Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20020171541 A1
Publication typeApplication
Application numberUS 09/681,658
Publication dateNov 21, 2002
Filing dateMay 17, 2001
Priority dateDec 11, 2000
Also published asUS6480106
Publication number09681658, 681658, US 2002/0171541 A1, US 2002/171541 A1, US 20020171541 A1, US 20020171541A1, US 2002171541 A1, US 2002171541A1, US-A1-20020171541, US-A1-2002171541, US2002/0171541A1, US2002/171541A1, US20020171541 A1, US20020171541A1, US2002171541 A1, US2002171541A1
InventorsDale Crombez, Steven Napier, Christopher Ochocinski
Original AssigneeCrombez Dale Scott, Napier Steven Lee, Ochocinski Christopher A.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Rate of consumption gauge with variable rate of consumption limits
US 20020171541 A1
Abstract
The present invention provides an improved method and system to monitor vehicle operation state and operator requests. The invention combines into a single, easy to read, gauge information indicating the current vehicle operating state and the ability to increase power assist. This involves a display of instantaneous rate of consumption usage superimposed over the available rate of power consumption limits. The present invention can display whether an operator is requesting power assist, regenerative braking or battery charging while also showing the amount of power assist, regenerative braking or battery charging that is possible for the vehicle under present operating conditions. Through the use of a vehicle system controller (VSC) or similar type controller connected to the display of the present invention, the instantaneous rate of consumption usage or charge can be limited to the available rate of power consumption or charge limits. The invention can use analog needles or light emitting diodes in various configurations as well as adding warning lamps or chimes when the instantaneous rate of consumption usage approaches or exceeds the available rate of power consumption limits.
Images(3)
Previous page
Next page
Claims(23)
1. A combination display for a vehicle showing instantaneous rate of energy consumption superimposed over available rate of energy consumption.
2. The display of claim 1 further comprising:
a vehicle system controller (VSC);
an energy source connected to the VSC;
a set of vehicle state inputs connected to the combination display; and
an output from the display to the VSC, wherein the VSC limits the instantaneous rate of energy consumption to the available rate of energy consumption.
3. The display of claim 1 wherein the available rate of energy consumption comprises a charge side and an assist side.
4. The display of claim 1 wherein the instantaneous rate of energy consumption is shown by an analog needle and the available rate of energy consumption is shown by light emitting diodes (LEDs).
5. The display of claim 1 wherein the instantaneous rate of energy consumption is shown by LEDs and the available rate of energy consumption is shown by LEDs.
6. The display of claim 1 wherein the instantaneous rate of energy consumption is shown by an analog needle and the available rate of energy consumption is shown by analog needles.
7. The display of claim 1 further comprising a warning when desired instantaneous rate of energy consumption approaches the available rate of energy consumption.
8. The display of claim 1 further comprising a warning when desired instantaneous rate of energy consumption exceeds the available rate of energy consumption.
9. The display of claim 7 wherein the warning is an indicator lamp on the display.
10. The display of claim 8 wherein the warning is an indicator lamp on the display.
11. The display of claim 7 wherein the warning is a chime.
12. The display of claim 8 wherein the warning is a chime.
13. A method of monitoring vehicle energy status comprising the steps of:
monitoring instantaneous rate of energy consumption; monitoring available rate of energy consumption; and superimposing the monitoring of instantaneous rate of energy consumption over the monitoring of available rate of energy consumption.
14. The method of claim 13 wherein the step of monitoring available rate of energy consumption comprises the steps of monitoring charge and monitoring assist.
15. The method of claim 13 wherein monitoring is achieved using light emitting diodes.
16. The method of claim 13 wherein monitoring is achieved using an analog needle.
17. The method of claim 13 wherein monitoring is achieved using a combination of analog needles and LEDS.
18. The method of claim 13 further comprising the step of warning an operator when a desired instantaneous rate of energy consumption approaches the available rate of energy consumption.
19. The method of claim 13 further comprising the step of warning an operator when a desired instantaneous rate of energy consumption exceeds the available rate of energy consumption.
20. The method of claim 18 wherein the warning is achieved using an indicator lamp.
21. The method of claim 18 wherein the warning is achieved using a chime.
22. The method of claim 19 wherein the warning is achieved using an indicator lamp.
23. The method of claim 19 wherein the warning is achieved using a chime.
Description
    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is the non-provisional application of provisional patent application No. 60/254423 titled, “Rate of Consumption Gauge with Variable Rate of Consumption Limits,” filed Dec. 11, 2000.
  • BACKGROUND OF INVENTION
  • [0002]
    The present invention relates generally to a vehicle monitoring system and method, and more particularly to a combined system and method to superimpose a monitor that communicates the instantaneous rate of consumption usage over a monitor that communicates the limits of the available rate of consumption, both positive and negative.
  • [0003]
    The need to reduce fossil fuel consumption and emissions in automobiles and other vehicles predominately powered by internal combustion engines (ICEs) is well known. Vehicles powered by electric motors or other power sources attempt to address these needs. Other alternative solutions combine a smaller ICE with electric motors or other power sources into one vehicle. Vehicles that combine the advantages of an ICE vehicle and an electric vehicle are typically called Hybrid Electric Vehicles (HEVs). See generally, U.S. Pat. No. 5,343,970 to Severinsky.
  • [0004]
    The desirability of combining an ICE with other power sources such as an electric motor is clear. There is great potential for reducing vehicle fuel consumption and emissions with no appreciable loss of vehicle performance or drive-ability. An HEV not only allows the use of smaller ICEs, but also allows regenerative braking, electric power assist in the vehicle's powertrain, and even powering the vehicle without assistance from the ICE.
  • [0005]
    New ways must be developed to operate these dual powered vehicles. In conventional ICE vehicles, several familiar gauges provide vehicle state information such as vehicle speed, engine temperature, engine RPMs, and alternator function. The HEV and other more sophisticated and complex vehicles must convey new types of vehicle state information to the operator. These monitoring systems must be simple and easy to read.
  • [0006]
    For example, operators must be notified of HEV state information on available power assist limits by stored power sources such as batteries because the operator must known when powertrain requests cannot be met under present vehicle operating conditions. More specifically, in an electric or partial electric (hybrid) vehicle, the available power to accelerate the vehicle may be inconsistent due to many factors. For example, when the battery is at a low state of charge or excessively warm, the battery power available to a vehicle's electric motors may be temporary limited. The operator must be aware of these conditions and know when the battery power is limited so that a maneuver that may require battery power to the electric motor is not attempted.
  • [0007]
    Battery energy displays, gauges, or monitors for electric vehicles are known in the prior art. U.S. Pat. No. 6,175,303 B1 to Theofanopoulos et al. describes a battery energy-measuring device indicating maximum available battery current on an analogue scale as a percentage. U.S. Pat. No. 5,532,671 Bachman et al. signals to an operator of an electric vehicle that the battery is at a reduced state of charge by requiring the accelerator to be depressed farther to provide an equivalent accelerator command to the controller that controls the motor. U.S. Pat. No. Des. 378,500 to Nakai et al. describes an ornamental design for residual battery capacity and electric vehicle range.
  • [0008]
    It is also common in an electric or partial electric vehicle to include a vehicle operator request status gauge that displays whether the operator is requesting power assist, regenerative braking or battery charging. An analog gauge can be used to convey this information.
  • [0009]
    Unfortunately, these two separate indicators, battery state and vehicle operator request status, can be complicated and confusing to an operator and clutter the vehicle dashboard.
  • SUMMARY OF INVENTION
  • [0010]
    Accordingly, the present invention provides an improved method and system to monitor vehicle operation state and operator requests.
  • [0011]
    The main object of the present invention is to combine into a single, easy to read gauge information indicating the current vehicle operating state and the ability to increase power assist.
  • [0012]
    It is a further object of the present invention to provide a single gauge that combines the available rate of power consumption limits and instantaneous rate of consumption usage.
  • [0013]
    It is a further object of the present invention to provide a vehicle gauge that displays whether an operator is requesting power assist, regenerative braking or battery charging while also showing the amount of power assist, regenerative braking or battery charging that is possible for the vehicle under present operating conditions.
  • [0014]
    The instantaneous rate of consumption usage or charge can be limited to the available rate of power consumption or charge limits by a vehicle system controller (VSC) or similar type controller. The invention can use analog needles or light emitting diodes in various configurations as well as adding warning lamps or chimes when the instantaneous rate of consumption usage approaches or exceeds the available rate of power consumption limits.
  • [0015]
    Other objects of the present invention will become more apparent to persons having ordinary skill in the art to which the present invention pertains from the following description taken in conjunction with the accompanying figures.
  • BRIEF DESCRIPTION OF DRAWINGS
  • [0016]
    The foregoing objects, advantages, and features, as well as other objects and advantages, will become apparent with reference to the description and figures below, in which like numerals represent like elements and in which:
  • [0017]
    [0017]FIG. 1 illustrates a gauge for the present invention under normal operating conditions.
  • [0018]
    [0018]FIG. 2 illustrates a gauge for the present invention under partially limited assist conditions.
  • [0019]
    [0019]FIG. 3 illustrates a gauge for the present invention under partially limited charge conditions.
  • [0020]
    [0020]FIG. 4 illustrates a gauge for the present invention under partially limited charge and assist conditions.
  • [0021]
    [0021]FIG. 5 illustrates an alternative embodiment of the gauge using three needles to demonstrate a partially limited charge and highly limited assist condition.
  • [0022]
    [0022]FIG. 6 illustrates an alternative embodiment of the gauge using only LED's to demonstrate a partially limited assist condition.
  • DETAILED DESCRIPTION
  • [0023]
    In the past, several gauges have developed for use in ICE vehicles. As more sophisticated powertrains develop, there is a desire and need to create system monitors (such as gauges, displays and chimes) that are easy to understand and can be combined to monitor several items of information. The main object of this invention is to combine various vehicle state information into one simple and easy to understand monitor. The monitors in the preferred embodiment are used to convey the available rate of consumption limits and instantaneous rate of consumption usage from several types of power sources such as battery powered systems, partially battery powered systems, fuel cell systems, pneumatic powered systems, and hydraulic powered systems under the control of a vehicle system controller (VSC) or similar type controller known in the prior art (not shown).
  • [0024]
    The preferred embodiment is illustrated in FIGS. 1 through 4. Here, a monitor/gauge/display superimposes instantaneous rate of consumption usage over a gauge that communicates limits of the available rate of consumption. As illustrated in FIG. 1, a gauge 20 receives vehicle state input 32 such as driver requests for power, regenerative braking, battery state of charge, battery temperature, etc. (battery not shown). The gauge 20 has an analog device such as a needle gauge 22 to indicate instantaneous rate of consumption usage. This instantaneous usage rate may be based on driver request for assist or charge (such as regenerative braking). The needle 22 is superimposed over a bank of light emitting diodes (LEDs) 24 that indicate the limits of the available rate of consumption (both positive and negative rates of consumption). The LEDs 24 have a center point 26, a variable positive rate of consumption limit to one side (assist) 28, and a variable negative rate of consumption limit (charge) 30 to the other side. Assist 28 occurs, for example, when a vehicle's battery usage is needed to provide power to an electric drive that, in turn, provides torque or power to a vehicle powertrain. Negative rate of consumption, or charge 30, occurs when, for example, the battery is being charged by a vehicle generator or regenerative braking. Regenerative braking captures kinetic energy of a vehicle that is usually lost as heat in the vehicle's brakes when an operator requests slowing or stopping the vehicle.
  • [0025]
    The needle 22 while positioned on the assist 28 side of the LED 24 bank, as illustrated in FIG. 2, indicates the instantaneous rate of consumption of a stored resource such as the battery or fuel cell system (see below) in a positive direction. The more the assist is available, the more LEDs 24 will be indicated on the assist 28 side of the LED 24 bank. The needle 22, while positioned on the charge 30 side of the LED 24 bank, as illustrated in FIG. 3, also indicates the instantaneous rate of consumption of the stored resource, such as the battery, in a negative direction. Put another way, the stored resource is replenished to enable assist in the future. The more the stored resource is able to replenish, the more LEDs 24 will be indicated on the charge 30 side of the LED 24 bank.
  • [0026]
    By showing both instantaneous and available rate of consumption, FIG. 2 illustrates how the gauge 20 indicates available assist 28. If a limitation exists in the available assist 28 (such as limiting discharge during a low battery state of charge), the LEDs 24 on the assist 28 side of the gauge 20 would progressively turn off until the gauge 20 indicates that no assist 28 is available. The needle 22 can only move toward the assist 28 side of the gauge 20 to the point where the LEDs 24 are lit as determined by a vehicle system controller (not shown). Thus, the gauge 20 indicates to the operator how much assist 28 is available and how much assist 28 is being used relative to the available assist 28. The gauge 20 would also indicate when no assist 28 is available.
  • [0027]
    Likewise, if the available charge capability is limited (such as during a high battery state of charge), the LEDs 24 on the charge 30 side of the gauge 20 would progressively turn off until the gauge 20 indicates that little or no charge is available as illustrated in FIG. 3. The needle 22 can only move toward the charge 30 side of the gauge 20 to the point where the LEDs 24 are lit, representing the charge 30 limit of the vehicle. The gauge 20 thus informs the operator how much charge 30 is being performed relative to an available charging capability. The gauge 20 would also tell the operator when no charge 30 capability is available.
  • [0028]
    Under certain conditions, both charge 30 capability and assist 28 capability may be limited as illustrated in FIG. 4. By way of example, limited discharge and limited recharge may exist when the battery temperature is too high or too low. During these conditions, the LEDs 24 of both the charge 30 side and the assist 28 side of the gauge 20 would progressively turn off and thus the needle 22 gauge's range of movement would be limited to the center point 26 of the gauge 20 where the LEDs 24 are lit.
  • [0029]
    Other variations of the preferred embodiment are possible. For example, the gauge 20 could add an additional indicator (such as a lamp or chime, not shown) to warn the operator that there is no or virtually no assist or charge available. Further, the LED 24 bank may use various colors to indicate different levels of assist and charge instead of turning the LEDs 24 off.
  • [0030]
    Many other embodiments of the present invention are possible. For example, FIG. 5 illustrates a first alternate gauge 40 with three analog needles and no LEDs. First alternate gauge 40 has a first alternate gauge needle 42 to indicate instantaneous rate of consumption usage. The first alternate gauge needle 42 is superimposed over a first alternate gauge charge needle 44 and a first alternate gauge assist needle 46 that indicate the range limits of the available rate of consumption (both positive and negative rates of consumption as in the preferred embodiment). First alternate gauge charge needle 44 would indicate the charge level available (limit), and first alternate gauge assist needle 46 would indicate the assist level available (limit). First alternate gauge needle 42 moves between the needle 44 and needle 46 as determined by the vehicle system controller (not shown). A first alternate gauge center point 48 is also included to indicate no instantaneous rate of consumption for first alternate gauge needle 42, no charge ability for first alternate gauge charge needle 44, and no assist ability for first alternate gauge assist needle 46. A bar 50 shows the extreme limits of assist, charge, and consumption. The needle positions in FIG. 5 show a slight instantaneous charge with partially limited charge and mostly limited assist conditions.
  • [0031]
    Yet another embodiment of the present invention is illustrated in FIG. 6. This second alternate gauge 52 is in the form of a dual LED bar gauge. This second alternate gauge 52 uses a second alternate gauge first LED bank 54 to act in similar fashion as needle 22 (illustrated in FIGS. 1 through 4) between the available charge/assist and the instantaneous charge/assist. This embodiment's second alternate gauge second LED bank 56 acts in similar fashion as LEDs 24 (illustrated in FIGS. 1 through 4).
  • [0032]
    The following examples demonstrate how the present invention can be utilized in a variety of vehicle powertrain configurations using a variety of vehicle state sensors and under the vehicle system control (VSC) 60:
  • [0033]
    1. Battery Powered Systems:
  • [0034]
    Instantaneous Rate of Consumption=battery power
  • [0035]
    Available Rate of Consumption Limits=maximum recharge power limit, maximum discharge power limit as determined or applied by the VSC.
  • [0036]
    Instantaneous Rate of Consumption=battery current
  • [0037]
    Available Rate of Consumption Limits=maximum recharge current limit, maximum discharge current limit as determined or applied by the VSC.
  • [0038]
    Instantaneous Rate of Consumption=battery voltage
  • [0039]
    Available Rate of Consumption Limits=maximum recharge voltage limit, maximum discharge voltage limit as determined or applied by the VSC.
  • [0040]
    2. Fuel Cell Powered Systems:
  • [0041]
    Instantaneous Rate of Consumption=fuel cell power
  • [0042]
    Available Rate of Consumption Limits=(0) maximum recharge power limit or minimum desired discharge power limit, maximum discharge power limit as determined or applied by the VSC.
  • [0043]
    3. Any Shared Power Systems: (Preferred Embodiment)
  • [0044]
    Instantaneous Rate of Consumption=component/subsystem power
  • [0045]
    Available Rate of Consumption Limits=maximum budgeted recharge power limit, maximum budgeted discharge power limit as determined or applied by the VSC.
  • [0046]
    4. Pneumatic Powered Systems:
  • [0047]
    Instantaneous Rate of Consumption=gas flow rate and pressure (power)
  • [0048]
    Available Rate of Consumption Limits=maximum recharge gas flow rate and pressure (power) limit, maximum discharge gas flow rate and pressure (power) limit as determined or applied by the VSC.
  • [0049]
    Instantaneous Rate of Consumption=pressure
  • [0050]
    Available Rate of Consumption Limits=maximum recharge gas pressure limit, maximum discharge gas pressure limit as determined or applied by the VSC.
  • [0051]
    5. Hydraulic Powered Systems: Instantaneous Rate of Consumption=fluid flow rate and pressure (power)
  • [0052]
    Available Rate of Consumption Limits=maximum recharge fluid flow rate and pressure (power) limit, maximum discharge fluid flow rate and pressure (power) limit as determined or applied by the VSC.
  • [0053]
    Instantaneous Rate of Consumption=pressure
  • [0054]
    Available Rate of Consumption Limits=maximum recharge fluid pressure limit, maximum discharge fluid pressure limit as determined or applied by the VSC.
  • [0055]
    The above-described embodiments of the present invention are provided purely for purposes of example. Many other variations, modifications, and applications of the invention may be made.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7091839Mar 9, 2004Aug 15, 2006Ford Global Technologies, LlcIndicator for a hybrid electric vehicle
US7123133Apr 15, 2004Oct 17, 2006Preco Electronics, Inc.Combined back-up and battery low-level alarm for vehicle
US7209838Sep 29, 2003Apr 24, 2007Rockwell Automation Technologies, Inc.System and method for energy monitoring and management using a backplane
US7474309Dec 16, 2003Jan 6, 2009General Motors CorporationHybrid vehicle display apparatus and method
US7750796 *Jul 6, 2010Gm Global Technology Operations, Inc.Regenerative braking halo and method
US8068974Sep 10, 2007Nov 29, 2011GM Global Technology Operations LLCMethods and systems for determining driver efficiency and operating modes in a hybrid vehicle
US8108136 *Aug 9, 2007Jan 31, 2012Ford Global Technologies, Llc.Driver advisory system for fuel economy improvement of a hybrid electric vehicle
US8248221 *Aug 21, 2012Ford Global Technologies, LlcMethod and system for displaying recovered energy for a hybrid electric vehicle
US8289143Aug 18, 2008Oct 16, 2012Toyota Jidosha Kabushiki KaishaHybrid vehicle
US8290697Oct 7, 2009Oct 16, 2012Ford Global Technologies LlcHaptic apparatus and coaching method for improving vehicle fuel economy
US8301404Oct 30, 2012Rockwell Automation Technologies, Inc.System and method for energy monitoring and management using a backplane
US8359152Oct 16, 2007Jan 22, 2013Toyota Jidosha Kabushiki KaishaIndication apparatus for hybrid vehicle
US8359153Feb 9, 2012Jan 22, 2013Toyota Jidosha Kabushiki KaishaIndication apparatus for hybrid vehicle
US8502654 *Mar 17, 2010Aug 6, 2013Ford Global Technologies, LlcVehicle information display and method
US8653960 *Jan 20, 2011Feb 18, 2014GM Global Technology Operations LLCVehicle gauge for displaying electric mode status and method of doing the same
US8660784Sep 10, 2007Feb 25, 2014GM Global Technology Operations LLCMethods and systems for determining driver efficiency in a vehicle
US8669855Aug 27, 2007Mar 11, 2014Toyota Jidosha Kabushiki KaishaIndicator apparatus for hybrid vehicle, hybrid vehicle, indicating method for hybrid vehicle
US8755994 *Jan 5, 2012Jun 17, 2014Ford Global Technologies, LlcInformation display system and method
US8855880Oct 5, 2009Oct 7, 2014Toyota Motor Engineering & Manufacturing North America, Inc.Method and system for displaying braking information
US8874344Jan 6, 2012Oct 28, 2014Ford Global Technologies, LlcRegenerative braking feedback display and method
US9292976 *Oct 4, 2013Mar 22, 2016Ford Global Technologies, LlcEfficiency gauge for plug-in electric vehicle
US9415685Jan 28, 2014Aug 16, 2016Toyota Jidosha Kabushiki KaishaIndicator apparatus for hybrid vehicle, hybrid vehicle, indicating method for hybrid vehicle
US9421962Sep 22, 2014Aug 23, 2016Toyota Motor Engineering & Manufacturing North America, Inc.Method and system for displaying braking information
US20050200463 *Mar 9, 2004Sep 15, 2005Ford Global Technologies, LlcIndicator for a hybrid electric vehicle
US20050231338 *Apr 15, 2004Oct 20, 2005Anderson Dennis NCombined back-up and battery low-level alarm for vehicle
US20070295544 *Feb 20, 2007Dec 27, 2007Gm Global Technology Operations, Inc.Regenerative braking halo and method
US20090043467 *Aug 9, 2007Feb 12, 2009Ford Global Technologies, LlcDriver Advisory System for Fuel Economy Improvement of a Hybrid Electric Vehicle
US20090066495 *Sep 10, 2007Mar 12, 2009Gm Global Technology Operations, Inc.Methods and systems for determining driver efficiency and operating modes in a hybrid vehicle
US20090070027 *Sep 10, 2007Mar 12, 2009Gm Global Technology Operations, Inc.Methods and systems for determining driver efficiency in a vehicle
US20090112439 *Oct 30, 2007Apr 30, 2009Ford Global Technologies, LlcSystem and method for obtaining an adjustable accelerator pedal response in a vehicle powertrain
US20090322503 *Aug 27, 2007Dec 31, 2009Toyota Jidosha Kabushiki KaishaIndicator apparatus for hybrid vehicle, hybrid vehicle, indicating method for hybrid vehicle
US20100030413 *Oct 16, 2007Feb 4, 2010Toyota Jidosha Kabushiki KaishaIndication apparatus for hybrid vehicle
US20100030458 *Feb 4, 2010Ford Global Technologies, LlcHaptic Apparatus and Coaching Method for Improving Vehicle Fuel Economy
US20100194553 *Aug 18, 2008Aug 5, 2010Toyota Jidosha Kabushiki KaishaHybrid vehicle
US20110004426 *Jan 6, 2011Rockwell Automation Technologies, Inc.System and method for energy monitoring and management using a backplane
US20110023772 *Feb 3, 2011Ford Global Technologies, LlcMethod and system for displaying recovered energy for a hybrid electric vehicle
US20110082632 *Oct 5, 2009Apr 7, 2011Toyota Motor Engineering & Manufacturing North America, Inc.Method and system for displaying braking information
US20110208381 *Oct 21, 2008Aug 25, 2011Renault TrucksMethod and system for determining the ability of a driver of a hybrid vehicle and vehicle equipped with such a system
US20110227715 *Mar 17, 2010Sep 22, 2011Ford Global Technologies, LlcVehicle Information Display And Method
US20110320088 *Dec 29, 2011Kia Motors CorporationSystem and method for displaying power status of hybrid vehicle
US20120179314 *Jan 6, 2011Jul 12, 2012Ford Global Technologies, LlcVehicle Range Surplus Display And Method
US20120179319 *Jan 5, 2012Jul 12, 2012Ford Global Technologies, LlcInformation Display System And Method
US20120179347 *Jan 6, 2012Jul 12, 2012Ford Global Technologies, LlcRegenerative Braking Feedback Display And Method
US20120188068 *Jul 26, 2012GM Global Technology Operations LLCVehicle Gauge for Displaying Electric Mode Status and Method of Doing the Same
US20130110348 *Mar 15, 2011May 2, 2013Komatsu Ltd.Display Device for Construction Machine
US20150100226 *Oct 4, 2013Apr 9, 2015Ford Global Technologies, LlcEfficiency Gauge For Plug-In Electric Vehicle
CN101097158BJun 27, 2007Jun 9, 2010通用汽车环球科技运作公司Regenerative braking halo and method
CN103661404A *Sep 5, 2013Mar 26, 2014F波尔希名誉工学博士公司Method and apparatus for operating motor vehicle
DE102010020673A1 *May 15, 2010Nov 17, 2011Dr. Ing. H.C. F. Porsche AktiengesellschaftDisplay device i.e. alphanumeric display device, for hybrid vehicle, has indicator controlled by driving parameter and displaying current value of vehicle parameters at hybrid modes on display regions
DE102010063358A1 *Dec 17, 2010Jun 21, 2012Robert Bosch GmbhVerfahren und Vorrichtung zum Bestimmen einer Leistungsreserve eines elektrischen Antriebs
DE102012200154A1 *Jan 5, 2012Jul 11, 2013Continental Automotive GmbhDisplay device for motor vehicle to indicate speed of motor vehicle or engine speed, has pointer and dial which has scale bars in angle area, where pointer is rotatable around rotational axis
EP2082913A1 *Oct 16, 2007Jul 29, 2009Toyota Jidosha Kabushiki KaishaDisplay device for hybrid vehicle
EP2082913A4 *Oct 16, 2007Mar 23, 2011Toyota Motor Co LtdDisplay device for hybrid vehicle
EP2196370A1 *Aug 18, 2008Jun 16, 2010Toyota Jidosha Kabushiki KaishaHybrid vehicle
EP2332770A1 *Sep 17, 2009Jun 15, 2011Honda Motor Co., Ltd.Device for instructing driver to perform drive operation for enhancing fuel efficiency
EP2386833A1 *May 10, 2010Nov 16, 2011Siemens AktiengesellschaftDisplay for a total value and method for displaying a total value
EP2402195A2Oct 16, 2007Jan 4, 2012Toyota Jidosha Kabushiki KaishaIndication apparatus for hybrid vehicle
WO2008056529A1Oct 16, 2007May 15, 2008Toyota Jidosha Kabushiki KaishaDisplay device for hybrid vehicle
WO2010046733A1 *Oct 21, 2008Apr 29, 2010Renault TrucksMethod and system for determining the ability of a driver of a hybrid vehicle and vehicle equipped with such a system
WO2012079810A3 *Oct 20, 2011May 10, 2013Robert Bosch GmbhMethod and device for determining a power reserve of an electric drive
Classifications
U.S. Classification340/461, 340/439, 340/462, 340/450.2
International ClassificationB60R16/02, G07C5/00, B60R16/023
Cooperative ClassificationB60K2350/1092, G07C5/004, B60Y2200/90, B60L2250/16, B60R16/0232, B60K35/00
European ClassificationG07C5/00E, B60R16/023D3
Legal Events
DateCodeEventDescription
May 17, 2001ASAssignment
Owner name: FORD MOTOR COMPANY, MICHIGAN
Free format text: ;ASSIGNORS:DALE SCOTT CROMBEZ;STEVEN LEE NAPIER;CHRISTOPHER A. OCHOCINSKI;REEL/FRAME:011576/0328;SIGNING DATES FROM 20010316 TO 20010319
Apr 26, 2006FPAYFee payment
Year of fee payment: 4
Apr 22, 2010FPAYFee payment
Year of fee payment: 8
Apr 24, 2014FPAYFee payment
Year of fee payment: 12
Jan 13, 2016ASAssignment
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND
Free format text: ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:037518/0292
Effective date: 20151207