB endpoint
US7373522 *May 9, 2003May 13, 2008Stmicroelectronics, Inc.Smart card with enhanced security features and related system, integrated circuit, and methods
US7657684 *Feb 22, 2007Feb 2, 2010Qualcomm IncorporatedUSB interrupt endpoint sharing
US20110040900 *Mar 22, 2010Feb 17, 2011Yepez Roberto GabrielHost/peripheral local interconnect that is compatible with self-configurable peripheral device
WO2007093989A2 *Feb 13, 2007Aug 23, 2007Avi GabbayPortable soft phone
Classifications
U.S. Classification710/313
International ClassificationH04M1/00, G06F13/14, G06F13/38, G06F13/42, G06F13/10
Cooperative ClassificationG06F13/426, G06F9/4411, G06F13/385
European ClassificationG06F13/42D6
Legal Events
DateCodeEventDescription
Jun 17, 2002ASAssignment
Owner name: NOKIA CORPORATION, FINLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCALES, JAMES;BULLARD, VARLEY;SYRJALA, PETRI;REEL/FRAME:013001/0835;SIGNING DATES FROM 20020517 TO 20020523