Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030025807 A1
Publication typeApplication
Application numberUS 10/241,886
Publication dateFeb 6, 2003
Filing dateSep 12, 2002
Priority dateNov 20, 1990
Also published asCA2095817A1, CA2095817C, DE69131138D1, DE69131138T2, EP0558670A1, EP0558670A4, EP0558670B1, US5138459, US5576757, US6094219, US6233010, US6323899, US6496222, WO1992009169A1
Publication number10241886, 241886, US 2003/0025807 A1, US 2003/025807 A1, US 20030025807 A1, US 20030025807A1, US 2003025807 A1, US 2003025807A1, US-A1-20030025807, US-A1-2003025807, US2003/0025807A1, US2003/025807A1, US20030025807 A1, US20030025807A1, US2003025807 A1, US2003025807A1
InventorsMarc Roberts, Matthew Chikosky, Jerry Speasl
Original AssigneeRoberts Marc K., Chikosky Matthew A., Speasl Jerry A.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electronic still video camera with direct personal computer (PC) compatible digital format output
US 20030025807 A1
Abstract
An electronic still camera comprising a lens, shutter, and exposure control system, a focus and range control circuit, a solid state imaging device incorporating a Charge Coupled Device (CCD) through which an image is focused, a digital control unit through which timing and control of an image for electronic processing is accomplished, an Analog-to-Digital (A/D) converter circuit to convert the analog picture signals into their digital equivalents, a pixel buffer for collecting a complete row of an image's digital equivalent, a frame buffer for collecting all rows of an image's digital equivalent, and a selectively adjustable digital image compression and decompression algorithm that compresses the size of a digital image and selectively formats the compressed digital image to a compatible format for either the IBM Personal Computer and related architectures or the Apple Macintosh PC architecture as selected by the operator so that the digital image can be directly read into most word processing, desktop publishing, and data base software packages including means for executing the appropriate selected decompression algorithm; and a memory input/output interface that provides both temporary storage of the digital image and controls the transmission and interface with a standard Personal Computer (PC) memory storage device such as a digital diskette. The digital diskette is removably inserted into the housing of the camera prior to use in recording digital image data.
Images(12)
Previous page
Next page
Claims(25)
What is claimed is:
1. In a digital camera including a digital storage medium, the storage medium formatted for use with a first information handling system utilizing a first memory format, the improvement comprising:
a control unit for formatting the storage medium for use with a second information handling system utilizing a second memory format.
2. A digital camera as in claim 1, wherein the digital camera utilizes the second memory format.
3. A digital camera as in claim 1, wherein the storage medium is removably coupled to the camera.
4. A digital camera as in claim 1, wherein the storage medium is a disk.
5. A digital camera as in claim 4, wherein the disk is a magnetic disk.
6. A digital camera as in claim 5, wherein the magnetic disk is a 3 and a half inch diskette.
7. A digital camera as in claim 4, wherein the disk is an optical disk.
8. In a digital camera utilizing a first memory format, the improvement comprising:
a controller operative to change the format of a digital storage medium from a second memory format to the first memory format.
9. A digital camera as in claim 8, wherein the storage medium is removably coupled to the camera.
10. A digital camera, comprising:
an assembly operative to receive a digital storage medium, the storage medium having a boot area including information identifying a memory format of the storage medium; and
a control unit operative to (a) check the boot area, and (b) format the storage medium in an alternative memory format for use with the camera.
11. A digital camera as in claim 10, wherein the storage medium is removably coupled to the camera.
12. A digital camera, comprising:
an assembly operative to receive a removable digital storage medium, the storage medium formatted in an undesired memory format; and
a control unit operative to change the format of the storage medium from the undesired memory format to a desired memory format for use with the camera.
13. For use in a digital camera, a method for changing the format of a digital storage medium from a first memory format to a second memory format, the method comprising:
determining in the camera if the storage medium is formatted in the second memory format; and
formatting the storage medium in the camera in the second memory format.
14. A method as in claim 13, wherein the storage medium is removably coupled to the camera.
15. A method as in claim 13, wherein the storage medium is a disk.
16. A method as in claim 15, wherein the disk is an optical disk.
17. A method as in claim 15, wherein the disk is a magnetic disk.
18. A method as in claim 17, wherein the disk is a 3 and a half inch diskette.
19. A process for use in a digital camera utilizing a predetermined memory format, comprising:
coupling a removable digital storage medium with the camera, the storage medium formatted in one of a plurality of memory formats;
determining in the camera if the storage medium is formatted in the predetermined memory format; and
formatting the storage medium in the camera in the predetermined memory format.
20. A process as in claim 19, wherein the step of determining comprises checking a boot area of the storage medium.
21. A process for use in a digital camera, comprising:
coupling a removable digital storage medium with the camera, the storage medium formatted in one of a plurality of memory formats;
determining in the camera if the storage medium is formatted in a desired memory format;
providing a format error indication to an operator of the camera if the storage medium is not formatted in the desired memory format; and
formatting the storage medium in the camera in the desired memory format in response to an operator control of the camera.
22. A digital camera, comprising:
an assembly operative to receive a digital storage device; and
a control unit for changing a memory format of the storage device from a first format for use with a first information handling system to a second format for use with a second information handling system.
23. A process for use in a digital camera utilizing a predetermined memory format, comprising:
providing a removable digital storage device, the storage device formatted in one of a plurality of memory formats;
coupling the removable digital storage device with the camera;
determining in the camera if the storage device is formatted in the predetermined memory format; and
changing the format of the storage device in the camera to the predetermined memory format.
24. A process for use in a digital camera utilizing a predetermined memory format, comprising:
providing a removable digital storage device, the storage device formatted in one of a plurality of memory formats;
coupling the removable digital storage device with the camera;
determining in the camera if the storage device is formatted in the predetermined memory format; and
formatting the storage device in the camera in the predetermined memory format.
25. A process for use in a digital camera, comprising:
providing a removable digital storage device, the storage device formatted in one of a plurality of memory formats;
coupling the removable digital storage device with the camera;
determining in the camera if the storage device is formatted in a desired memory format;
providing a format error indication to an operator of the camera if the storage device is not formatted in the desired memory format; and
changing the format of the storage device in the camera to the desired memory format.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    This invention generally relates to an electronic still video camera and in particular to an improved electronic still camera which converts a still picture of an object or scene into an operator selectable compressed digital signal format for storage utilizing a compression/decompression algorithm, such as the Joint Photographic Experts Group (JPEG) algorithm standard for example, formatted into Personal Computer (PC) compatible format retaining the images' color information, and stored on a PC compatible memory diskette. For example, the diskette can be a three and a half (3) inch digital diskette. The digital diskette is removeable from the electronic camera for direct insertion into a PC which contains the previously loaded corresponding decompression algorithm whereby the digital image is in a format compatible for immediate use with word processing, desk top publishing, data base, and multi-media applications.
  • [0003]
    2. Description of the Prior Art
  • [0004]
    [0004]FIG. 1 is a schematic block diagram showing structure of a conventional prior art electronic still camera system, in which a CCD image sensor element 1 a converts a still image of an object into an analog color video signal when the shutter control circuitry 2 a is activated. The output color video signal of the image sensor element is then routed to the signal processing subsystem 3 a where the signal is converted to National Television System Committee (NTSC) or other composite video formats (such as the European video standard Phase Alternating Line-PAL) and logged in analog format onto a mass memory storage device such as an analog video floppy disk, Electrically Erasable Programmable Read Only Memory (EEPROM), analog audio cassette, bubble memory, or other storage device 5 a. Power is supplied by a rechargeable/removeable battery system 4 a.
  • [0005]
    An electronic camera that converts an image into electronic image signals and transferred to a memory storage device is disclosed in the following: U.S. Pat. No. 4,131,919; U.S. Pat. No. 4,456,931; U.S. Pat. No. 4,758,883; U.S. Pat. No. 4,803,554; and U.S. Pat. No. 4,837,628.
  • [0006]
    Conventional prior art electronic still cameras, for example of the types disclosed in the aforementioned references, produce an electronic signal corresponding to a desired image in analog format such as the National Television System Committee (NTSC) or similar on magnetic or electronic storage media for either permanent or temporary storage to facilitate viewing on a television or video monitor. With the current state of the art, it is expensive and time consuming to convert the analog image equivalent to a digital format for direct utilization with PC software applications. Currently, to convert an image captured on an electronic still camera to a PC compatible format one must convert the signal back to either a composite NTSC or RGB video signal and use a conversion device such as a “frame grabber” (a digital circuit board installed into PCs that convert video images into PC compatible formats) of the type sold commercially by Aapps Corporation, Orange Micro, RasterOps, and others or convert the image to a hard-copy print (a photograph) and utilize an electronic “scanner”, a piece of equipment that connects to a PC, which converts an image into a digital format. The later technique is employed extensively within the desktop publishing industry.
  • SUMMARY OF THE INVENTION
  • [0007]
    It is the object of this invention to provide an improved electronic still camera with operator selectable picture compression in one of a plurality of operator selectable digital data formats recordable on a standard removeable magnetic diskette common to personal computers.
  • [0008]
    It is a further object of this invention to provide an improved electronic still camera that provides digital image files for immediate and direct incorporation into popular word processing, desktop publishing, and other software programs on PCs.
  • [0009]
    It is another object of this invention is to provide an improved electronic still camera that, under user selection, can record and store still images selectively compressed in a directly insertable digital memory storage device into a PC in either color or black and white formats thus facilitating storage of a large number of images with the signal flag indicating the degree of compression selected by the operator as well as the color/black and white mode selection being stored as digital values on the digital memory storage device with each image frame.
  • [0010]
    An additional object of this invention to provide an electronic still camera device that can rapidly capture a series of images automatically as well as singularly. Also, this camera provides multiple outputs in both video format for monitor and display of images and digital formats to facilitate data transmission, additional processing, or storage to a variety of storage media.
  • [0011]
    It is still another object of this invention is to provide a more efficient electronic still camera that can take a still picture with operator selectable high, medium, or low resolution in either color or black and white by electronic shutter and exposure control by utilizing a variety of electro-optical sensors including Charge Coupled Devices (CCD), Infrared (IR), and Ultra Violet (UV) which can be directly or remotely controlled by analog, digital, or radio frequency (RF) control signals.
  • [0012]
    A further object of this invention is to provide a programmable video picture translator device for efficiently converting electronic still images in analog composite video format into digital data format readable by a PC. This translator device also provides additional video inputs and outputs for capturing video images, monitoring video images on monitors and displays, and can transmit either compressed or unprocessed digital image data through a variety of output I/O channels in various formats such as serial, parallel, etc. Also, this invention can incorporate sound/voice with images thru additional interface circuitry and audio digitizers.
  • [0013]
    Finally, it is the object of this invention to provide an electronic still camera that is efficient in design and permits extended periods of portable operation and which provides the user with operational status through the use of continuous internal self-test software routines and operator displays.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    [0014]FIG. 1 is a schematic block diagram of a conventional prior art electronic still camera.
  • [0015]
    [0015]FIG. 2 is a schematic block diagram of the of the overall structure of an electronic still camera embodying the present invention.
  • [0016]
    [0016]FIG. 2A is an illustration showing one embodiment of an audio data file, data format flag, compression level, and color/black and white mode selection values stored on a digital memory diskette storage device.
  • [0017]
    [0017]FIG. 3 is a flowchart showing the power-up and continuous self-test sequence in accordance with one aspect of the present invention.
  • [0018]
    [0018]FIG. 4 is an example of a ″ CCD array utilizable in accordance with one aspect of the present invention.
  • [0019]
    [0019]FIG. 5A is a schematic block diagram showing the image signal to digital signal conversion logic in accordance with one aspect of the present invention.
  • [0020]
    [0020]FIG. 5B is a logic and timing diagram for the image signal to digital signal conversion logic in accordance with one aspect of the present invention
  • [0021]
    [0021]FIG. 6 is an example of the control panel logic in accordance with one aspect of the present invention.
  • [0022]
    [0022]FIG. 6A is an example of one embodiment of switch logic of the control panel switches and controls utilizable in accordance with one aspect of the present invention.
  • [0023]
    [0023]FIG. 6B is an example of the PICT image file format based upon the published standard provided by Apple Computer, Inc.
  • [0024]
    [0024]FIG. 6C is an alternate embodiment of the current invention embodying remote operation.
  • [0025]
    [0025]FIG. 7 is a simplified block diagram of the digital control unit in accordance with one aspect of the present invention.
  • [0026]
    [0026]FIG. 8 is a flowchart showing the steps of the image compression algorithm in accordance with one aspect of the present invention.
  • [0027]
    [0027]FIG. 9 is a block diagram of a video format translator device in accordance with one aspect of the present invention.
  • [0028]
    [0028]FIG. 10 is a block diagram illustrating the operation of a translator device in accordance with one aspect of the present invention.
  • [0029]
    [0029]FIG. 11 is an alternative embodiment of the video format translator in accordance with another aspect of the present invention showing additional video inputs and data outputs.
  • [0030]
    [0030]FIG. 12 is an alternate embodiment of the invention showing an optional diskette format utility flowchart.
  • [0031]
    [0031]FIG. 13 is an alternate embodiment of a frame buffer utilizable in accordance with another aspect of the present invention showing a frame buffer stack permitting multiple shot mode.
  • [0032]
    [0032]FIG. 14A is a block diagram of an embodiment of the format select logic in accordance with one aspect of the present invention.
  • [0033]
    [0033]FIG. 14B is a flow diagram illustrating the steps of the format selection logic operations
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0034]
    [0034]FIG. 2 is a schematic block diagram of the preferred embodiment of an electronic still camera in accordance with the principals of the invention. Referring to FIG. 2, an image optical pick-up element 1, which for example could be a Charge Coupled Device (CCD) (or an Infrared (IR) or Ultraviolet (UV) sensor), converts a still image of an object into an electric signal when a picture “shoot” command is initiated by the operator via control panel 2. When taking a picture, focusing and shutter speed are controlled by a lens system and shutter speed selection mechanism under control of the digital control unit 9. The camera, like other still video cameras, employs an electronic shutter system that controls a charge storage time in a CCD array onto which an image of an object is focused through the lens system.
  • [0035]
    When the “shoot” control 6 is half depressed (see FIG. 6), a power supply voltage is supplied from the rechargeable batteries 4 to the electronic circuits and digital control unit 9, control panel 2, and the disk drive assembly 5. The exposure control circuitry not shown generates appropriate horizontal and vertical transfer pulses as well as field shift pulses under control of the reference clock timing and control signals provided by the digital control unit 9 type for driving the CCD device and pre-processing circuitry. This design may be of any type well known in the art for example those cited in U.S. Pat. Nos. 4,131,919 and 4,456,931 and any similar designs well known in the prior art.
  • [0036]
    An alternate embodiment of the present invention that provides remote operation of the camera is shown in FIG. 6C. When remote “Shoot” control 30 is activated by any means for example manually, or by radiant, or electronic energy, a control signal is generated and routed through the external jack 31, located on the external camera body. The external control 30 is electrically connected to the external jack 31 by a twisted-pair conductive cable assembly that is familiar to those skilled in the art. Upon receipt of the externally generated “shoot” command, the relay switch 32 is activated and provides internal switch closure. This closure of switch 32 then initiates the process previously described and provides the half V+ voltage previously described. The full V+ is provided via the fixed delay 33, the value chosen to allow the diskette drive assembly 5 (FIG. 2) and associated control circuitry to initialize prior to receiving image data.
  • [0037]
    When the “shoot” control is fully depressed in either embodiment, the shutter controller 15 (FIG. 6) generates a shutter pulse that generates control signals for the A/D converters 8 allowing the image/picture data signal in the sample and hold circuitry of the pixel multiplexer 7 to be converted into a digital signal. Control and address instructions of the type well known in the art are generated from the digital control unit 9 to facilitate the storage of the digital image data within the pixel buffer 10 and frame buffer 11. Upon completion of image conversion, the contents of the frame buffer are transferred to the compression processor 12 which for example may be of the many versions currently offered commercially such as C-Cube's (San Jose, Calif.) four chip Application Specific Integrated Circuit (ASIC) set. In the compression processor 12, the Joint Photographic Experts Group (JPEG), a part of the International Standards Organization (ISO) which is a subset of the International Telegraph and Telephone Committee (CCITT), image compression algorithm fully described in Report # JTC1/SC2/WG8 dated 1985 is performed under control of the digital control unit 9 to compress the size of the image. A variable selectable compression ratio of up to 50:1 is performed on the digital image frame. Other compression ratios are operator selectable via the control panel 2 switches 14A and 14B (FIG. 6). The compressed digital frame is then formatted into either an IBM PC/Clone (such as GIFF) or Apple Macintosh (such as PICT II) image file format depending on the setting selected by the operator for a user switch 17 (FIG. 6) position on the control panel 2. After formatting, the file is written into a temporary memory buffer within the disk input/output (I/O) interface circuit 13 which, under the command of the digital control unit 9, controls the high density (1.4 Mbyte storage capacity) disk drive unit 5. Following file transfer to the diskette e.g., the frame counter display 22 on the control panel 2 is updated by appropriate control signals and the camera is ready to undergo the same procedure for the next image. Power to the electronic circuits and disk drive system is terminated following release of the “shoot” control switch 6.
  • [0038]
    In accordance with the preferred embodiment of this invention, it is permissible for the user to select various resolution quality image recording levels with the higher levels being at the expense of memory diskette storage capacity. The position of switches 14A and 14B for example could represent a unique digital mark or word that denotes the respective switch position and is sensed during initial power application and periodically during operation. FIG. 6A illustrates typical logic AND gate circuits 60 a and 60 b utilizable in conjunction with switches 14A and 14B or switch 17 to generate appropriate signals to designate respective switch positions and generate appropriate control signals from. The switch positioned in the High position for high resolution allows only four to five images to be stored, while Med. switch position for medium resolution allows approximately twenty five images to be stored, and Low for low resolution allows up to fifty images to be stored on a single diskette. Also, by selecting black and white mode instead of color via switch 14B, the operator may select additional storage capacity since storage is increased by a factor greater than three (one element per pixel versus three for color). Various image resolution combinations are permissible because the operator can select a different resolution and mode setting for each image prior to image signal capture. This is accomplished by marking or “tagging” each image frame data information signal with the resolution and mode of each image as it is written onto the memory diskette in any suitable manner, for example as shown in FIG. 2A. With reference to FIG. 2A, diskette 50 has tracks 51 a, 52 b, . . . 52 n. With reference to track 52 b there is shown a representative portion of segment 53 depicting a typical image file information format having digital bit 54 depicting color mode, and digital bits 55 representing compression resolution level markings or tags. With reference to color mode tag 54 it can be seen that if switch 14B is in the color position tag 54 is recorded as a logical “one” or true-conversely if bit 54 is recorded as a logical “zero” it corresponds to the black and white position of switch 14B. Similarly as shown switch 14A would record in memory position 55 a binary “zero” for low resolution, a binary “one” for medium resolution and a binary “two” for high resolution selections by the operator. By incorporating this “tagging” approach, it is possible for the decompression algorithm, loaded into any PC prior to use or written onto the memory storage diskette along with the image data, to automatically determine the appropriate level of compression associated with image file and execute decompression efficiently.
  • [0039]
    Still another alternate embodiment in accordance with this invention incorporates an acoustic digitizer circuit which digitizes sound. There are several digitizers commercially available such as the Apple Computer Inc. Musical Instrument Data Interface (MIDI) adaptor. The output of this digitizer may be selectively connected to the CPU 20 (FIG. 7) via an additional I/O interface similar to the auxiliary I/O interface 80. The sound or audio associated with each image can be recorded, digitized, and stored on the diskette device on available tracks in an identical manner previously described (FIG. 2A). An image file in accordance with this embodiment would be appropriately marked or tagged with the corresponding digitized audio file 56 (FIG. 2A). Upon playback on a sound configured PC, both the image and the corresponding audio would then be viewed and heard simultaneously.
  • [0040]
    It should be noted that a major advantage a camera in accordance with the present invention has over conventional still video cameras is that a camera according to this invention is capable of storing multiple digital images in semiconductor memory temporarily at a rapid rate while, simultaneously, the image compression processor 12, file formatter software algorithm, and disk I/O interface 13 that stores formatted files continue to function in concert together at a slower rate. This efficient design coupled with VLSI low power, high speed semiconductor memory devices (10 & 11 FIG. 5A and 24 FIG. 7) allows this operational capability.
  • [0041]
    Like most other still video and conventional film cameras, when the “shoot” control 6 (FIG. 6) is fully depressed, a control signal is generated from the digital control unit 9 that generates a trigger signal on the control panel 2 to cause a flash unit 16 (FIG. 6) to irradiate a flash of light onto the subject image.
  • [0042]
    During initial camera operation, the user first inserts a diskette such as a standard three and a half inch or similar storage medium. Various memory diskette sizes and formats are suitable for the invention. However, for the preferred embodiment either a double-density (800 Kbytes of storage) or a high-density (1.4 Mbytes of storage) diskette in a three and a half inch format which are readily available from various commercial sources such as Sony, Maxell, and Verbatim. The user must then select the desired PC format (IBM PC/Clone or Apple Macintosh, etc.) via switch 17 (FIG. 6) on the control panel 2. As shown in FIG. 3; after turning on the power switch or inserting a diskette 50, the digital control unit 9 performs a self test of all internal circuitry, battery, disk drive unit, and control panel. Should any failures be detected, an appropriate error indicator is illuminated on the control panel. During the power-on sequence (see FIG. 3 and FIG. 12), the inserted diskette 50 is automatically checked for formatting consistencies in accordance with the format selected by the format switch 17 on the control panel 2 (IBM/Apple/etc.) and for available storage space by checking the boot block on the diskette, a technique that will be familiar to those skilled in the art. Should any inconsistencies be detected, an error indicator is illuminated on the control panel (ie, disk full, unformatted, etc.). The operator frame counter display 22 (FIG. 6) is then updated to show the maximum number of pictures available based upon indicated operator selections (color/black and white), diskette type (double versus high density), and capacity (partially full versus empty diskette). During operation, the operator can selectively erase a frame and record over it if desired by selecting the erase mode of operation from the control panel and toggling the forward/reverse control.
  • [0043]
    The optics for the preferred embodiment of the invention is a commercially available one-half inch (″) color CCD device having a pixel grid array of 780488 as pictorially depicted in FIG. 4. This results in 380,640 pixel elements which results in a commercially acceptable quality resolution image as will be understood by those skilled in the art. In a color imaging device (CCD array) photoelectric elements, such as photodiodes, are arranged in a two dimensional array with optical filters for R (red), G (green), and B (blue). Various arrangements of optical filters are well known and the arrangement of optical filters is not limited to a particular one with this invention. During operation each pixel stores a charge corresponding to the amount of incident light. The RGB components of each pixel's charge is sequentially read out via a horizontal/vertical addressing scheme that will be familiar to those skilled in the art.
  • [0044]
    As shown in FIG. 5A; each charge, when addressed, is amplified and processed in a sample and hold (S/H) circuit 18. The analog voltage in each S/H circuit is digitized by an associated analog to digital (A/D) converter 8. The digital values are routed and collected in the pixel buffer 10. Following completion of discrete pixel element conversion and subsequent formatting in the pixel buffer which is under Control Processor Unit (CPU) 20 software control, the output of the full pixel buffer is routed to the frame buffer 11 by digital control unit 9. This process continues until a complete frame is collected within the frame buffer. The general digital logic and timing and control signals for this circuitry is shown in FIG. 5B. The timing is provided by a master clock that is an integral part of the CPU microprocessor. For example, the MOTOROLA 68040 microprocessor has a clock speed of approximately 40 Megahertz (MHZ) which results in a clock period of 25 nanoseconds (nsec.). This clock pulse is used by the function and address decoder 19 (FIG. 6) to generate the address and control signals shown in FIG. 5B as would be understood by those skilled in the art. The circuit of the present invention may be designed by one skilled in the art to function with a variety of microprocessor architectures and is not limited to any one in particular. One can see from the timing chart that the S/H circuit is allowed (via the SE command) to charge to a voltage level indicative of the analog voltage impinging upon the pixel element (via the PS command). After a fixed time period, the A/D converters are enabled(via the CE command) to begin conversion of the analog voltage value on the S/H. Upon completion of conversion, a conversion completion signal (CC) is generated by the A/D and routed back to the S/H circuit (via the SC command which is generated by the function and address controller 19) to discharge the stored analog voltage in anticipation of the next pixel element conversion process. Next, the output of the A/D converter 8 is clocked into the pixel buffer 10 (via the PB command). When the pixel buffer 10 is full, the output is clocked out to the frame buffer 11 (via the FB command) and the pixel multiplexer address circuitry selects the next pixel for conversion. Reset signals (RST) are sent to all circuit elements to allow these devices to reset prior to receiving the next analog value.
  • [0045]
    Another novel concept of the present invention as illustrated in FIGS. 5A and 5B utilizes a technique of paralleling the S/H and A/D devices for each pixel element thus accelerating the image signal analog-to-digital conversion process. This is accomplished by eliminating the serial S/H and A/D path typical of prior art still video camera designs. In addition, high-speed, low-power devices available from Sony, Burr-Brown, Datel, Analog Devices, and others facilitate the increased conversion throughput of the S/H and A/D circuits with pixel conversion times of less than 150 nanoseconds (nsec.). For example, Sony's video A/D converter Device part number CXA1016P/K performs up to 50 million samples per second or 20 nsec. per conversion. This device, or similar, may be used in the preferred embodiment of the present invention. As explained previously, prior art still video camera designs multiplex each signal component into a common/singular A/D path to reduce the number of components and power consumption. However, in accordance with another aspect of the present invention components such as CMOS and ECL devices coupled with miniaturized packaging techniques such as surface mount devices (SMD) and ASIC technology make it feasible to incorporate these devices in a parallel design in order to realize a substantial increase in conversion speed with no appreciable increase in power consumption. Therefore, this design approach provides significant conversion throughput increases over previous designs.
  • [0046]
    The extremely high conversion speed in accordance with another concept of the present invention makes multiple high-speed camera operation possible in an alternate embodiment. For example, total conversion time required for the aforementioned CCD array utilizing the circuit of the present invention (FIG. 5A) requires approximately 380,640150 nsec. or 38 milliseconds (msec.). Additional time (approximately 5 msec.) is required for timing and control signal latency. Thus, total conversion time for a complete image frame prior to compression processing and logging to the memory storage diskette 50 is less than fifty msec. This allows for approximately 20 images to be captured in a one second period. By adding additional RAM 11A (FIG. 13) or other forms of commercially available random access memory to the frame buffer 11, image frames could be “pushed” onto a semiconductor memory stack for temporary storage allowing the compression processor and data interface circuitry to perform their respective functions at a slower rate. As shown in FIG. 13, each unprocessed image frame would be recorded or “pulled” from the stack on a “First-In, First-Out” (FIFO) manner until all images in the stack queue were processed and written to the storage diskette via the disk I/O circuitry 13.
  • [0047]
    As shown in FIG. 6, control panel settings are monitored by the CPU 20, a microprocessor, thus allowing the appropriate timing, control, and signal processing to be effected properly. The microprocessor 20 may be of the type 68040 manufactured by MOTOROLA, Intel's 80386 series, or equivalent microprocessors which specifications are commercially available and are incorporated herein by reference. The microprocessor utilization of this invention, which is in the digital control unit 9, transmits commands and status to specific controls, functions, and displays in the control panel as well as receiving both circuit status/control data and operator commands through polling the operator switch settings 14A, 14B, and 17 via the bidirectional function and address decoder 19. This approach allows the user to know immediately how much storage capacity remains in the image storage diskette 50 as well as the camera's overall operational and functional status through the use of status displays 21, 22, and 23 and ongoing software self-tests running in the background as depicted in FIG. 3. An example of this would be a low battery situation. First, the digital control unit 9 would detect a failure in the self-test mode. Next, the self-test light emitting diode 21 (FIG. 6) would be illuminated and an appropriate error display would be illuminated in the status display 22 thus providing the user with an exact indication of the error. Another example illustrating the operation of this embedded microprocessor type of control approach is the format switch 17 (FIG. 6). The position of the format switch 17 is sensed upon power application. Following diskette insertion, the boot block on the diskette is compared with the format switch 17 setting (IBM/clone or Apple) and if the format does not match or if the disk 50 is unformatted, the disk format status light emitting diode 23 would be illuminated and an appropriate error display would be illuminated in the status display 22 thus prompting the user to take appropriate corrective measures.
  • [0048]
    An alternate embodiment of the present invention involves adding an auxiliary I/O interface circuit or port to the digital control unit 9. As shown if FIG. 7, the auxiliary I/O port 80 connects in a manner similar to the Disk I/O interface 13. This additional I/O channel provides for external control and monitor of all timing and control signals internal to the camera. In addition, it allows for the image data to be routed past or around the compression processor out to any additional internal or external device such as an optical disk storage device, digital analyzer, or other data processors that might be desired.
  • [0049]
    [0049]FIG. 7 shows the digital control unit 9. The microprocessor 20 architecture here is typical to one familiar with the art. The frame buffer 11 (FIG. 5A) receives and stores the outputs of the pixel buffer 10 until a complete frame of image data is received. Then, the CPU 20, under software control, issues a control signal to the optics logic in the shutter and control circuitry 15 (FIG. 6) thus resetting those functions for future image recording. The full frame buffer 11, upon command from the CPU 20, transfers it's data into the compression processor 12 (FIG. 2) which performs thousands of levels of parallel pipeline processing on the image data. The compressed image frame is then written out to the mass memory RAM (Random Access Memory) 24 where it is temporarily stored until transferred to the disk drive assembly 5 via the disk I/O interface circuitry 13.
  • [0050]
    Referring to FIG. 8, a flowchart shows the steps involved in the image compression process performed by the image compression processor 12 (FIG. 2) in accordance with the preferred embodiment of the present invention. The output of the frame buffer 11 is transferred into the input of the image compression processor 12 under the control of the digital control unit 9. As previously described, the setting of switch 14A (FIG. 6) is read by the CPU 20 (FIG. 7) to determine the image resolution quality desired. Depending on the operator selected setting of switch 14A, the unique digital word generated by the AND gate 60 a-b (FIG. 6A) which is activated by the selected position of switch 14A is routed to image compression processor 12 via CPU 20 (FIG. 7) which selects for example a predetermined digital memory location containing the appropriate corresponding compression ratio parameters under program control. The compression processor uses this command value for example to establish the size of the covariance matrix and a threshold for acceptance for the variances produced by the Discrete Cosine Transformation (DCT) transform coefficients. Next, the digital image signals are converted from the RGB format previously discussed in connection with FIGS. 2, 5, and 6 into luminance and chrominance signals. The luminance and chrominance signals subsequently undergo a DCT. The cosine transformed signals are then quantized and are then processed for Huffman coding. The Huffman coded image signals are then formatted into a form that facilitates format processing into various PC compatible formats (GIFF, PICT2, etc.). For a more complete understanding of the image compression process reference may be made to I.E.E.E. Catalog No. EH0231-1, Library of Congress No. 85-60384 published by the I.E.E.E. Society dated 1985 and incorporated herein by reference.
  • [0051]
    Of the two traditional classes of image compression techniques, spatial coding and transform coding, transform coding techniques lend themselves well for this application due to computational simplicity. Transform coding techniques that provide good visual fidelity include: Karhunen-Loeve transform (KLT), Fourier, cosine, sine, and Hadamard. The KLT algorithm offers the best visual fidelity but suffers from serious computational complications due to extremely large matrix size. Several alternate algorithms that offer reasonable visual fidelity that are computationally feasible for this invention include the Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST). The DCT was adopted by the JPEG as the preferred algorithm due to computational simplicity and performance.
  • [0052]
    It should be noted that the Joint Photographic Experts Group (JPEG) (composed of experts from many companies including IBM, AT&T, Digital Equipment Corp, and INTEL) compression/decompression standard was developed in 1985 in response to the lack of interoperability between image and processing equipment due to numerous proprietary standards held by each manufacturer. The JPEG standard provides image compression effectively up to 75 times or greater depending on the visual fidelity desired. The JPEG standard is widely used in industry as an alternative to proprietary algorithms such as Intel's own proprietary standard called DVI which was initially developed by RCA before being sold to INTEL, the integrated Circuit manufacturer. INTEL offers it's own firmware compression processor incorporating their DVI standard delivering compression ratios in excessive of 100:1. However, a new international standard called MPEG is due to be announced in the 1991 time frame from the JPEG and should offer compression ratios of 275:1 and greater. In the preferred embodiment of the present invention, the JPEG standard is the preferred algorithm chosen with the incorporation of the the MPEG standard or other similar standard in the future when available commercially. An alternate embodiment of the present invention would be the incorporation of various proprietary compression algorithm standards such as DVI.
  • [0053]
    The compression/decompression algorithm firmware implementation of the JPEG algorithm is available commercially from various sources including C-Cube, Electronics for imaging, Storm Technology, Burr-Brown, Spectral Innovations Inc., INTEL, and others. The implementation of this algorithm for the present invention may incorporate the integrated circuit set commercially available from C-Cube. Their four chip ASIC JPEG algorithm implementation is performed in three basic steps: first, the image is divided into 8-by-8 pixel squares and applies a discrete cosine transform (DCT) to each square resulting in 64 frequency values; second, these frequencies are put through a quantization algorithm to eliminate unimportant frequencies; third, the remaining values are run through a Huffman coding scheme to encode the most frequently occurring values using the fewest bits. A compatible software implementation of the JPEG algorithm is available commercially from Aladdin Systems, Radius Inc., Kodak, and others.
  • [0054]
    Those skilled in the art will be familiar with the process and the commercially available software and firmware chipsets that are currently available on the market. The present invention incorporates both available firmware chipsets in the camera and software for use in the PC for decompression. The decompression algorithm can be written onto the camera's diskette 50 prior to any image data recording. This allows the PC user to take the diskette 50 to a PC and directly incorporate the image data because the image file selected by the user is automatically decompressed transparent to the user. The algorithm can be written onto an unused track 52 or sector combination on the diskette as shown on FIG. 2A. Alternatively, the decompression algorithm can be loaded onto a PC before inserting a diskette 50 containing compressed image data. In the latter embodiment the resolution and mode values 54 and 55 (FIG. 2A.) for each representative image would be read from diskette 50 in order to appropriately control the selection and activation of the appropriate corresponding decompression algorithm.
  • [0055]
    As shown in FIG. 7, the output of the image compression processor 12 is routed to the RAM memory 24 where the compressed image is formatted for either the PICT II or GIFF format depending on the setting of format switch 17 (FIG. 6). It should be noted that a large number of image formats for PCs exist. PICT and GIFF are the most common for the Apple and IBM PC's and are therefore the preferred formats for the present invention although other formats can be easily incorporated into the design by changing the software format routines. These software image formats are commercially available from many sources most notably Apple computers for PICT and IBM for GIFF. An example of the PICT format is pictorially shown in FIG. 6B as will be familiar to those skilled in the computer arts. Once formatting is complete, the formatted image data is transferred to the disk I/O interface 13 for transfer to the magnetic recording diskette 50.
  • [0056]
    [0056]FIG. 9 and FIG. 10 illustrate the preferred embodiment of the video format translator device in accordance with another aspect of this invention that converts other still video camera formats for example on two inch video diskette to this invention's selectable PC compatible digital format. The general concept of operation is shown in FIG. 10. In FIG. 9 correspond parts and subassemblies in translator 40 are shown with like numbers corresponding to FIGS. 2 and 6 having a 40 hyphenation prefix designation and such parts and subassemblies perform similar functions to those described above with reference to FIGS. 2 and 6. Referring again to FIG. 9, the translator 40 incorporates the same components utilized in the digital circuit card assembly which houses both the digital control unit 9 and optics processing circuits (pixel multiplexer 7, A/D 8, etc. 10-13). The major difference is that the CCD array 1 is replaced with an input disk drive 25, for example a two inch (2″) video disk drive assembly, and an NTSC video format decoder 26 which converts the composite video signal to an RGB format for processing as described previously.
  • [0057]
    [0057]FIG. 11 displays an alternate embodiment of the video format translator device 40 of the present invention that shows optional inputs 27 and outputs 28 and 29. The exact same circuitry is utilized that was used for the translator device 40 as shown in FIG. 9 except that inputs 27 for either an NTSC/PAL format or RGB format video signal is provided. This allows video signals from other sources such as a cable TV, CAMCORDER, or other video signal source to be digitized and archived in a PC compatible format. Also, provisions for video output jacks 28 are made to allow either viewing of the image/video source prior to or during image recording. Finally, provisions are made to provide a data output 29 to allow connection to other PC peripherals such as a communications modem, larger/smaller disk drive assembly, optical disk, specialty display or signal processor/analyzer. Either a standard serial, parallel, or Small Computer Standard Interface (SCSI) data port can be readily connected to the auxiliary I/O interface 80.
  • [0058]
    [0058]FIG. 12 depicts an alternate feature of an embodiment of the present invention that shows how an inserted diskette 50 that is either unformatted or formatted for a undesired (e.g., not corresponding to the setting of switch 17—FIG. 6) PC configuration would be automatically properly formatted for use with a camera in accordance with another aspect of this invention. This capability allows the user of this invention to forego the requirement to pre-format the storage medium (diskette) on a PC prior to using it in the camera operated in accordance with the present invention. With reference to FIG. 3 the power-on sequence process would result in an abnormal diskette format error if the format of an inserted diskette 50 did not correspond to the operator selected format switch 17 (FIG. 6). In accordance with the automatic diskette format option, CPU 20 of digital control unit 9 in response to the abnormal diskette format error would initiate the diskette format process illustrated in FIG. 12. Upon completion of the diskette format process illustrated in FIG. 12, the power-on sequence illustrated in FIG. 3 would continue from step B.
  • [0059]
    Referring now to FIG. 14A, there is shown a schematic block diagram of the format selection logic in accordance with another aspect of the present invention. During the power-on sequence as described in connection with FIGS. 3 and 12, processor 20 of control unit 9 initiates a format selection switch sample and test routine as more fully described in the flow diagram illustrated in FIG. 14B. Switch 17 is illustrated in FIG. 14A in the Apple PC position and logic level v1 is applied as inputs to logic gates 60 c and 60 d. As illustrated in FIG. 2A, the format signals 57 for the Apple PC format is a logic “zero” and conversely the format signal or tag 57 if the format switch 17 were in the IBM PC or other computer type position would be a logic “one” and “two” respectively. In response to the logic “zero” indicating Apple PC format, processor 20 accesses a unique memory location XY of format memory 20-2 which for example may comprise any random access memory with two megabytes storage capacity. The data format for the operator selectable predetermined number of computer architectures, similar in content and arrangement to those illustrated in FIG. 6B for an Apple PC would be stored in memory 20-2 which would be addressed in response to the other operator selectable position of switch 17 to generate the other unique codes 57 as shown in FIG. 2A. Processor 20 in response to a stored format subroutine more particularly shown in FIG. 14B contains the allocation of data memory addresses in disk input/output interface unit 13 in accordance with the picture image file format as illustrated in FIG. 6B. Thus the digital video data information signals generated by compression processor 12 are appropriately formatted and stored in memory storage disk drive 5 to insure compatibility with the format selected by the operator by selectively positioning switch 17.
  • [0060]
    Those skilled in the art will recognize the many alterations, additions or changes of the preferred embodiment may be made without departing from the scope of the following claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4074324 *Jul 14, 1975Feb 14, 1978Barrett Jon SInstant electronic camera
US4315318 *Dec 18, 1979Feb 9, 1982Fuji Photo Film Co., Ltd.Method and apparatus for processing a radiation image
US4318137 *Apr 28, 1978Mar 2, 1982The United States Of America As Represented By The Secretary Of The Air ForceReal time digital recording system for thermovision data
US4375650 *Apr 29, 1981Mar 1, 1983General Electric CompanySystem for processing video signals
US4496973 *Nov 24, 1982Jan 29, 1985Fuji Photo Film Co., Ltd.Radiation image read-out method and apparatus
US4564861 *Jun 23, 1983Jan 14, 1986Fuji Photo Film Co., Ltd.Subtraction processing method and apparatus for radiation images
US4571638 *May 2, 1983Feb 18, 1986Datacopy CorporationRandom-access electronic camera
US4573076 *Jul 13, 1984Feb 25, 1986Fuji Photo Film Co., Ltd.Image sensor including a repeating read function
US4574319 *May 3, 1982Mar 4, 1986Fuji Photo Film Co., Ltd.Electronic camera having non-image data recorder
US4575752 *Jun 10, 1983Mar 11, 1986Michitaka HondaDiagnostic X-ray apparatus having a master timing control unit
US4577239 *Nov 12, 1981Mar 18, 1986Aiwa Co., Ltd.Video tape recorder usable with different types of tape cassettes
US4641198 *Dec 27, 1984Feb 3, 1987Fuji Photo Film Co., Ltd.Method of and apparatus for recording video signal associated with photographic image
US4641203 *Jan 6, 1984Feb 3, 1987Miller Richard LApparatus for storing and relating visual data and computer information
US4641966 *Aug 1, 1985Feb 10, 1987General Electric CompanyAutomated inspection system
US4642700 *Dec 27, 1984Feb 10, 1987Fuji Photo Film Co., Ltd.Method of and apparatus for producing video signal associated with photographic image
US4652944 *Jun 25, 1984Mar 24, 1987Kirsch Technologies, Inc.Computer memory back-up
US4717969 *May 28, 1985Jan 5, 1988Fuji Photo Film Co., Ltd.Apparatus for detecting servo-lock state in rotation of rotary recording medium
US4729040 *Jul 1, 1985Mar 1, 1988Fuji Photo Film Co., Ltd.Tracking apparatus for playing back rotary magnetic recording medium
US4729897 *Aug 1, 1986Mar 8, 1988Compagnie Rousselot, S.A.Gelatin product having highly improved properties of wettability and dispersibility, and a method of making the same
US4730212 *Jan 16, 1987Mar 8, 1988Itek CorporationRealtime digital diagnostic image processing system
US4730222 *Apr 22, 1985Mar 8, 1988Eastman Kodak CompanyVideo recording apparatus having low and high resolution operational modes
US4734725 *Dec 11, 1986Mar 29, 1988Bierman John C AApparatus for photographing objects and/or persons simultaneously with the occurrence of a predetermined event
US4797746 *Aug 24, 1987Jan 10, 1989Rockwell International CorporationDigital image interface system
US4797751 *Jun 16, 1986Jan 10, 1989Yamaguchi Cinema CorporationElectronic camera apparatus for recording and reproducing moving object images
US4800448 *Sep 2, 1987Jan 24, 1989Fuji Photo Film Co. Ltd.Image recording/reproducing apparatus
US4803554 *Sep 30, 1987Feb 7, 1989Polaroid CorporationElectronic imaging camera utilizing EPROM memory
US4803561 *Jan 13, 1987Feb 7, 1989Fuji Photo Film Co., Ltd.Image reading method and apparatus
US4803568 *Dec 2, 1986Feb 7, 1989Fuji Photo Film Co., Ltd.Motor control apparatus effecting phase control on rotating body
US4805037 *Oct 15, 1987Feb 14, 1989Eastman Kodak CompanyImage recording system
US4812922 *May 15, 1987Mar 14, 1989Fuji Photo Film Co., Ltd.Still video signal playback apparatus with still video recording function
US4814811 *Jun 22, 1988Mar 21, 1989Minolta Camera Kabushiki KaishaStill camera system
US4814876 *Apr 9, 1985Mar 21, 1989Fuji Photo Optical Co., Ltd.Electronic camera
US4817050 *Nov 21, 1986Mar 28, 1989Kabushiki Kaisha ToshibaDatabase system
US4896220 *Jul 28, 1987Jan 23, 1990Fuji Photo Film Co., Ltd.Magnetic recording method and magnetic recording head used therefor
US4897732 *Sep 13, 1986Jan 30, 1990Canon Kabushiki KaishaElectronic camera
US4897735 *Oct 27, 1988Jan 30, 1990Ricoh Company, Ltd.Image processing apparatus for multi-media copying machine
US4899212 *Jun 15, 1989Feb 6, 1990Fuji Photo Film Co., Ltd.White balance adjusting device for a camera
US4899216 *Aug 26, 1987Feb 6, 1990Fuji Photo Film Co., Ltd.Method of and apparatus for processing an image with gradation correction of video signal
US4903132 *Sep 26, 1988Feb 20, 1990Mitsubishi Denki Kabushiki KaishaElectronic still camera with slow-in, fast out memory addressing
US4905092 *Nov 2, 1988Feb 27, 1990Ricoh Company, Ltd.Condensation-free data reading machine
US4905167 *Dec 10, 1987Feb 27, 1990Yamaha CorporationImage processing system interfacing with different monitors
US4907092 *Sep 28, 1988Mar 6, 1990Fuji Photo Film Co., Ltd.Modulating/demodulating circuit for multiplex recording/playback of data in a magnetic recording/playback system
US4907231 *May 6, 1988Mar 6, 1990Fuji Photo Film Co., Ltd.Memory cartridge-connectable electronic device such as electronic still video camera
US4908709 *Dec 9, 1988Mar 13, 1990Fuji Photo Film Co., Ltd.Solid-state electronic imaging device with a photometry function responsive to discarded charge packets
US4910706 *Aug 4, 1983Mar 20, 1990Hyatt Gilbert PAnalog memory for storing digital information
US4982282 *Dec 1, 1989Jan 1, 1991Fuji Photo Film Co. Ltd.Image signal compression encoding apparatus and image signal expansion reproducing apparatus
US4982290 *Jan 25, 1989Jan 1, 1991Fuji Photo Film Co., Ltd.Digital electronic still camera effecting analog-to-digital conversion after color balance adjustment and gradation correction
US4982291 *Aug 23, 1988Jan 1, 1991Casio Computer Co., Ltd.Electronic still video camera capable of searching desired picture in simple and quick manner
US4985777 *Jun 15, 1989Jan 15, 1991Fuji Photo Film Co., Ltd.Camera having a focus controller capable of focusing in horizontal and vertical directions of an image
US4991004 *Feb 3, 1989Feb 5, 1991Fuji Photo Film Co., Ltd.Film previewer which simultaneously displays a 110 and a 135 frame
US4992886 *Dec 20, 1988Feb 12, 1991Wnm Ventures, Inc.Method and apparatus for encoding data within the subcode channel of a compact disc or laser disc
US4994912 *Feb 23, 1989Feb 19, 1991International Business Machines CorporationAudio video interactive display
US4994913 *Nov 3, 1989Feb 19, 1991Mitsubishi Denki Kabushiki KaishaStill picture transmission-display apparatus
US4999705 *May 3, 1990Mar 12, 1991At&T Bell LaboratoriesThree dimensional motion compensated video coding
US4999715 *Dec 1, 1989Mar 12, 1991Eastman Kodak CompanyDual processor image compressor/expander
US5081535 *Oct 11, 1990Jan 14, 1992Fuji Photo Film Co., Ltd.Exposure control apparatus for electronic still camera having a through the lens light measuring system
US5086345 *Apr 7, 1989Feb 4, 1992Fuji Photo Film Co., Ltd.Method of operation in a still video camera system for transferring track information from a playback device to the still video camera
US5091747 *Nov 16, 1989Feb 25, 1992Irving TsaiMethod and apparatus for converting a conventional copier into an electronic printer
US5091787 *Dec 7, 1989Feb 25, 1992Fuji Photo Film Co., Ltd.Memory cartridge-connectable electronic device such as electronic still video camera
US5177614 *Feb 7, 1991Jan 5, 1993Fuji Photo Film Co., Ltd.High-definition still picture camera having a solid-state imaging device with photoelectric conversion elements divided into four fields
US5184229 *Dec 1, 1989Feb 2, 1993Fuji Photo Film Co., Ltd.Compression coding device and expansion decoding device for picture signal
US5189522 *Sep 6, 1991Feb 23, 1993Eastman Kodak CompanySynchronized thermal printing
US5280397 *Sep 7, 1989Jan 18, 1994Advanced Television Test Center, Inc.Bi-directional HDTV format digital signal converter
US5283633 *Nov 8, 1990Feb 1, 1994Fuji Photo Film Co., Ltd.Solid state image pickup device in which picture elements of green are generated in vertical charge transfer paths
US5287266 *Apr 12, 1993Feb 15, 1994Videocart, Inc.Intelligent shopping cart system having cart position determining capability
US5378533 *Sep 8, 1992Jan 3, 1995Fujii Kinzoku Kako Co., Ltd.Electrically conductive exothermic composition comprising non-magnetic hollow particles and heating unit made thereof
US5379376 *Jun 4, 1990Jan 3, 1995International Business Machines CorporationBi-directional graphics attribute conversion profile
US5481364 *Nov 10, 1993Jan 2, 1996Fuji Photo Film Co., Ltd.Apparatus for adaptively generating a decoder table for variable-length codes using a stored coding table
US5493335 *Jun 30, 1993Feb 20, 1996Eastman Kodak CompanySingle sensor color camera with user selectable image record size
US5706050 *May 31, 1996Jan 6, 1998Fuji Photo Film Co., Ltd.Film image input method and system thereof
US5706387 *Dec 26, 1995Jan 6, 1998Fuji Photo Film Co., Ltd.Movie video camera, apparatus for reproducing movie video signal, method of recording movie video signal, and method of reproducing same
US5710597 *Nov 14, 1995Jan 20, 1998Fuji Photo Film Co., Ltd.Method of saving power for video camera
US5717839 *Feb 22, 1996Feb 10, 1998Fuji Photo Film Co., Ltd.Image processor and printer having correction table data for an external source transferred to the printer
US6020982 *Oct 8, 1993Feb 1, 2000Kabushiki Kaisha ToshibaImage data processing apparatus for digitally reproducing optical image data
US6172770 *Oct 2, 1998Jan 9, 2001Fuji Photo Film Co., Ltd.Method of and apparatus for correcting halftone-dot image data, and method of correcting halftone-dot threshold data
US6181880 *Feb 26, 1999Jan 30, 2001Fuji Photo Film Co., Ltd.Image data recording method and frame image regenerating method
US6191811 *Jan 30, 1997Feb 20, 2001Fuji Photo Film Co., Ltd.Film image regenerating method and device
US6192190 *May 30, 1995Feb 20, 2001Canon Kabushiki KaishaDigital image recording and/or reproducing apparatus using a plurality of compression methods
US6195469 *Aug 25, 1998Feb 27, 2001Fuji Photo Film Co., Ltd.Image processing apparatus for shading correction
US6337712 *Nov 20, 1997Jan 8, 2002Fuji Photo Film Company, Ltd.System for storing and utilizing picture image data recorded by digital camera
US6337951 *Nov 21, 1997Jan 8, 2002Fuji Photo Film Co., Ltd.Camera and photo data input system for camera
US6339484 *Nov 18, 1998Jan 15, 2002Fuji Photo Film Co., Ltd.Guide plate assembly and image recording medium transporting apparatus using the assembly
US6339485 *Jan 12, 1999Jan 15, 2002Fuji Photo Film Co., Ltd.Method of making photoprocessing reference image control tool photograph and methods of converting image data
US6340989 *Feb 11, 1998Jan 22, 2002Fuji Photo Film Co., Ltd.Monitoring method with a CCD imaging device and digital still camera using the same
US6344907 *May 27, 1998Feb 5, 2002Fuji Photo Film Co., Ltd.Image modification apparatus and method
US6346998 *Nov 20, 1997Feb 12, 2002Fuji Photo Film Co., Ltd.Picture image outputting method and photograph finishing system using the method
US6351286 *Dec 16, 1997Feb 26, 2002Fuji Photo Film Co., Ltd.Image producing apparatus enabling a user to evaluate an intermediate image
US6351291 *Mar 29, 2000Feb 26, 2002Fuji Photo Film Co., Ltd.Image processing apparatus for an on-screen-display which displays one image over another image
US6351606 *Apr 7, 2000Feb 26, 2002Fuji Photo Film Co., Ltd.Electronic camera, method for detecting obstruction to electronic flash and method for correcting exposure level
US6504952 *Mar 17, 1999Jan 7, 2003Fuji Photo Film Co. Ltd.Image processing method and apparatus
US6507704 *Oct 5, 2001Jan 14, 2003Fuji Photo Film Co., Ltd.Pseudo-zoom camera and image processing system using the pseudo-zoom camera
US6510505 *May 9, 2001Jan 21, 2003International Business Machines CorporationSystem and method for allocating storage space using bit-parallel search of bitmap
US6515766 *Apr 28, 2000Feb 4, 2003Fuji Photo Film Co., Ltd.Photographic photosensitive material and photographic printing system
US6519046 *Mar 6, 1998Feb 11, 2003Fuji Photo Film Co., Ltd.Printing method and system for making a print from a photo picture frame and a graphic image written by a user
US6522353 *Jun 8, 2000Feb 18, 2003Fuji Photo Film Co., Ltd.Automatic white balance control device, video camera with an automatic white balance control device and method for producing a video camera with an automatic white balance control device
US6522391 *Aug 13, 2001Feb 18, 2003Fuji Photo Film Co., Ltd.Image reading apparatus
US6525767 *Apr 2, 2001Feb 25, 2003Fuji Photo Film Co., Ltd.Electronic still camera with image pick-up unit and card unit
US6525836 *Mar 2, 2001Feb 25, 2003Fuji Photo Film Co., Ltd.Apparatus for and method of synthesizing image
US6526232 *Apr 14, 2000Feb 25, 2003Fuji Photo Optical Co., Ltd.Lens control unit
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7202893 *Jan 3, 2005Apr 10, 2007Microsoft CorporationMethod and apparatus for the display of still images from image files
US7403212Dec 30, 2005Jul 22, 2008Microsoft CorporationMethod and apparatus for the display of still images from image files
US7432920Nov 30, 2004Oct 7, 2008Microsoft CorporationMethod and apparatus for the display of still images from image files
US7864216Jan 27, 2003Jan 4, 2011Memorylink CorporationSelf-contained wireless camera device, wireless camera system and method
US7877290 *Jan 27, 2000Jan 25, 2011The Directv Group, Inc.System and method for transmitting, receiving and displaying advertisements
US8687947Feb 20, 2012Apr 1, 2014Rr Donnelley & Sons CompanySystems and methods for variable video production, distribution and presentation
US8907961May 30, 2008Dec 9, 2014Microsoft CorporationMethod and apparatus for the display of still images from image files
US8989560Jan 23, 2014Mar 24, 2015R.R. Donnelley & Sons CompanySystems and methods for variable video production, distribution and presentation
US9516369Mar 11, 2015Dec 6, 2016R. R. Donnelley & Sons CompanySystems and methods for variable video production, distribution and presentation
US20030090498 *Jan 28, 2002May 15, 2003Photela, Inc.Method and apparatus for the creation of digital photo albums
US20030112335 *Jan 27, 2003Jun 19, 2003Memorylink CorporationSelf-contained wireless camera device, wireless camera system and method
US20050099385 *Dec 2, 2004May 12, 2005Microsoft CorporationMethod and apparatus for the creation of digital photo albums
US20050155086 *Nov 30, 2004Jul 14, 2005Microsoft CorporationMethod and apparatus for the display of still images from image files
US20050163463 *Jan 3, 2005Jul 28, 2005Microsoft CorporationMethod and apparatus for the display of still images from image files
US20060192791 *Dec 30, 2005Aug 31, 2006Microsoft CorporationMethod and apparatus for the display of still images from image files
US20070216782 *Feb 12, 2007Sep 20, 2007Donald Lee ChernoffMethod of processing and storing files in a digital camera
US20080291215 *May 30, 2008Nov 27, 2008Microsoft CorporationMethod and apparatus for the display of still images from image files
Classifications
U.S. Classification348/231.7, 348/231.9
International ClassificationG11B31/00, H04N5/76, H04N5/92, H04N7/01, H04N5/765, H04N1/21, H04N5/781, H04N101/00, H04N5/232, H04N5/91, H04N5/225, H04N7/26, H04N1/00
Cooperative ClassificationH04N19/00, Y10S358/906, H04N7/01, H04N1/00241, H04N1/00236, H04N1/2137, H04N2201/33378, H04N2101/00, H04N2201/0065, H04N2201/0068, H04N1/2112
European ClassificationH04N7/26, H04N1/21B3, H04N1/00C3H, H04N7/01, H04N1/00C3H3, H04N1/21B3F