Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS20030028406 A1
Publication typeApplication
Application numberUS 10/202,302
Publication dateFeb 6, 2003
Filing dateJul 24, 2002
Priority dateJul 24, 2001
Also published asUS8924237, US20080071578, US20140324453
Publication number10202302, 202302, US 2003/0028406 A1, US 2003/028406 A1, US 20030028406 A1, US 20030028406A1, US 2003028406 A1, US 2003028406A1, US-A1-20030028406, US-A1-2003028406, US2003/0028406A1, US2003/028406A1, US20030028406 A1, US20030028406A1, US2003028406 A1, US2003028406A1
InventorsFrederick Herz, Walter Labys
Original AssigneeHerz Frederick S. M., Labys Walter Paul
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Database for pre-screening potentially litigious patients
US 20030028406 A1
Modern medical practitioners face a real risk from frivolous lawsuits initiated by overly litigious patients. Even if innocent of any malpractice, a doctor subject to such lawsuits may experience personal stress and extended periods of time diverted from practice in addition to greatly increased insurance premiums. This patent describes a database system that allows medical professionals to gauge the legal risk presented by new patients, giving them the opportunity to avoid medical involvement with those individuals most prone to engaging in unwarranted legal actions. Other applications of the present system pertain to insurance companies, legal services and other professional service providers.
Previous page
Next page
1. We claim a method for constructing and implementing the use of a user profile which is utilized for purposes of determining a statistical propensity of said user to engage in litigious behavior against a potential provider of services, products or other benefits.
  • [0001]
    (Conversion of Provisional Application No. 60/307,561 to a utility application)
  • [0002]
    U.S. Patent Documents
  • [0003]
    U.S. Pat. No. 5,325,291 June, 1994 Garrett et al. 705/1.
  • [0004]
    U.S. Pat. No. 5,752,237 May, 1998 Cherny 705/4.
  • [0005]
    U.S. Pat. No. 5,852,808 December, 1998 Cherny 705/4
  • [0006]
    U.S. Pat. No. 5,875,431 December, 1998 Heckman et al. 705/7.
  • [0007]
    U.S. Pat. No. 5,895,450 April, 1999 Sloo 705/1.
  • [0008]
    Foreign Patent Documents
  • [0009]
    WO 9740460 October, 1997 WO.
  • [0010]
    Title of the Invention—page 1
  • [0011]
    Inventors and Addresses—page 1
  • [0012]
    Conversion of Provisional Application No. 60/307,561—page 1
  • [0013]
    Cross Reference to Related Applications—page 1
  • [0014]
    Background of the Invention—page 2
  • [0015]
    Brief Summary of the Invention—page 2
  • [0016]
    Description of the drawings—page 3
  • [0017]
    Description of the Invention—page 3
  • [0018]
    Abstract—on a separate sheet of paper
  • [0019]
    Claims—on separate sheets
  • [0020]
    The need for modalities to curb the spiraling costs of professional services, which is driven in large part by expense related to legal costs and the cost of insurance protection against law suits, is widely recognized. This problem is disproportionately severe in the realm of medico-legal issues and is a major problem for virtually all providers of professional services and in the service industry, in general. In many cases, physicians are relocating, retiring or changing profession. Hospitals are curbing services at the cost of declining quality of care or are closing their doors, in many cases after over one hundred years of community care. Legal defense and extremely high settlements have created insurmountable debts. Similar high cost of client-initiated law suits are impacting virtually all professions. Thus the need to avoid litigious clients and situations is obvious and identification of multiple client and situational factors by a system which enables professional service providers to pre-screen and identify clients who have a greater than average potential for initiating law suits is important in order to minimize the ultimate risk of litigation against the physician as well as other professionals.
  • [0021]
    This patent describes a database system that allows medical and other professionals to gauge the legal risk presented by new patients/clients, giving them the opportunity to avoid medical involvement with those individuals most prone to engaging in unwarranted legal actions. In this way, such efficient knowledge dissemination ultimately provides the physician with means for avoiding or reducing the risks of liability litigation through patient motivated medical malpractice suits before the fact by enabling him/her to make much more intelligently informed decisions regarding such questions as acceptance of that patient or conversely, denial of the associated needed medical services to that given patient (or acceptance for particular types of medical services or treatments) as well as to what degree is special medical attention and/or personalized care directed to the emotional needs of the patient most significantly warranted in order to minimize the ultimate risk of litigation against the physician eventually resulting from that patient. In formation within this system will allow improved physician-patient matching. Other applications of the present system pertain to hospitals, insurance companies, legal services and other professional service providers. For example, using the information by the present novel system will enable insurance carriers to more appropriately pro rate individual premiums based upon more accurate evaluation of risk profile.
  • [0022]
    [0022]FIG. 1 illustrates the use of the litigious patient screening system. First, a user transmits information about the identity of a potential patient either manually (through a web interface) or automatically (through patient management software). This information is then fed through a system that (1) matches the patient to a database (linking the individual to other doctors, past lawsuits, related lawyers, etc.), and (2) uses a statistical model to predict the likelihood of litigation and expected cost any such lawsuits. This risk assessment is then transmitted back to the user, and is either displayed on a web page or entered automatically into the office system, depending on the mode of initiation.
  • [0023]
    1. Problem
  • [0024]
    Many of the physicians practicing in urban or suburban areas (representing perhaps 50% or more of the total population in the US), and particularly those practicing in urban areas in the northeastern United States, have a high probability of facing egregious medical malpractice suits. Whereas an estimated 95% of patients are essentially non-litigious, with regards to physician medico-legal liability issues, it is felt that a mechanism to identify the small percentage of those patients who are litigious is desperately needed. Certain specialties are especially predisposed to medical malpractice claims. Some of the most vulnerable include obstetrics, neurosurgery, vascular surgery and pediatrics, although there is an increasing incidence of lawsuits across all surgical specialties. In many cases physicians are leaving the practice of medicine or relocating to avoid geographic areas with higher than average rates of medico-legal action and unreasonably high damage awards. Hospitals and other medical establishments spend large amounts of money and personnel effort in defensive countermeasures, since frivolous lawsuits affect their ability to properly subsidize the delivery of quality health care, as well as their ability to locate new doctors locally. These factors are a major cause of the spiraling out of control costs of medical care, which directly impacts government, industry and finally economic well being. Parallel problem situations are impacting paramedical services, non-medical professional providers, insurance carriers, and even the legal service providers themselves. And the same type of system as described in this invention can be used in parallel to the system described in preemptive measures to avoid the litigious client or situation in non-medical applications.
  • [0025]
    2. Proposed Solution
  • [0026]
    The present service substantially addresses this major problem by enabling physicians to pre-screen potential patients for greater than average litigiousness. The system consists of a computer database, accessed either on a per-use basis or as an add-on to standard practice management software, computerized patient registration systems, into which the medical professional enters the patient's name, address, and social security number and other demographic data. The system uses a stored history of medical lawsuits (among other data) in combination with statistical algorithms to generate a score. Much like a the credit scores used by loan officers to gauge an individual's likelihood of default, the score generated by this system gives the medical professional a quantitative basis for assessing the risk that a given patient will engage in frivolous litigation. If the risk is too high for the professional's preference, he/she can choose to not establish a medical relationship with the patient, which is the practitioner's legal right. The present system is similarly applied to non-medical service providers using the above array of data to determine the client or situation with the greatest potential for lawsuits.
  • [0027]
    3. Database Organization
  • [0028]
    The creation of the relational database supporting the patient tracking system would be complex, in that many different sources of legal data would need to be compiled; however, the technical aspects of the database itself would be quite straightforward. It would simply contain records on the identities of patients, doctors, expert witnesses, lawyers, and judges. Each record would contain various forms of medical, legal, and demographic information, as well as links to other patients, doctors, expert witnesses, lawyers, and judges.
  • [0029]
    In particular:
  • [0030]
    Patient records would include:
  • [0031]
    Links to family members
  • [0032]
    Medical history (including health status and doctors previously seen)
  • [0033]
    Socioeconomic status
  • [0034]
    Demographic information (including age)
  • [0035]
    Record of the nature of previous disease (by standard code number) processes and the timing of the disease(s)
  • [0036]
    Current disease(s)
  • [0037]
    Family history of disease(s) and proximity of blood relationship to patient
  • [0038]
    Nature of disease (litigious disease process) for which definite degrees and medical malpractice cannot be proven or disproven objectively and conclusively (e.g., back pain, thoracic outlet syndrome, certain neuropathies, emotional trauma such as that associated with suffering, intractable pain syndromes).
  • [0039]
    Evidence of instability such as mental records, criminal background, evidence of previous courses of medical treatment not followed (checking out of hospitals by signing out against medical advice, not following prescription plans, present and historical subjective level of fear of receiving treatment, in general, or of the present condition, etc.)
  • [0040]
    Previous litigation history ((including medico-legal and non-medico-legal as well as suits initiated by the individual and those brought against the individual by a third party (e.g., were the suits of a medico-legal nature, were the suits egregious or most likely unjustified such as summary judgments in favor of the defendant).
  • [0041]
    number of suits (total)
  • [0042]
    number of suits of a medico-legal nature
  • [0043]
    types of suits
  • [0044]
    doctors, lawyers, and expert witnesses involved
  • [0045]
    money demanded
  • [0046]
    suit outcomes
  • [0047]
    Does the patient have a history of initiating suits, which are eventually dismissed or consist of frivolous lawsuits?
  • [0048]
    The patient's history of initiating (or his/her immediate family) medico-legal suits (such as number of suits initiated and awards or settlements recovered).
  • [0049]
    Does the patient have a history or suspected history of feigning injuries or illnesses?
  • [0050]
    Does the patient have a history or suspected history of committing medical or disability insurance fraud?
  • [0051]
    Doctor records of referring physicians (typically belonging to other doctors) would include:
  • [0052]
    Educational/professional profile
  • [0053]
    Patients seen
  • [0054]
    Commendations or condemnations by medical boards and organizations (including hospital review boards, state medical organizations).
  • [0055]
    Physician ratings services
  • [0056]
    Number of malpractice cases already faced, with outcomes and amounts.
  • [0057]
    Demographic information
  • [0058]
    Lawyer records would include:
  • [0059]
    Educational/professional profile
  • [0060]
    Commendations or condemnations by legal boards and organizations
  • [0061]
    Lawyer ratings services
  • [0062]
    Number of cases won/lost/dismissed
  • [0063]
    Aggressiveness of solicitation (does lawyer “chase ambulances” or only take on valid cases?)
  • [0064]
    Does lawyer have a history of initiating lawsuits which are eventually dismissed or consist of frivolous lawsuits?).
  • [0065]
    If so, what is the lawyer's history of success in this regard?
  • [0066]
    Demographic information
  • [0067]
    Involvement with patients, doctors, and judges
  • [0068]
    Degree of public notoriety (extracted from on-line media)
  • [0069]
    Judge records would include:
  • [0070]
    History of cases seen
  • [0071]
    Commendations or condemnations by review boards
  • [0072]
    Degree of public notoriety (extracted from on-line media)
  • [0073]
    Expert witness records would include:
  • [0074]
    Educational/professional profile
  • [0075]
    Demographic information
  • [0076]
    Case involvement
  • [0077]
    Overall success
  • [0078]
    Degree of public notoriety (extracted from on-line media)
  • [0079]
    4. Implementation and Algorithms
  • [0080]
    Simply put, the function of this system is to receive as input identifying information about a patient (e.g. name, address, social security number), and to return a value representing the predicted litigiousness of the given patient, such as the probability of a lawsuit as a result of treating the present condition as well as predicted dollar amounts of any ensuing lawsuits and a breakdown which correlates predicted probability with ultimate monetary recovery by the plaintiff:
  • [0081]
    a. In general as an overall probability statistic,
  • [0082]
    b. If litigation were to ensue:
  • [0083]
    The system could also reveal the effect that such a law suit would have on the physician's insurance premiums, and if these premiums are adjusted in accordance with the physician's adherence to avoiding certain levels of litigation risk via the present system, what would be the direct consequences on the physician's insurance premiums for:
  • [0084]
    a. Accepting the present patient and,
  • [0085]
    b. Accepting other patients within the same approximate risk level of the present patient based upon the litigious risk statistics of the physician's other patients. The system could even provide a break down of what the direct monetary losses would be in this regard for accepting the patient compared with the likely direct monetary gains that the physician would achieve for accepting the patient for his/her present condition as well as analogously what the comparative long term effects would be on direct income from accepting other patients at a similar risk level compared to the anticipated losses sustained as a result of insurance premium increases resulting from accepting this similar higher risk segment of the physician's current typical population of patient candidates, and this value could also be adjusted in the event that litigation did occur in accordance with
  • [0086]
    a. The estimated associated probability thereof as at the average predicted plaintiff recovery under the present conditions,
  • [0087]
    b. The predicted probability/plaintiff recovery distribution based upon all of the relevant variables of the present type of circumstances (e.g., likely patient condition, general health, litigiousness factors, etc.).
  • [0088]
    In the preferred embodiment of the system, the service is bundled with a practice management system, which maintains persistent connections to a central database of medico-legal information. In particular, when the receptionist in the physician's office, clinic or hospital (directly or over the phone) enters patient information after a patient signs in or schedules an advanced appointment, the system automatically queries the database remotely and instantaneously delivers the litigation risk profile. Examples of such practice management systems include WebMd (, CitX's IntramedX Practice Management systems ( and InfoCure (
  • [0089]
    In other variations, the physician could pay by the patient or alternatively according to a flat fee allowing use of the system for a set period of time (e.g. $100/month). In this case, the interface could be through a web page, eliminating the need for any extra equipment on the part of the physician. In this way a trial version of the software could even be downloaded to the physician's practice management system
  • [0090]
    (e.g., for x days free). Moreover, there is an additional service for physicians, which is described in co-pending patent entitled “Physician's Referral Network”. This service enables physicians to make referrals to one another based essentially upon barter currency, which is transacted in conjunction with the referrals. The present system may be used to provide an additional screening function for the referrals made via the present approach.
  • [0091]
    Internally, the system statistically analyzes the previously-described variables, using standard descriptive data mining techniques to determine the degree of relevance of each associated variable in predicting the likelihood of further future litigation based upon past behavior. The receptionist or physician may also enter data relevant to the condition of the patient such as the general impression of the patient's overall present state of health or (for the physician exclusively), the patient's symptoms, complaints, likely diagnosis or potential diagnosis (such as if the diagnosis is potentially associated with a severe condition) this information can, in turn, be used to predict the likely disorder(s) (which could even be broken down by the physician as a probability value)and its severity; the likelihood of complications from the disorder (essential precursor of litigation) as well as (in many cases) the likely ultimate treatment protocol and its associated likelihood of complications (another essential precursor of litigation) are thus factored into the system's calculations.
  • [0092]
    There are obviously a multitude of ways in which the predictive model could be developed. This example shows one of many possible approaches:
  • [0093]
    First, a large database of patients is scanned for defining examples of “litigious” or “non-litigious” patients. In the first case, any patient linked with a criminal record of legal fraud, or who initiated two or more medical malpractice lawsuits that were subsequently dismissed because of insufficient evidence, will be considered a very high litigious risk. In the second case, any patient who has undergone major levels of medical care (e.g., over $50,000 or over 5 procedures in the last 10 years) without ever involving a doctor legally will be considered a very low litigious risk.
  • [0094]
    A set of explanatory vectors is then prepared, containing all available data linked to the patients selected as being very high or very low risks. For example, for each patient i we could define:
  • Xi={xi1, xi2, xi3, xi4}
  • [0095]
  • [0096]
    xi1=dummy variable (0/1) representing association with Lawyer A.
  • [0097]
    xi2=dummy variable (0/1) representing association with Lawyer B.
  • [0098]
    xi3=Income level.
  • [0099]
  • [0100]
    And we could also define Yi, where
  • [0101]
    Yi=1 if patient is very litigious
  • [0102]
    Yi=0 if patient is very un-litigious
  • [0103]
    In this case, the model will be structured as a logit regression (a type of linear regression that, while fed with a range of data, returns an output value ranging between zero and one).
  • Prob(Y=1|Xi,B)=exp(B′X)/(1+exp(B′X))
  • [0104]
    Where B=beta, a vector of coefficients that is estimated on the previously-described data set. The model will therefore assign a higher probability to Y=1 when B′X is large.
  • [0105]
    Suppose the resulting coefficients are as follows:
  • [0106]
    B={10, −10, 1}. This indicates that Lawyer A is not associated with either type of patient (indicating a fairly neutral lawyer), whereas Lawyer B is strongly associated with litigious patents. Moreover, a high income is linked with those patients less likely to sue, whereas age doesn't have much impact (although its small positive value indicates aged patients are mildly correlated with litigation).
  • [0107]
    Now, when operating, the system will operate in two stages. After patient identifying information has been provided for patient Xj,
  • [0108]
    Stage 1: Rule-based filter: Does patient Xj fit into either the highly litigious or highly non-litigious categories, as previously defined? If so, simply return a litigation probability of zero or one.
  • [0109]
    Stage 2: Statistical Model. Using the previously-calculated value for coefficient vector B, calculate exp(B′Xj)/(1+exp(B′Xj))—this will be a value ranging between zero and one, indicating the likely litigiousness of the patient. Note that vector B is multiplied value by value into the patient's data vector, which allows all the different factors to be taken into consideration. Thus, even if the patient is somewhat aged, a high income and association with Lawyer A will push the overall score down, indicating the patient is a low risk venture for the physician.
  • [0110]
    The system could be further enhanced through the offering of supplemental medical malpractice insurance: if the physician uses the present service and does not accept patients who fall above a certain probability value for litigation (verified by a secure agent associated with the physician's billing software), the insurance would cover any claims over and above those covered by standard malpractice insurance policy and the physician's CAT fund. In a variation, the present system could actually be used as a lower premium version of the CAT fund. The present service could even be used as a reduced premium form of the physician's basic medical malpractice insurance in which premiums arc set based upon the system's predicted litigation-based monetary risk to the physician. It should be noted that the system incorporates those variables already used in standard medical malpractice actuarial models. Thus the present service could incorporate an extended version of the service for those physicians who are interested in lower medical malpractice insurance rates, e.g., as part of a special policy for users of the system who follow certain recommendation criteria. One novel business model, in fact, could even involve the creation and development of a special new insurance company, which is developed entirely for physicians who incorporate the use of the present system (in which case, it would likely be implemented as a proprietary system).
  • [0111]
    5. Data Sources and Collection
  • [0112]
    Several important issues must be considered in the design of the present system. One of these relates to the means for collecting and updating the data, which is provided to the system. It is important to first determine whether and where the desired data exists in digitized form (or, if not, it may be necessary to access it and enter it into the system via manual means, (e.g., from court house records)). There are a variety of services available in which it is possible to access on-line databases (for a fee) which contain considerable personal information about individuals. Such databases particularly in aggregate may contain a history of such individuals. Legal databases containing case histories for legal professionals may also provide a useful resource, as would any available on-line county courthouse records, which happen to be stored in database format. A very important aspect of the above is given the potentially variable heterogeneous data formation, it is important to enable each of the various heterogeneous database formats to be able to communicate with each other. This requires translation software, which is specific to each type of heterogeneous database software. In many cases, the software itself must be further customized to each individual database to the extent that it has certain uniquely definable characteristics
  • [0113]
    Sources of data might include:
  • [0114]
    a) Standard legal databases, with names of plaintiffs and defendants involved in medical litigation.
  • [0115]
    b) Court transcripts, which would include such further details as the names of expert witnesses. One potentially valuable data aggregation of this information is a commercial vendor called Knowledge X ( which contains complete legal database information as well).
  • [0116]
    c) On-line news sources, such as those provided by Nexis/Lexis. Natural language processing techniques could scan these databases of news stories for evidence of past medical litigation. Once a candidate story is located, the names of the defendants and plaintiffs could be searched for in tandem, such that the eventual outcome of the case (settlement, trials, dismissal by the court, etc.) could be noted. Court cases which involve the dismissal of a plaintiffs case would be of special interest, as the plaintiff, lawyers, and professional witnesses involved would be suspect.
  • [0117]
    d) Medical board records, which would provide the names of doctors either being commended or condemned by other doctors under various circumstances.
  • [0118]
    e) Information from the National Data Bank to the extent that it is available for access by the present service. This should also include the physician's entered response to the allegations of medical malpractice or practice restrictions which are recorded within the Data Bank.
  • [0119]
    f) On-line and printed legal advertisements. The names of lawyers observed being overly aggressive in their solicitation of malpractice cases could be recorded. In other words, certain lawyers would be flagged as “ambulance chasers”, and patients who are also clients of those lawyers (or likely to become clients, given their locale), would experience an adverse impact on their score.
  • [0120]
    g) Insurance records. These would hold evidence of previous lawsuits, and would be useful for linking family groups.
  • [0121]
    h) Medical records.
  • [0122]
    i) Demographic and income databases.
  • [0123]
    j) Courthouse records.
  • [0124]
    Additional Potential Applications
  • [0125]
    1. Incorporation into Patient Referral Forms
  • [0126]
    The information used in the present prescreening process can readily be incorporated into the current mechanism widely used by managed care specialty referral forms. In this case the Health Maintenance Organization (HMO) would implement the use of the present system to screen patients being referred to specialists for specialty medical services. The issuance of the patient referral form by the HMO would then also be subject to medico-legal clearance via the above system and this information would be entered directly on to the existing patient referral form as an additional prerequisite for HMO approval of the referral.
  • [0127]
    It is worthy to note that this additional HMO screening of patients according to degree of litigiousness would put additional pressure upon the referring physician to implement the present system, in order to insure that their patients who need quality specialty care are able to receive it subject to referral approval by the HMO. Thus, it is certainly conceivable in this scenario, that patients who are likely to be very litigious, who are accordingly screened out by the HMO and denied medico-legal clearance for referral are likely to need a higher premium form of insurance provided either by the same insurer or by a separate high risk specialty insurer (as described below). It is also worth noting that highly litigious patients are likely to become apparent to employers who offer insurance benefits through group plans to their employees inasmuch as they will typically not pass the initial application level screening by the HMO for that group plan policy. Moreover, in such cases employers may further consider employees who are high risk from a medico-legal litigiousness standpoint to also be high risk for potential litigation against the present prospective employer who may, in turn, consider not hiring that employee. Accordingly this propensity on the part of employers could readily become a further dissuading factor for patients to sue physicians in the first place.
  • [0128]
    2.High Risk Premium Patient Insurance—
  • [0129]
    It is entirely plausible to assume that HMOs would implement the present system to screen patients at all levels of HMO patient approval, i.e., at the time of application for enrollment, the applicant would, of necessity, have to be approved through the system as implemented by the insurer. Both primary and secondary (or subsequent insurers) may wish to independently implement the present system for purposes of assuring that the proper screening has occurred and because each insurer is likely to have differing criteria for acceptance, rejection and associated premiums categories. In this way the actuarial formula of the insurer may incorporate additional attributes which are relevant to overall medico-legal litigation risks instead of purely medical data alone, i.e., predicted patient litigiousness in addition to present and past medical conditions such as those attributes detailed within the present invention. In addition, the present improved actuarial model may also be used for patient insurance renewal in the same fashion as is used in the patient application process. Unless regulatory agencies place restrictions on which types of variables related to the patient (and to what degree) these variables can be used in determining insurability and premiums of the patient, the same revised actuarial model which incorporates the attributes of the present invention in order to determine over all litigation risk for purposes of insurability and rate setting should also be used for HMO approved medico-legal clearance referrals. Of course, rejection of the referral would have to be superseded by a doctor's judgment if the case is determined to be a medical emergency. For patients who are considered “high litigation risk” the insurer, instead of denying insurance coverage altogether, the insurer may, at the application stage, or at the insurance renewal stage, in many cases place the patient in a higher risk category (for which there may be multiple high-risk categories). Or another insurer who specializes in high-risk insurance may be available to provide coverage for those cases, which do not pass the acceptance criteria of standard HMOs. Thus, a higher premium form of insurance whether provided by a specialized carrier or as a higher risk category of the standard insurer would have to be provided by the primary insurer and probably by the secondary and tertiary insurer as well.
  • [0130]
    3. Minimizing Medico-Legal Risk by Optimizing the Appropriateness of the Match between the Physician and the Patient.
  • [0131]
    Although the primary goal in minimizing the chances of medico-legal litigation is to initially and preemptively screen out the highest risk patients for litigation, there are additional further measures that can be taken to additionally MINIMIZE the overall probability of encountering ultimate medico-legal liability issues. In particular, it would be in the interest of hospitals and clinics to be sure that once a patient has been appropriately screened for an unnecessarily high degree of litigiousness, to be sure that there is also a good match between the patient and the physician based upon the specific detailed initial complaints and symptoms (as well as medical history) which together would be suggestive of the likely type of disorder or system involved which could be valuable data for purposes of improving and, in turn, optimizing selection of the physician(s) who based upon their specific skill sets and the associated clinically demonstrated proficiency thereof would be most appropriately suited for that particular patient. Accordingly, such an approach further ensures that physicians who are not optimally (or at a minimum not adequately) skilled and proficient with regards to certain system disorders, disease processes (or even diagnoses) which are likely to be associated with the present patient symptoms and medical history actually do not ultimately treat the patient (notwithstanding emergency or other potential extenuating circumstances). Currently, the standard protocol by which certain physicians have rights to perform certain procedures is very crude and is based upon each individual “delineation of hospital privileges” (or commonly known as “hospital privileges”). Within its own particular venue, each hospital has the inherent right to dictate which particular medical procedures and treatments (delineation of privileges) are performed and by whom. Typically, the chief of each department is assigned the responsibility of determining this delineation of privileges for each physician practicing at that hospital under his/her jurisdiction. However, this approach unlike the aforementioned which is herein proposed is often based largely upon subjective opinion and is often even influenced heavily by politics which occur internal to that specific hospital. Moreover, in accordance with the presently accepted protocols, there is no consideration whatsoever given to the unique physical conditions and associated medical history of the patient or whether the physician has specific medical knowledge or expertise which matches these medical profiles of the patient. There is thus a substantial and unrecognized need in the attempt to further reduce medico-legal risk for a more sophisticated scheme which applies detailed knowledge of each patient including present condition(s) as well as past medical history and family history in combination with a detailed history of each physician's experience and the associated success and shortcomings related to this experience. Typically review of delineation of clinical privileges occurs only every two years on cursory review of a department chief. There is currently little objective physician volume/success data available for review in granting clinical privileges. Data presently available is incomplete and, in most cases, no data is available nor is it requested at the time of the review and granting of clinical privileges. Hospitals and regional medical societies will have available internal data banks which will represent an ongoing evaluation of all physicians and all disease processes treated in respect to staged severity of disease and in respect to success/failure rate (which is relative to this determined staged severity of the disease) on a case-by case basis as well as category specific, case type specific (predictive success/failure rate for any given newly introduced or developing case), and overall success/failure rates. Variations of the present statistical algorithm as above described will be implemented to calculate from this data the optimum predicted conditions of physician and medical practice and/or medical center for optimum treatment of each patient. It will include complete medical practice history of all physicians subscribing to the service such as success/failure statistics, complete litigation history, etc. and other variables as described above. Particularly valuable attributes for medical centers, hospitals and clinics may include the profiles of the physician who would be treating the patient (typically a specialist in referral cases), the profiles of the other physician(s) who would be (or would likely be) treating the patient (either for other specific medical care or the likely attending physician), general quality ratings or reputation of hospital support staff, medical testing and treatment equipment and facilities which are relevant to the patient's medical needs and their associated quality and degree of overall importance to the patient's present medical needs.
  • [0132]
    This statistical algorithm will also determine which point in the progression of the medical status, as well as which point in the treatment process is the most optimally appropriate circumstances to refer the patient to another physician or medical center, in as much as the present statistical algorithm is able to consider both where an optimally suitable physician for the present medical status of the patient is located as well as consider where the most opportune medical support staff is located, as well as other relevant attributes such as more subjective aspects of this algorithm such as the appropriateness and quality of the testing and treatment equipment available at the center as well as determine the quality of the staff overall. Regional and personal financial interests and political considerations must be set aside in deference to objective optimum patient care. As a result of the predictive nature of the use of the present algorithm in a data mining application, somewhat more subjective data will be gleaned from the algorithm which will efficiently direct educational and training resources to determine which geographic and specialty areas to emphasize for training programs by determining the relative distribution of trained medical specialists in each specialty area. Ideally such an algorithm would incorporate longer term predictions based upon such data as predicted demographic changes, anticipated technical advances in each field (determining the relative need for newly trained professionals) as well as present staff admissions and areas of training emphasis of other hospitals, clinics and teaching medical centers and the emphasis and profiles of regional independent medical practitioners (which would be indicative of type and quality thus effective competition for referrals by the present system on a given locality basis).
  • [0133]
    The present system would be of considerable interest to hospitals, insurance companies, clinics, or private practitioners. For example, hospitals may use such a scheme as an improved model for approving, denying or redirecting physical referrals to other doctors. It is of value to apply the same basic data model as described above in order to accurately predict the associated risks of complications for each patient (and with this data determine the medico-legal risks by also considering the patient's degree of litigiousness) based upon that physician's history of clinical treatment to other patients who are most similar to that of the present one. The statistical algorithm could, for example, determine across a large data set of physicians and patients which key features of the physician are most predictive of success (thus ultimately non-litigation) fort hat particular patient's medical status.
  • [0134]
    Physician data sources include those relevant ones to physician quality and expertise such as physicians training and history of cases performed (which historically is data submitted to the hospital by the physician) including, of course, most relevantly how many of the same types of cases were seen and the percentage of those treated which were successful cases. This data should also include the litigation statistics. The information relating to the patient is available through similar sources.
  • [0135]
    Typically such detailed patient data is available through digitized hospital records, insurance data bases, physician medical records such as patient charts (including practice management databases) and other data detailed above in section 3
  • [0136]
    Some of these patient records would include present medical status and conditions, medical history, medical history of family members and previous litigation history.
  • [0137]
    Patient data includes court transcripts and legal databases as well as a variety of other data sources such as those described above in section 3. It is important to note that physician data not only incorporates attributes representing qualitative data indicating the type of experience (degree of similarity of the experience to that of the patient's present medical status which is currently being presented) and quantitative data (number of previous cases seen which are of a relevant nature to the present one) but also the relative degree of overall success in treating the relevant patients seen and overall relative degree of success for all patients previously treated overall, where relative degree of success may be a numeric percentage score of how the present physician's success compares historically as a ratio to other physicians on a given similar case by case basis which is, of course, in turn, averaged overall for each physician. “Success” may be determined by such variables as nature and severity of complication and morbidity as well as mortality rates and subjective assessment by the physician during past treatment cases and follow-up visits. Medico-legal activity may be another useful variable provided that these actual statistical values are normalized by the predicted degree of medico-legal litigiousness of the patients which actually sue and in this statistical model details of the nature of the medico-legal complaint are considered as well as the ultimate outcomes of the suits. Effectively, a matching score between the physician and the patient is calculated as well as that of the other physicians who are also presently viable alternatives to the present physician. For purposes of hospital clinic or physician specific implementation, a number of rules for example could be constructed automatically or manually based upon data analysis of overall success/failure rates for various types of physician/patient statistical correlation. For example, as a physician/patient matching score (below X may not be suitable under any circumstances notwithstanding emergency, etc.) Or, if another available physician presently is (or becomes) higher than the present physician presently treating the patient and this amount exceeds the score by amount Y (or amount Y if the present physician's score is at or above not unacceptably low (however, nonetheless sub-optimal) score within range Z, the patient could be instead referred onto another physician who is better or more specifically experienced with regards to the patient's present medical needs. Geographic variables could also be incorporated into such rules as well as such factors as the degree of the matching score of the hospital staff (if relevant) to that of the patient's needs.
  • [0138]
    Medico-legal pressures and insurance company pressures will represent the primary motivating factors which will compel the medical providers to adapt the presently described protocol. As a result, it is anticipated that one potential consequence of wide spread use of the present system is that very qualified physicians and particularly qualified and focused specialists are likely to receive a large number of patients via the present system. The same is true of very high quality medical centers such as those with a particular medical focus and emphasis. As such, it is likely that such a resulting quality based demand scenario, once it emerges within the healthcare field, will drive such high quality primary physicians, specialists, clinics and medical centers to not only preferentially select patients of low liability risk but also those who are able and willing to pay independently for higher quality healthcare (in addition to or even independently of HMO coverage). Those who are able to still justify some of their services to be paid by medical insurance may offer certain routine services while also providing premium services for an additional fee which is charged at a higher rate than insurance would cover (that is if it would even cover it in the first place). Moreover, it is likely in this scenario that extremely high demand physicians, clinics and medical centers may offer services exclusively at a rate which requires additional fees to be covered by the patient directly for the care of a surgeon, preferentially select those patients who appear to require complicated, unusual or lengthy surgical procedures as well as those who are willing to pay for non-HMO covered specialty treatments such as preventive treatment and therapeutic regimens and also patients who choose to pay for non-HMO covered diagnostic tests involving advanced technology, technical skills and equipment. Because the types of treatments which a physician offers patients affects litigation risk, the optimum price which the physician should charge for each treatment is influenced by overall demand of the patient population (more particularly the segment of the potential patient population which the physician actually provides that particular treatment for) as well as litigation risk of that patient population being treated. This value may be determined by an optimization technique which is designed for this type of multi-variable problem techniques are well known in the field of statistics.
  • [0139]
    In certain cases in which the decision as to the most appropriate treatment regimen is not entirely clear cut or is of a somewhat subjective nature, because certain risks or some complications associated with each potential treatment regimen (as well as the risks associated with resulting litigation) will tend to be different, the system may provide the physician with a comparative predicted estimate of the various risks associated with this potential for resulting litigation for each relevant additional treatment regimen. Using optimization techniques, the present methodology may also be also tailored to identify an optimal relative volume of different kinds of patients, based on the size of the pool of potential patient selection available to the physician (which is a function of litigation risk probability and probability/potential for monetary profit which are also subtractive variables). The optimization technique may also use data from numerous other physician's billing systems in order to predictively suggest this optimal volume distribution of different patient types (and ultimately treatment types). In light of attempting to achieve an optimal price (for optimal profitability) the physician may wish to charge for these non-HMO covered (or patient supplemented) medical services in order to optimize for example, likelihood and degree of profitability or to optimize this value while also maintaining risk of litigation of the type which could harm his/her practice within an acceptably low level such that long-term probability and degree of profitability is optimized. In an analogous application HMOs within reasonable or regulatory limits may wish to set rates for certain treatments based upon the same types of variables. It would even be possible to adjust premiums based upon consideration of the variables associated with which patients are actually treated and which treatments are actually given to those patients. This approach would further incentivize the physician to choose to accept those types of patients who are not only the most profitable in light of their overall low risk of litigation as well as those treatments which represent the lowest risk of litigation and the highest returns from a profitability standpoint. Because the profitability potential of certain treatments (and on perhaps certain types of patients) may represent a different (in some cases opposing) long term monetary value for the physician compared with that of the insurer, it may be in the insurer's best interest to adjust for this factor by setting the rates, e.g., by further accentuating the cost of premiums for those treatments which are not only higher risk but also higher profitability potential for the physician.
  • [0140]
    At a more general level, the presently described scheme embodies a profound paradigm shift which would indeed represent a much more efficient commercial model for healthcare which is quality-market driven largely exists as the pro-quota for most other industries within capitalist countries. Moreover, it is worthy to note that the mere introduction of the present system will drive the further and ongoing demand for its use in health care.
  • [0141]
    For the implementation within HMOs, the present physician/patient appropriateness score could be the most accurate model for determining HMO based medico-legal clearance for patient referrals as described in sub-section 1 within the present section (in as much as a very accurate determination of medical risk is factored into the overall medico-legal liability prediction scheme and finally the physician/patient appropriateness matching score is likely to be an extremely valuable metric in malpractice actuarial models used by HMOs for use in the approval of policy renewal procedures and as well as risk category allocation for the patient.
  • [0142]
    Similarly, this matching score between the patient and the prospective physician is an appropriate additional variable to be added to the HMOs algorithm used to determine medico-legal clearance for referral of the patient to a particular identified specialist, and if the matching criteria is inadequate or even sub-optimal, the present system may recommend another local physician who is more suitable for that particular patient (e.g., is on the same hospital staff, or has associated hospital privileges) or for non-hospital patients such referral recommendations by the insurer (or physician for physician practices or clinic) could be based upon locality including degree thereof using zip code information of the patient based implementations) compared to office or hospital locations at which each physician practices. It should be noted this particular approach would be ideal for a large scale automated referral system which is described in co-pending patent application entitled “Physicians Referral Network”, in as much as a very large pool of physicians with profiles of expertise available via the network and at any given relevantly required physical locality or hospital.
  • [0143]
    4. Commercial Marketing—Certainly, there are useful applications of the present system to commercial marketing. Hospitals, HMOs, physicians, clinics, pharmacies and pharmaceutical companies spend billions of dollars per year on consumer advertising. For example, areas which have a high degree of litigiousness based upon demographic data should be weighed against the profit opportunity of those areas minimizing a market campaign by geographic area. In the case of pharmaceutical companies in particular, litigation is a major problem, however, the litigation predictions generated by the data model would, of course, be for litigation against the drug maker and some slightly different variable may be important compared to predicted litigation against health care providers (although not to minimize the potential relevance of litigation history, particularly against health care providers). An example is, the likelihood and likely degree of severity of health risks and potential harm to the patient associated with a drug. This may include, of course, anecdotal evidence such as chemical and biochemical similarities with the nature and physiological actions of the drug (respectively) as well as (if available side effects and health problems associated with preliminary trials on humans and animal studies as well as if the drug has already been released commercially) the documentation of medical side effects, complications and mortality regarding their numbers and . . . all variables associated with rates of occurrence as well as (importantly) completed litigation history. Accordingly, targeted direct marketing via marketing database lists are also an important form of advertising for each of the above commercial categories. The present system would be usefully employed as a tool for screening out those individuals and households, which are demonstrated or predicted to have litigious propensities.
  • [0144]
    The present invention for screening litigious clients is certainly extensible into other paramedical and non-medical professional domains including but not limited to legal services, financial planning and advisory services, tax advisory services, stock brokers, investment brokers and dealers, and engineering firms. In these alternative professional domains for which the present system may be adaptively modified, it would be obvious to the artfully skilled reader that the features as applied to physicians for purposes of predicting future probability of litigation for a given service to a particular user can be appropriately applied to analogously similar features which are, however, instead relevant to the specific professional domains of the particular professional service provider (e.g., professional credentials, previous litigation for particular types of services rendered, etc.).
  • [0145]
    The present system could also be used by employers to screen potential employees for litigious propensities. In this latter example the general inherent risks for monetary loss to the employer associated with ultimate litigation could be a useful variable within the data model, e.g., is the position associated with certain litigation prone risks (such as occupational hazards) and if so, to what degree? Again, direct marketing initiatives within other professional services domains (as well as by the way potentially any/all direct marketing initiatives wherein the associated potential service to be rendered or product to be sold carries with it the potential for certain recognized consumer liability risks) could benefit by implementing variations of the present invention as a screening tool (in which the variables used in the predictive litigiousness risk model are adapted appropriately to the particular domain to which it is applied). Again as in the medical case, the monetary risks associated with litigation could be weighed against the predicted monetary profits on a case by case basis.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4975840 *Jun 17, 1988Dec 4, 1990Lincoln National Risk Management, Inc.Method and apparatus for evaluating a potentially insurable risk
US5325291 *Oct 22, 1992Jun 28, 1994Thomas L. GarrettMethod of verifying insurance on registered vehicles
US5752237 *May 18, 1995May 12, 1998Mottola Cherny & Associates, Inc.Method and apparatus for providing professional liability coverage
US5852808 *Apr 11, 1995Dec 22, 1998Mottola Cherny & Associates, Inc.Method and apparatus for providing professional liability coverage
US5875431 *Mar 15, 1996Feb 23, 1999Heckman; FrankLegal strategic analysis planning and evaluation control system and method
US5895450 *Jul 14, 1997Apr 20, 1999Sloo; Marshall A.Method and apparatus for handling complaints
US6018714 *Nov 8, 1997Jan 25, 2000Ip Value, LlcMethod of protecting against a change in value of intellectual property, and product providing such protection
US6272471 *Aug 2, 1999Aug 7, 2001Jeffrey J. SegalMethod and apparatus for deterring frivolous professional liability claims
US6556992 *Sep 14, 2000Apr 29, 2003Patent Ratings, LlcMethod and system for rating patents and other intangible assets
US6615181 *Oct 18, 1999Sep 2, 2003Medical Justice Corp.Digital electrical computer system for determining a premium structure for insurance coverage including for counterclaim coverage
US6862571 *Jun 24, 1999Mar 1, 2005The Premium Group, Inc.Credentialer/Medical malpractice insurance collaboration
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7711584Sep 4, 2003May 4, 2010Hartford Fire Insurance CompanySystem for reducing the risk associated with an insured building structure through the incorporation of selected technologies
US7752060Aug 29, 2006Jul 6, 2010Health Grades, Inc.Internet system for connecting healthcare providers and patients
US7756730Dec 20, 2006Jul 13, 2010Bradford D RessMethod for providing single occasion liability insurance
US7783505Nov 12, 2008Aug 24, 2010Hartford Fire Insurance CompanySystem and method for computerized insurance rating
US7818228 *Dec 15, 2005Oct 19, 2010Coulter David BSystem and method for managing consumer information
US7877304Dec 15, 2005Jan 25, 2011Coulter David BSystem and method for managing consumer information
US7881951May 11, 2010Feb 1, 2011Hartford Fire Insurance CompanySystem and method for computerized insurance rating
US7930190Jul 10, 2007Apr 19, 2011Philip John MilanovichMethods of rating service providers
US7930192Mar 18, 2008Apr 19, 2011Philip John MilanovichHealth savings account system
US7945497Dec 20, 2007May 17, 2011Hartford Fire Insurance CompanySystem and method for utilizing interrelated computerized predictive models
US8090599Dec 28, 2004Jan 3, 2012Hartford Fire Insurance CompanyMethod and system for computerized insurance underwriting
US8126886Dec 31, 2008Feb 28, 2012Thomson Reuters Global ResourcesSystem, method, and software for researching, analyzing, and comparing expert witnesses
US8229772Dec 28, 2011Jul 24, 2012Hartford Fire Insurance CompanyMethod and system for processing of data related to insurance
US8271303Feb 19, 2010Sep 18, 2012Hartford Fire Insurance CompanySystem for reducing the risk associated with an insured building structure through the incorporation of selected technologies
US8275639 *Feb 2, 2009Sep 25, 2012Guerrero John MInsurance product and related system and method
US8285613 *Dec 15, 2005Oct 9, 2012Coulter David BSystem and method for managing consumer information
US8332246Jul 24, 2012Dec 11, 2012Hartford Fire Insurance CompanyMethod and system for processing of data related to underwriting of insurance
US8355934Jan 25, 2010Jan 15, 2013Hartford Fire Insurance CompanySystems and methods for prospecting business insurance customers
US8359209Dec 19, 2007Jan 22, 2013Hartford Fire Insurance CompanySystem and method for predicting and responding to likelihood of volatility
US8392221Sep 21, 2009Mar 5, 2013Philip John MilanovichMethod of providing health care insurance to consumers
US8412600 *Mar 21, 2003Apr 2, 2013Genworth Financial, Inc.System and method for pool risk assessment
US8490197Oct 24, 2011Jul 16, 2013Frederick S. M. HerzSdi-scam
US8504394Dec 10, 2012Aug 6, 2013Hartford Fire Insurance CompanySystem and method for processing of data related to requests for quotes for property and casualty insurance
US8515790 *Mar 3, 2006Aug 20, 2013Jeb C GriebatComputer program and method for jury selection
US8543429May 23, 2011Sep 24, 2013Philip John MilanovichMethod of providing malpractice insurance
US8561167Jan 24, 2007Oct 15, 2013Mcafee, Inc.Web reputation scoring
US8571900Dec 14, 2012Oct 29, 2013Hartford Fire Insurance CompanySystem and method for processing data relating to insurance claim stability indicator
US8578051 *Aug 16, 2010Nov 5, 2013Mcafee, Inc.Reputation based load balancing
US8589503Apr 2, 2009Nov 19, 2013Mcafee, Inc.Prioritizing network traffic
US8606910Dec 15, 2011Dec 10, 2013Mcafee, Inc.Prioritizing network traffic
US8635690Jan 25, 2008Jan 21, 2014Mcafee, Inc.Reputation based message processing
US8655690Jul 29, 2013Feb 18, 2014Hartford Fire Insurance CompanyComputer system and method for processing of data related to insurance quoting
US8676612Sep 14, 2012Mar 18, 2014Hartford Fire Insurance CompanySystem for adjusting insurance for a building structure through the incorporation of selected technologies
US8694441Mar 12, 2008Apr 8, 2014MDX Medical, Inc.Method for determining the quality of a professional
US8719052Jul 17, 2012May 6, 2014Health Grades, Inc.Internet system for connecting healthcare providers and patients
US8762537Jun 4, 2012Jun 24, 2014Mcafee, Inc.Multi-dimensional reputation scoring
US8763114Jan 24, 2007Jun 24, 2014Mcafee, Inc.Detecting image spam
US8798987Oct 23, 2013Aug 5, 2014Hartford Fire Insurance CompanySystem and method for processing data relating to insurance claim volatility
US8812332Feb 18, 2014Aug 19, 2014Hartford Fire Insurance CompanyComputer system and method for processing of data related to generating insurance quotes
US8892452 *Nov 9, 2012Nov 18, 2014Hartford Fire Insurance CompanySystems and methods for adjusting insurance workflow
US8925095Dec 3, 2012Dec 30, 2014Fred Herz Patents, LLCSystem and method for a distributed application of a network security system (SDI-SCAM)
US9009321Jun 4, 2012Apr 14, 2015Mcafee, Inc.Multi-dimensional reputation scoring
US9171342Jan 11, 2011Oct 27, 2015Healthgrades Operating Company, Inc.Connecting patients with emergency/urgent health care
US9311676Aug 16, 2007Apr 12, 2016Hartford Fire Insurance CompanySystems and methods for analyzing sensor data
US9438614Jul 15, 2013Sep 6, 2016Fred Herz Patents, LLCSdi-scam
US9460471Dec 15, 2010Oct 4, 2016Hartford Fire Insurance CompanySystem and method for an automated validation system
US9516062Dec 22, 2014Dec 6, 2016Mcafee, Inc.System and method for determining and using local reputations of users and hosts to protect information in a network environment
US9544272Jun 16, 2014Jan 10, 2017Intel CorporationDetecting image spam
US9661017Aug 31, 2015May 23, 2017Mcafee, Inc.System and method for malware and network reputation correlation
US9665910Feb 11, 2009May 30, 2017Hartford Fire Insurance CompanySystem and method for providing customized safety feedback
US20040030699 *Apr 29, 2003Feb 12, 2004Patient On LineSystem for the management of information integrated in a protocol
US20040186752 *Mar 21, 2003Sep 23, 2004David KimSystem and method for pool risk assessment
US20040249674 *Apr 23, 2004Dec 9, 2004Eisenberg Floyd P.Personnel and process management system suitable for healthcare and other fields
US20050055249 *Sep 4, 2003Mar 10, 2005Jonathon HelitzerSystem for reducing the risk associated with an insured building structure through the incorporation of selected technologies
US20050144047 *Dec 28, 2004Jun 30, 2005Oai TranMethod and system for computerized insurance underwriting
US20060085216 *Oct 12, 2005Apr 20, 2006Guerrero John MMethod and apparatus for discouraging non-meritorious lawsuits and providing recourse for victims thereof
US20060198502 *Mar 3, 2006Sep 7, 2006Griebat Jeb CComputer program and method for jury selection
US20070038486 *Aug 8, 2006Feb 15, 2007Greg MohnMethods and systems for candidate information processing
US20070130350 *Jan 24, 2007Jun 7, 2007Secure Computing CorporationWeb Reputation Scoring
US20080077451 *Sep 24, 2007Mar 27, 2008Hartford Fire Insurance CompanySystem for synergistic data processing
US20080147448 *Dec 19, 2007Jun 19, 2008Hartford Fire Insurance CompanySystem and method for predicting and responding to likelihood of volatility
US20080154647 *Dec 20, 2006Jun 26, 2008Ress Bradford DMethod for providing single occasion liability insurance
US20080154651 *Dec 20, 2007Jun 26, 2008Hartford Fire Insurance CompanySystem and method for utilizing interrelated computerized predictive models
US20080178288 *Jan 24, 2007Jul 24, 2008Secure Computing CorporationDetecting Image Spam
US20090043615 *Aug 7, 2007Feb 12, 2009Hartford Fire Insurance CompanySystems and methods for predictive data analysis
US20090055262 *Aug 23, 2007Feb 26, 2009Terri CoulterSystem and method for advertising testimonial services
US20090106225 *Oct 19, 2007Apr 23, 2009Smith Wade SIdentification of medical practitioners who emphasize specific medical conditions or medical procedures in their practice
US20090125980 *Nov 9, 2007May 14, 2009Secure Computing CorporationNetwork rating
US20090198527 *Feb 2, 2009Aug 6, 2009Guerrero John MInsurance product and related system and method
US20090210257 *Feb 11, 2009Aug 20, 2009Hartford Fire Insurance CompanySystem and method for providing customized safety feedback
US20090240689 *Dec 31, 2008Sep 24, 2009Christine FenneSystem, method, and software for researching, analyzing, and comparing expert witnesses
US20100174566 *Mar 18, 2010Jul 8, 2010Hartford Fire Insurance CompanySystems and methods for analyzing sensor data
US20100223079 *May 11, 2010Sep 2, 2010Hartford Fire Insurance CompanySystem and method for computerized insurance rating
US20100268549 *Jul 2, 2010Oct 21, 2010Health Grades, Inc.Internet system for connecting healthcare providers and patients
US20100306846 *Aug 16, 2010Dec 2, 2010Mcafee, Inc.Reputation based load balancing
US20110022579 *Oct 4, 2010Jan 27, 2011Health Grades, Inc.Internet system for connecting healthcare providers and patients
US20110099116 *Sep 17, 2010Apr 28, 2011Medlegal Network, Inc.Systems and methods for managing data communications across disparate systems and devices
US20110112858 *Jan 11, 2011May 12, 2011Health Grades, Inc.Connecting patients with emergency/urgent health care
US20110166988 *Feb 25, 2011Jul 7, 2011Coulter David BSystem and method for managing consumer information
US20110184766 *Jan 25, 2010Jul 28, 2011Hartford Fire Insurance CompanySystems and methods for prospecting and rounding business insurance customers
US20110218827 *May 16, 2011Sep 8, 2011Hartford Fire Insurance CompanySystem and method for utilizing interrelated computerized predictive models
US20120078666 *Jul 15, 2011Mar 29, 2012Piccin Jose RonoelSystems and methods for insuring contingent liabilities
US20130304669 *Apr 1, 2013Nov 14, 2013Genworth Financial, Inc.System and method for pool risk assessment
US20140279398 *Mar 14, 2014Sep 18, 2014Capital One Financial CorporationAbility to pay calculator
US20150112728 *Oct 17, 2013Apr 23, 2015Elwha LlcManaging a risk of a liability that is incurred if one or more insurers denies coverage for treating one or more insured for one or more conditions
US20150356697 *Jun 9, 2014Dec 10, 2015Hartford Fire Insurance CompanySystem and method for centralized litigation data management
US20160092401 *Sep 30, 2014Mar 31, 2016Jeffrey O'ConnorDocument Generation Methods and Systems
US20160371673 *Jun 18, 2015Dec 22, 2016Paypal, Inc.Checkout line processing based on detected information from a user's communication device
WO2009088480A1 *Dec 31, 2008Jul 16, 2009Christine FenneSystem, method, and software for researching, analyzing, and comparing expert witnesses
U.S. Classification705/4
International ClassificationG06Q30/02, G06Q50/24, G06Q50/18, G06Q10/06, G06Q10/10
Cooperative ClassificationG06Q30/0201, G06Q50/18, G06Q30/02, G06Q50/24, G06Q40/08, G06Q10/0635, G06Q10/10, G06Q50/22
European ClassificationG06Q10/10, G06Q30/02, G06Q40/08, G06Q10/0635, G06Q50/24, G06Q50/18