Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030019610 A1
Publication typeApplication
Application numberUS 10/079,321
Publication dateJan 30, 2003
Filing dateFeb 19, 2002
Priority dateJul 26, 2001
Also published asWO2003041472A1
Publication number079321, 10079321, US 2003/0019610 A1, US 2003/019610 A1, US 20030019610 A1, US 20030019610A1, US 2003019610 A1, US 2003019610A1, US-A1-20030019610, US-A1-2003019610, US2003/0019610A1, US2003/019610A1, US20030019610 A1, US20030019610A1, US2003019610 A1, US2003019610A1
InventorsJefferson Liu
Original AssigneeJefferson Liu
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Rapidly self - heat-conductive heat - dissipating module
US 20030019610 A1
Abstract
A rapidly self-heat-conductive heat-dissipating module has two fin sets which are overlapped. At least one heat convection super conductive tube is engaged with the two heatsink sets. One heatsink set is used to absorb heat from a heat source and the other one serves to dissipate heat. A heat dissipating fan blows air to the two heatsink sets for increasing heat dissipating efficiency. A plurality of rapidly self-heat-conductive heat-dissipating modules having heatsink sets and heat convection super conductive tubes can be assembled together and then heat dissipating fan is used to blow cold air. Therefore, the rapidly self-heat-conductive heat-dissipating module can dissipate rapidly and efficiently.
Images(8)
Previous page
Next page
Claims(7)
What is claimed is:
1. A rapidly self-heat-conductive heat-dissipating module, comprising:
two heatsink sets each having a base and fins connected on the base;
at least one heat convection super conductive tube;
each heat convection super conductive tube having a portion being connected to the heatsink sets near a heat source and other portions far away from the heat source;
thereby, heat transferring from the portion near the heat source to the portions far away from the heat source; the heat convection super conductive tube serving to fix the two heatsink sets.
2. The rapidly self-heat-conductive heat-dissipating module as claimed in claim 1, wherein bottoms of the base of the two heatsink set are installed with a plurality of trenches; the heat convection super conductive tubes are bent to have a U shape; one end of the U shape tube is placed in a trench and another end thereof is placed in another trench; and the two heatsink sets are assembled as one set.
3. The rapidly self-heat-conductive heat-dissipating module as claimed in claim 2, wherein the two heatsink sets are assembled as one set and fins thereof are alternatively arranged.
4. The rapidly self-heat-conductive heat-dissipating module as claimed in claim 1, wherein bottoms of the base of the two heatsink sets have a plurality of trenches; there are two heat convection super conductive tubes; each heat convection super conductive tube is formed by double U shapes; two free ends of the double U shapes of the heat convection super conductive tube are placed into the two trenches of a heatsink set and the U shape has no free end is placed in the two trenches in another heatsink set; then the fins of the heatsink sets are assembled correspondingly.
5. The rapidly self-heat-conductive heat-dissipating module as claimed in claim 1, further comprising a heat dissipating fan assembled to an identical lateral side of the two heatsink sets for blowing cold air to the fins so as to acquire high efficient heat dissipation.
6. The rapidly self-heat-conductive heat-dissipating module as claimed in claim 1, wherein a plurality of heat dissipating modules formed by heatsink sets and heat convection super conductive tubes are assembled together.
7. The rapidly self-heat-conductive heat-dissipating module as claimed in claim 1, further comprising one or more heat dissipating fans.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    The present invention relates to a rapidly self-heat-conductive heat-dissipating module, and particularly to a heat dissipating module which can transfer heat from the CPU of a computer or a device with large heat dissipation effectively.
  • [0003]
    2. Description of Related Art
  • [0004]
    The heat dissipating devices for central processing units (CPUs) of computers or high heat generating devices use heatsink devices with a plurality of metal fins to contact with the heat sources, absorb heat and then transfer heat to the fins. Then heat-dissipating fans are used to blow cold air for dispersing heat.
  • [0005]
    This prior art way is effective for heat from a small CPU, while for CPU dissipating a large amount of heat, it can not be operated effectively since the metal base of heatsink is spaced with the distal ends of the fins. Only the base of heatsink is in contact with the heat source (i.e., CPU), the heat from the base of heatsink can not be transferred to the distal ends of the fins, and the root portions of the fins and the distal ends absorb unequal heat amounts. In other words, the portion near the root portion of the base of heatsink absorbs more heat and vice versa. As a result, only the root portion of the base of heatsink is used to dissipate heat. Therefore, aforesaid conventional heat dissipating device can not match the requirement of the newly developed CPUs with high operation speed.
  • SUMMARY OF THE INVENTION
  • [0006]
    Accordingly, the primary object of the present invention is to provide a rapidly self-heat-conductive heat-dissipating module, wherein a rapidly self-heat-conductive heat-dissipating module has two heatsink sets which are overlapped. At least one heat convection super conductive tubes are engaged with the two heatsink sets. One heatsink set is used to absorb heat from a heat source and the other one serves to dissipate heat. A heat-dissipating fan blows air to the two heatsink sets for increasing heat-dissipating efficiency.
  • [0007]
    Another object of the present invention is to provide a rapidly self-heat-conductive heat-dissipating module, wherein a plurality of rapidly self-heat-conductive heat-dissipating modules having heatsink sets and heat convection super conductive tubes can be assembled together and then heat dissipating fan is used to blow cold air. Therefore, the rapidly self-heat-conductive heat-dissipating module can dissipate rapidly and efficiently.
  • [0008]
    The various objects and advantages of the present invention will be more readily understood from the following detailed description when read in conjunction with the appended drawing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0009]
    [0009]FIG. 1 is an exploded perspective view of the present invention having two heatsink sets and a plurality of U shape heat convection super conductive tubes.
  • [0010]
    [0010]FIG. 2 is a perspective view showing that the elements of FIG. 1 is assembled and a heat dissipating fan is further added.
  • [0011]
    [0011]FIG. 3 is an exploded perspective view wherein two heatsink sets are alternatively arranged and a plurality of U shape heat convection super conductive tubes and a heat dissipating fan are used.
  • [0012]
    [0012]FIG. 4 is a perspective view showing the element of FIG. 3 which are assembled.
  • [0013]
    [0013]FIG. 5 is the exploded perspective view of the present invention, wherein two double U shaped heat convection super conductive tubes and two heatsink sets are assembled.
  • [0014]
    [0014]FIG. 6 is a perspective view of the element of FIG. 5 which are assembled.
  • [0015]
    [0015]FIG. 7 is a perspective view showing the heat dissipating modules by two heatsink sets and a plurality of heat convection super conductive tubes which are assembled together.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0016]
    Referring to FIG. 1, the rapidly self-heat-conductive heat-dissipating module of the present invention is illustrated. The heat-dissipating module has two heatsink sets 1 and a plurality of heat convection super conductive tubes 2. The heat convection super conductive tubes 2 are made of bendable metal tubes (for example, copper, aluminum, etc.). High temperature super conductor composites, such as yttrium barium copper oxide (YBCO) superconductor material, thallium barium calcium copper oxide (TBCCO) superconductor material, mercury barium calcium copper oxide (HBCCO) superconductor material, bismuth strontium calcium copper oxide (BSCCO) superconductor material, or other superconductor material, or other rapid heat conductive material. Two ends of the tube are closed for preventing the superconductor material to drain out of the tube. Therefore, heat convection super conductive tube 2 is formed by aforesaid metal tube and the superconductor material enclosed therein. The principle used is that when the molecules in the tube is heated, heat energy can be transferred by convection due to the rapid oscillation and large friction. Therefore, the heat can be transferred rapidly, and it is called as a heat convection super conductive tube. Since the heat transfer time in the heat convection super conductive tube from a heat end to a cold end is very short, the temperature difference between the heat end and the cold end is very small and thus an optimum heat transfer can be acquired. It has been appreciated that the speed of heat transfer is about five times of that of copper. Furthermore, it is quicker than general aluminum extruding heat dissipating heatsinks.
  • [0017]
    In the present invention, the heatsink sets 1 are elements contacting a CPU for absorbing heat. There are two heatsink sets 1. The reason for using two heatsink sets 1 is that when heat is transferred the upper heatsink set 1, since the upper and lower heatsink sets 1 are separated, no convection occurs and thus no heat returns.
  • [0018]
    [0018]FIG. 1 shows the first embodiment of the present invention. There are two heatsink sets 1 exposing out and having a plurality of fins 11. The lateral side of one heatsink set 1 near the base 10 has a plurality of trenches 12. A bottom of the base 10 of another heatsink set 1 is installed with a plurality of trenches 12. The heat convection super conductive tubes 2 are bent to have a U shape. One end of the U shape tube is placed in a trench 12 and another end thereof is placed in another trench 12. The two heatsink sets 1 are assembled as one set. Meanwhile, the heat convection super conductive tube 2 has the effect of buckling two sets of heatsink sets 1 (referring to FIG. 2). The bottom of the base 10 of the heatsink set 1 with trenches 12 serves for contacting a heat source, such as CPU. Therefore, large amount of heat can be transferred to another heatsink set 1 through the heat convection super conductive tube 2. Then heat is transferred to each heatsink. Therefore, a rapidly self-heat-conductive heat-dissipating module is formed by the heat convection super conductive tubes 2 and the heatsink sets 1. A heat dissipating fan 3 is assembled at the identical lateral side of the two heatsink sets 1 for blowing cold air to the fins 11 to achieve a high efficiency heat dissipation.
  • [0019]
    Referring to FIG. 3, the second embodiment of the present invention is illustrated. There are two identical heatsink sets 1. The bottom of the base 10 of the heatsink set 1 has a plurality of trenches 12. The heat convection super conductive tubes 2 are bent to have a U shape. Two ends of the U shape tube are placed in trenches 12. The two heatsink sets 1 are assembled as one set, and the fins of the two heatsink sets 1 are alternatively arranged. Meanwhile, the heat convection super conductive tube 2 has the effect of buckling two sets of heatsink sets 1 (referring to FIG. 4). The base 10 of the heatsink set 1 with trenches 12 serves for contacting a heat source. Therefore, large amount of heat can be transferred to another heatsink set 1 through the heat convection super conductive tube 2. Then heat is thus transferred to each heatsink. The alternatively arranged fins can increase the area of heat dissipation. A heat dissipating fan 3 is assembled at the identical lateral side of the two heatsink sets 1 for blowing cold air to the fins 11 to achieve a high efficiency heat dissipation.
  • [0020]
    [0020]FIG. 5 shows the second embodiment of the present invention. In this the present invention, the heatsink sets 1 are identical to those in the first embodiment. The difference is the heat convection super conductive tube 2. There are two heat convection super conductive tubes 2. Each heat convection super conductive tube 2 is formed by two U shapes. One heat convection super conductive tube 2 is wider, and the other is small. The two free ends of the double U shapes of the wider heat convection super conductive tube 2 can be placed in the two trenches 12 at the lateral sides. The U shape of the tube having no free end is placed in the two trenches 12 at the lateral sides. The two free ends of the double U shapes of the narrower heat convection super conductive tube 2 can be placed in the two trenches 12 at the inner sides. The U shape having no free end is placed in the two trenches 12 at the inner sides. Therefore, other than transferring through the fins 11, the heat absorbed by the base 10 can be transferred to the heatsinks through the heat convection super conductive tubes 2 rapidly so that heat can be dispersed on the fins 11. A heat dissipating fan 3 is assembled at the identical lateral side of the two heatsink sets 1 for blowing cold air to the fins 11 to achieve a high efficiency heat dissipation.
  • [0021]
    [0021]FIG. 7 shows the fourth embodiment of the present invention. In this embodiment, the heatsink sets 1 and the heat convection super conductive tube 2 can be assembled together and one or a plurality of heat dissipating fans are added for increasing the heat dissipating efficiency.
  • [0022]
    The rapidly self-heat-conductive heat-dissipating module of the present invention has the following advantages.
  • [0023]
    1. Heat from the heat source can be rapidly and effectively transferred to the heat dissipating module.
  • [0024]
    2. Heat from the heat source can be dispersed rapidly and effectively.
  • [0025]
    3. In the present invention, a plurality of rapidly self-heat-conductive heat-dissipating module can be assembly integrally, the heat from the heat source can be dispersed more effectively.
  • [0026]
    The present invention are thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6796373 *Aug 27, 2003Sep 28, 2004Inventec CorporationHeat sink module
US6918429 *Nov 5, 2003Jul 19, 2005Cpumate Inc.Dual-layer heat dissipating structure
US6964295 *Nov 16, 2004Nov 15, 2005Hon Hai Precision Industry Co., Ltd.Heat dissipation device
US6978829 *Sep 24, 2004Dec 27, 2005Asia Vital Component Co., Ltd.Radiator assembly
US7000687 *Jul 16, 2004Feb 21, 2006Hon Hai Precision Industry Co., Ltd.Heat dissipating device
US7013960 *Sep 30, 2004Mar 21, 2006Hon Hai Precision Industry Co., Ltd.Heat dissipation device
US7028758 *Dec 21, 2004Apr 18, 2006Hon Hai Precision Industry Co., Ltd.Heat dissipating device with heat pipe
US7059391 *Apr 7, 2005Jun 13, 2006Aavid Thermalloy, Inc.Multiple evaporator heat pipe assisted heat sink
US7110259 *Sep 21, 2004Sep 19, 2006Hon Hai Precision Ind. Co., LtdHeat dissipating device incorporating heat pipe
US7111667 *Mar 31, 2003Sep 26, 2006Micro-Star Int'l Co., Ltd.Heat dissipating device
US7124806 *Dec 10, 2001Oct 24, 2006Ncr Corp.Heat sink for enhanced heat dissipation
US7140422 *Sep 17, 2002Nov 28, 2006Hewlett-Packard Development Company, L.P.Heat sink with heat pipe in direct contact with component
US7165603 *Apr 11, 2003Jan 23, 2007Fujikura Ltd.Tower type heat sink
US7278470 *Nov 21, 2005Oct 9, 2007Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Heat dissipation device
US7296617 *Sep 7, 2005Nov 20, 2007Fu Zhun Precision Industry (Shenzhen) Co., Ltd.Heat sink
US7443677 *Jul 12, 2007Oct 28, 2008Fu Zhun Industry (Shen Zhen) Co., Ltd.Heat dissipation device
US7610950 *Nov 8, 2006Nov 3, 2009Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Heat dissipation device with heat pipes
US7726385 *Feb 23, 2004Jun 1, 2010International Business Machines CorporationHeat dissipation interface for semiconductor chip structures
US7866375Dec 1, 2006Jan 11, 2011Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Heat dissipation device with heat pipes
US7870890 *Dec 10, 2007Jan 18, 2011Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Heat dissipation device with heat pipe
US8002019 *Mar 20, 2008Aug 23, 2011Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Heat dissipation device
US8047270 *Dec 29, 2007Nov 1, 2011Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd.Heat dissipation device having heat pipes for supporting heat sink thereon
US20030218849 *Apr 11, 2003Nov 27, 2003Fujikura Ltd.Tower type heat sink
US20040050534 *Sep 17, 2002Mar 18, 2004Malone Christopher G.Heat sink with heat pipe in direct contact with component
US20040134642 *Aug 11, 2003Jul 15, 2004Wei-Ta LoHeat dissipation device including heat sink and heat pipes
US20040188063 *Mar 31, 2003Sep 30, 2004Hung ChangHeat dissipating device
US20050092465 *Nov 5, 2003May 5, 2005Kuo-Len LinDual-layer heat dissipating structure
US20050141198 *Sep 21, 2004Jun 30, 2005Lee Hsieh K.Heat dissipating device incorporating heat pipe
US20050183846 *Feb 23, 2004Aug 25, 2005Mok Lawrence S.Heat dissipation interface for semiconductor chip structures
US20050183849 *Jan 28, 2005Aug 25, 2005Ki-Tak KoHeat radiating apparatus
US20050199377 *Feb 8, 2005Sep 15, 2005Quanta Computer Inc.Heat dissipation module with heat pipes
US20050224217 *Apr 7, 2005Oct 13, 2005Aavid Thermalloy, LlcMultiple evaporator heat pipe assisted heat sink
US20050241808 *Sep 30, 2004Nov 3, 2005Hon Hai Precision Industry Co., Ltd.Heat dissipation device
US20050247437 *Jul 16, 2004Nov 10, 2005Hon Hai Precision Industry Co., Ltd.Heat dissipating device
US20050263265 *Dec 21, 2004Dec 1, 2005Hon Hai Precision Industry Co., Ltd.Heat dissipating device with heat pipe
US20060023423 *Nov 16, 2004Feb 2, 2006Via Technologies, Inc.Expandable heat sink
US20060054307 *Sep 7, 2005Mar 16, 2006Foxconn Technology Co., Ltd.Heat sink
US20070000646 *Nov 30, 2005Jan 4, 2007Chun-Chi ChenHeat dissipation device with heat pipe
US20070051501 *Mar 28, 2006Mar 8, 2007Yi-Qiang WuHeat dissipation device
US20070114009 *Nov 21, 2005May 24, 2007Wan-Lin XiaHeat dissipation device
US20070119583 *Nov 29, 2005May 31, 2007Foster Jimmy G SrHeat sink for distributing a thermal load
US20080105411 *Nov 8, 2006May 8, 2008Foxconn Technology Co., Ltd.Heat dissipation device with heat pipes
US20080115914 *Nov 17, 2006May 22, 2008Foxconn Technology Co., Ltd.Heat dissipation device with heat pipes
US20080128111 *Dec 1, 2006Jun 5, 2008Foxconn Technology Co., Ltd.Heat dissipation device with heat pipes
US20090065174 *Sep 10, 2007Mar 12, 2009Yu-Jen LaiHeat sink for an electrical device and method of manufacturing the same
US20090145588 *Dec 10, 2007Jun 11, 2009Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Heat dissipation device with heat pipe
US20090166009 *Dec 29, 2007Jul 2, 2009Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd.Heat dissipation device having heat pipes for supporting heat sink thereon
US20090236076 *Mar 20, 2008Sep 24, 2009Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Heat dissipation device
WO2011000065A2 *May 27, 2010Jan 6, 2011Whirlpool S.A.Forced air flow module for a heat exchanger and heat exchanger
WO2011000065A3 *May 27, 2010Mar 3, 2011Whirlpool S.A.Forced air flow module for a heat exchanger and heat exchanger
Classifications
U.S. Classification165/80.3, 257/E23.102, 165/104.33, 257/E23.11, 165/104.21
International ClassificationH01L23/367, F28F3/02, F28F13/00, H01L23/373
Cooperative ClassificationF28F2013/001, F28F13/00, F28D15/00, H01L23/367, H01L23/373, F28F1/12, H01L2924/0002
European ClassificationH01L23/367, F28F13/00, H01L23/373, F28D15/00, F28F1/12