Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030029617 A1
Publication typeApplication
Application numberUS 09/925,788
Publication dateFeb 13, 2003
Filing dateAug 9, 2001
Priority dateAug 9, 2001
Also published asCN1564904A, US20050231022, US20060138853, WO2003015025A2, WO2003015025A3
Publication number09925788, 925788, US 2003/0029617 A1, US 2003/029617 A1, US 20030029617 A1, US 20030029617A1, US 2003029617 A1, US 2003029617A1, US-A1-20030029617, US-A1-2003029617, US2003/0029617A1, US2003/029617A1, US20030029617 A1, US20030029617A1, US2003029617 A1, US2003029617A1
InventorsNeil Brown, Karl Nesselrode
Original AssigneeAnadarko Petroleum Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus, method and system for single well solution-mining
US 20030029617 A1
Abstract
The claimed invention is a method, system and apparatus for solution-mining of subterranean materials such as trona, nahcolite, thermonatrite, pirssonite, natron, dawsonite, wegscheiderite, gaylussite, shortite, halite, and other salts, minerals, and so forth. The method comprises injecting a fluid into an elbow well, the fluid forming a subterranean mixture with the subterranean material, and collecting the subterranean mixture from the elbow well. The system comprises a means for injecting a fluid into an elbow well, the fluid forming a subterranean mixture with the subterranean material, and a means for collecting the subterranean mixture from the elbow well. The apparatus further comprises a production casing, wherein the production casing has a production casing inner diameter of sufficient size to allow for production of a subterranean mixture of the fluid and the subterranean material between an outer surface of the injection tube and an inner surface of the production casing.
Images(3)
Previous page
Next page
Claims(39)
What is claimed is:
1. A method for solution-mining of a subterranean material, the method comprising:
injecting a fluid into an elbow well, the fluid forming a subterranean mixture with the subterranean material; and
collecting the subterranean mixture from the elbow well.
2. The method of claim 1, wherein the subterranean material comprises trona.
3. The method of claim 1, further comprising making the elbow well.
4. The method of claim 3, wherein making the elbow well comprises drilling an elbow well into a bed comprising the subterranean material.
5. The method of claim 1, wherein the method comprises casing the elbow well.
6. The method of claim 1, wherein said injecting the fluid further comprises injecting the fluid into an injection tube located in the elbow well.
7. The method of claim 1, wherein the method further comprises creating a cavity, wherein the cavity comprises the subterranean material.
8. The method of claim 7, wherein the cavity comprises the subterranean material mixture after said injecting the fluid.
9. The method of claim 1, wherein the subterranean mixture comprises a subterranean solution.
10. The method of claim 1, wherein the fluid comprises water.
11. The method of claim 1, wherein the fluid comprises a caustic mixture.
12. The method of claim 1, wherein the method further comprises heating the fluid.
13. The method of claim 1, wherein said collecting the subterranean mixture further comprises collecting the subterranean mixture through a production tube located in the elbow well.
14. The method of claim 1, wherein said collecting the subterranean mixture comprises pumping the subterranean mixture.
15. The method of claim 14, wherein said pumping the subterranean mixture comprises lifting the subterranean mixture through the production tube.
16. The method of claim 15, wherein the method further comprises delivering the subterranean mixture to a collection location.
17. The method of claim 16, wherein the collection location comprises the earth's surface.
18. The method of claim 14, wherein the method further comprises placing a pump in the elbow well.
19. The method of claim 1, wherein the method occurs at ambient well pressure.
20. The method of claim 1, wherein the method further comprises processing the subterranean mixture after said collecting the subterranean mixture.
21. A system for solution-mining of a subterranean material, the system comprising:
means for injecting a fluid into an elbow well, the fluid forming a subterranean mixture with the subterranean material; and
means for collecting the subterranean mixture from the elbow well.
22. The system of claim 21, wherein the subterranean material comprises trona.
23. The system of claim 21, further comprising means for making the elbow well.
24. The system of claim 23, wherein said means for making the elbow well comprises means for drilling the elbow well into a bed comprising the subterranean material.
25. The system of claim 21, wherein the system comprises means for casing the elbow well.
26. The system of claim 21, wherein said means for injecting the fluid further comprises an injection tube located in the elbow well.
27. The system of claim 21, wherein the subterranean mixture comprises a subterranean solution.
28. The system of claim 21, wherein the fluid comprises water.
29. The system of claim 21, wherein the fluid comprises a caustic mixture.
30. The system of claim 21, wherein the system further comprises means for heating the fluid.
31. The system of claim 21, wherein said means for collecting the subterranean mixture comprises means for pumping the subterranean mixture.
32. The system of claim 31, wherein the system further comprises means for placing a pump in the elbow well.
33. The system of claim 31, wherein the system further comprises means for delivering the subterranean mixture to a collection location.
34. The system of claim 33, wherein the collection location comprises the earth's surface.
35. The system of claim 21, wherein the system occurs at ambient well pressure.
36. The system of claim 21, wherein the system further comprises means for processing the subterranean mixture after said means for collecting the subterranean mixture.
37. An apparatus for solution-mining of a subterranean material, the apparatus comprising:
an injection tube, wherein the injection tube has an injection tube inner diameter of sufficient size to allow for injection of a fluid for mining of a subterranean material; and
a production casing, wherein the production casing has a production casing inner diameter of sufficient size to allow for production of a subterranean mixture of the fluid and the subterranean material between an outer surface of the injection tube and an inner surface of the production casing.
38. The apparatus of claim 37, further comprising a production tube for collecting the subterranean mixture.
39. The apparatus of claim 38, further comprising a pump connected to the production tube.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    This invention relates to solution-mining of subterranean materials. The following discusses the disclosed solution-mining invention as applied to trona, but it is understood that this solution-mining invention applies to all subterranean materials.
  • [0002]
    The subterranean material trona, also known as natural soda ash, is a crystalline form of sodium carbonate and sodium bicarbonate, known as sodium sesquicarbonate, having the formula Na2CO3·NaHCO3·2H2O. Worldwide, deposits of natural trona are rare, but the world's largest known deposit is located in the Green River Basin of southwestern Wyoming. Smaller deposits of trona are found near Memphis, Egypt and the Lower Nile Valley, widely throughout the soda lakes of Africa, Armenia, and Iran, and in the alkali deserts of Mongolia and Tibet. From natural trona, the primary end product is soda ash. In fact, Wyoming produces 90% of the processed soda ash in the United States and 30% of the world's supply. Other end-products from trona include sodium bicarbonate, caustic soda, sodium sulfite, sodium cyanide and sodium phosphate. Improved and cheaper processes for mining trona from natural deposits are desired.
  • [0003]
    Mining is an age-old approach for removing subterranean materials, e.g., trona, nahcolite, dawsonite, wegscheiderite, thermonatrite, pirssonite, natron, gaylussite, shortite, halite, and other salts, minerals, and so forth. Many deposits of subterranean materials, however, do not permit commercially viable extraction, whether through underground mechanical mining or solution-mining. For example, not even 10% of known trona deposits permit commercially viable underground mechanical mining, and trona solution-mining has not been economical.
  • [0004]
    Underground mechanical mining requires deep shafts to remove the subterranean material, and ever-deeper shafts are used as more material is extracted. In addition, mechanical mining is people-intensive. This creates a dangerous operating environment.
  • [0005]
    After lifting the material to the surface, the material is calcined to expel volatile components, such as carbon dioxide. Calcination is an energy-intensive processing step that affects the economics of mechanical mining. After calcination, the calcined material is recrystallized in aqueous solution, collected, dried and ready for further processing or shipping.
  • [0006]
    Solution-mining is a touted alternative to mechanical mining, but solution-mining has not proven as economical as desired. Solution-mining of subterranean materials, in particular, trona, is possible using hot water or alkaline solutions. For example, U.S. Pat. No. 2,388,009 (Pike) discloses the use of a hot water or hot carbonate solution as the mining fluid. See also U.S. Pat. Nos. 2,625,384 (Pike et al.); 2,847,202 (Pullen); 2,979,315 (Bays); 3,018,095 (Redlinger); 3,050,290 (Caldwell et al.); 3,086,760 (Bays); U.S. Pat. No. 3,184,287 (Gancy); 3,405,974 (Handley et al.); U.S. Pat. No. 3,952,073 (Kube); U.S. Pat. No. 4,283,372 (Frint et al.); 4,288,419 (Copenhafer et al.); and U.S. Pat. No. 4,344,650 (Pinsky et al.), all of which are incorporated herein by reference. These disclosures, and other documented solution-mining processes, reveal use of two or more of the following economic drains on commercial viability: high temperatures, high pressure calcination, hydraulic fracturing (“fracturing”), and two wells, wherein one well is for injection and one well is for production, see e.g., U.S. Pat. No. 4,815,790, Rosar, et al.; U.S. Pat. No. 4,344,650, Pinsky, et al.; U.S. Pat. No. 4,252,781, Fujita, et al.; U.S. Pat. No. 4,022,868, Poncha, et al.; U.S. Pat. No. 4,021,526, Gancy et al.; and U.S. Pat. No. 4,021,525, Poncha, all of which are incorporated herein by reference. Fracturing rarely fractures only the material to be removed, so injecting hot water or alkaline solution dissolves other materials, including salts, and contaminates the subterranean material product collected from the production well. Collection of contaminated subterranean materials is yet another economic drain to commercial viable solution-mining processes.
  • [0007]
    In addition to solution-mining of trona, various U.S. patents disclose solution-mining of nahcolite (predominantly NaHCO3). For example, U.S. Pat. No. 3,779,602 (Beard et al.) and U.S. Pat. Nos. 3,792,902 (Towell et al.), and U.S. Pat. No. 3,952,073 (Cube) and U.S. Pat. No. 4,283,372 (Frint, et al.) disclose basic solution-mining of nahcolite and wegscheiderite (predominately Na2CO3·3NaHCO3), all of which are incorporated herein by reference. Like the trona solution-mining processes, however, these nahcolite and wegscheiderite solution-recovery processes also possess economic drains on commercial viability.
  • [0008]
    A need, therefore, exists for improved solution-mining of subterranean materials through improved, more efficient methods and systems.
  • SUMMARY OF THE INVENTION
  • [0009]
    The claimed invention is a method, system, and apparatus for solution-mining of subterranean materials. According to a first aspect of the invention, a method is provided for solution-mining of a subterranean material, the method comprising injecting a fluid into an elbow well, the fluid forming a subterranean mixture with the subterranean material, and collecting the subterranean mixture from the elbow well. According to another aspect of the invention, a system is provided for solution-mining of a subterranean material, the system comprising a means for injecting a fluid into an elbow well, the fluid forming a subterranean mixture with the subterranean material, and a means for collecting the subterranean mixture from the elbow well. According to still another aspect of the invention, an apparatus is provided for solution-mining of a subterranean material, the apparatus comprising an injection tube, wherein the injection tube has an injection tube inner diameter of sufficient size to allow for injection of a fluid for mining of a subterranean material. The apparatus further comprises a production casing, wherein the production casing has a production casing inner diameter of sufficient size to allow for production of a subterranean mixture of the fluid and the subterranean material between an outer surface of the injection tube and an inner surface of the production casing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0010]
    [0010]FIG. 1 is a schematic of the cased elbow well drilled into a bed of a subterranean material, wherein the elbow well comprises an injection tube, a production casing, and a production tube that is connected to a pump to help lift the subterranean mixture in the cavity to a collection location, here, the earth's surface.
  • [0011]
    [0011]FIG. 2 is a cross-sectional view of the initial cavity in the elbow well.
  • [0012]
    [0012]FIG. 3 is a cross-sectional view of the cavity in the elbow well, wherein the cavity is larger than in FIG. 2.
  • [0013]
    [0013]FIG. 4 is a cross-sectional view of the cavity in the elbow well, wherein the cavity is larger than in FIG. 3.
  • DESCRIPTION OF EXAMPLE EMBODIMENTS OF THE INVENTION
  • [0014]
    The disclosed solution-mining invention is a device, method, and system for solution-mining of subterranean materials, such as trona, nahcolite, dawsonite, wegscheiderite, thermonatrite, pirssonite, natron, gaylussite, shortite, halite, and other salts, minerals, and so forth. Although this detailed disclosure focuses on the subterranean material trona, it is understood that the disclosed device, method, and system for solution-mining applies to all solution-minable subterranean materials.
  • [0015]
    In one example embodiment of the claimed invention, seen in FIG. 1, an elbow well 15 is drilled into a bed 30 of the subterranean material 25 being mined. An elbow well 15 is a well that begins at the earth's surface 70, and first penetrates vertically before penetrating horizontally. Although the elbow well 15 does not necessarily resemble the shape of a human elbow, there is a vertical portion that eventually turns to a horizontal portion. For trona, the estimated depth 160 for mining is 2000 feet below the earth's surface 70. Both an injection tube 45 and a production tube 60 a are located in the elbow well 15, wherein 3-½″ J55 tubing is used in one example for the injection tube 45, but other sizes and types of tubing will occur to those of skill in the art without departing from the scope of the present invention. A fluid 10 is injected into the injection tube 45, wherein the fluid 10 reacts with the subterranean material 25 to create a mixture 55 (e.g., a solution) and a cavity 50. The mixture 55 flows between the injection tube 45 and the production casing 60 b. In another example embodiment, a pump 140 is attached to the production tube 60 a to help lift the mixture 55 to the collection point 65 (here, the earth's surface 70).
  • [0016]
    Fracturing is unnecessary in many embodiments of the invention, because the injection tube 45, production casing 60 b, and production tube 60 a are in the same well 15. The elbow well 15, in some embodiments, is over 3000 linear feet in length 155 within the bed 30 of the subterranean material 25.
  • [0017]
    According to another embodiment of the invention, seen in FIGS. 2-4, the cavity 50 expands as more fluid 10 is injected into the well 15 dissolving more subterranean material 25. The cavity 50 expands outward from the end of the elbow well 15, and therefore the cavity 50 propagates back to the well 15. In the event that a collapse of the cavity 50, or other obstruction, reduces the flow of the mixture 55, the injection tube 45 is perforated in some embodiments to permit further amounts of the mixture 55 to be collected. Alternatively, rather than perforation, the injection tube 45 is withdrawn, partially, until debris from the collapse is clear and flow of the mixture 55 is raised to an acceptable level.
  • [0018]
    High pressures of operation may cause the material 25 in the mixture 55 to escape before collection of the subterranean material mixture 55. Low pressures of operation, however, reduce the total collection of the subterranean material 25, because the cavity 50 may collapse prematurely. Selection of the well pressure to avoid these problems should be observed. At present, there is no known empirical method to make such selection other than trial and error. It is believed, however, that the following pressures and flow rates are acceptable, at least for trona: at 2000 feet deep, the pressure is 800-900 psi in the cavity 50 and the flow rate is 200-300 gal/min.
  • [0019]
    In further example embodiments of the invention, the subterranean material 25 is selected from a group consisting essentially of trona, dawsonite, wegscheiderite, nahcolite, thermonatrite, pirssonite, natron, gaylussite, shortite, halite, and other salts, minerals, and so forth.
  • [0020]
    In various example embodiments, the fluid 10 is selected from a group consisting essentially of water, a caustic mixture, a sodium carbonate solution, or any other fluid 10 capable of mechanically and/or chemically reacting with the subterranean material 25 to be mined so as to produce a mixture 55 capable of being removed from the production casing 60 b through a production tube 60 a. Such fluids 10 will occur to those of skill in the art. In some embodiments, the fluid 10 is heated.
  • [0021]
    In a further example embodiment, the mixture 55 is lifted, for example, by pumping with a pump 140 connected to the production tube 60 a, and the mixture 55 is delivered to a collection location 65, such as the earth's surface 70. According to one example embodiment, an acceptable pump 140 comprises an electric submersible centrifugal pump, 140 such as those manufactured by Baker Hughes Centrilift. In addition, placement of the pump 140 is above the bed 30 of subterranean mineral 25, that is, above the mining areas. For example, with trona, the pump 140 is placed in some embodiments about 1100 feet below the earth's surface 70 in the elbow well 15. Other pumps 140 acceptable for use with the claimed invention include piston/cylinder pumps, driven by sucks rods from the surface 70. Still other pumps 140 acceptable for use with the claimed invention will occur to those of skill in the art.
  • [0022]
    Having thus described exemplary embodiments of the invention, it will be apparent that various alterations, modifications and improvements will readily occur to those skilled in the art. Such alterations, modifications and improvements, though not expressly described above, are nevertheless within the spirit and scope of the invention. Accordingly, the foregoing discussion is intended to be illustrative only, and not limiting; the invention is limited and defined by the following claims and equivalents thereto.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2682396 *Sep 17, 1948Jun 29, 1954Potash CompanyMethod for mining soluble ores
US2822158 *Mar 5, 1949Feb 4, 1958Brinton Willard CMethod of fluid mining
US3953073 *May 17, 1974Apr 27, 1976Kube Wolfram HProcess for the solution mining of subterranean sodium bicarbonate bearing ore bodies
US4222611 *Aug 16, 1979Sep 16, 1980United States Of America As Represented By The Secretary Of The InteriorIn-situ leach mining method using branched single well for input and output
US4425003 *Nov 4, 1981Jan 10, 1984Texasgulf Inc.Single well-multiple cavity solution mining of an inclined structure
US5988760 *Sep 12, 1997Nov 23, 1999Gaz De France (G.D.F.) Service NationalProcess for hollowing out a cavity formed of a plurality of sub-cavities in a thin layer of salt
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6742603 *Jun 7, 2002Jun 1, 2004Exxonmobil Research And Engineering CompanyHydrothermal drilling method and system
US7611208Aug 17, 2005Nov 3, 2009Sesqui Mining, LlcMethods for constructing underground borehole configurations and related solution mining methods
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7831133Apr 21, 2006Nov 9, 2010Shell Oil CompanyInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8057765Sep 24, 2009Nov 15, 2011Sesqui Mining, LlcMethods for constructing underground borehole configurations and related solution mining methods
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8200072Oct 24, 2003Jun 12, 2012Shell Oil CompanyTemperature limited heaters for heating subsurface formations or wellbores
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8678513Jul 29, 2009Mar 25, 2014Solvay Chemicals, Inc.Traveling undercut solution mining systems and methods
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US8899691Jul 29, 2011Dec 2, 2014Sesqui Mining, LlcMethods for constructing underground borehole configurations and related solution mining methods
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9234416Mar 21, 2014Jan 12, 2016Solvay Chemicals, Inc.Traveling undercut solution mining systems and methods
US20020027001 *Apr 24, 2001Mar 7, 2002Wellington Scott L.In situ thermal processing of a coal formation to produce a selected gas mixture
US20020029885 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation using a movable heating element
US20020038069 *Apr 24, 2001Mar 28, 2002Wellington Scott LeeIn situ thermal processing of a coal formation to produce a mixture of olefins, oxygenated hydrocarbons, and aromatic hydrocarbons
US20020040780 *Apr 24, 2001Apr 11, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a selected mixture
US20020046883 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a coal formation using pressure and/or temperature control
US20020049360 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture including ammonia
US20020053431 *Apr 24, 2001May 9, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a selected ratio of components in a gas
US20020077515 *Apr 24, 2001Jun 20, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20030066642 *Apr 24, 2001Apr 10, 2003Wellington Scott LeeIn situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US20030102124 *Apr 24, 2002Jun 5, 2003Vinegar Harold J.In situ thermal processing of a blending agent from a relatively permeable formation
US20030102125 *Apr 24, 2002Jun 5, 2003Wellington Scott LeeIn situ thermal processing of a relatively permeable formation in a reducing environment
US20030102130 *Apr 24, 2002Jun 5, 2003Vinegar Harold J.In situ thermal recovery from a relatively permeable formation with quality control
US20030121701 *Jun 7, 2002Jul 3, 2003Polizzotti Richard S.Hydrothermal drilling method and system
US20030131994 *Apr 24, 2002Jul 17, 2003Vinegar Harold J.In situ thermal processing and solution mining of an oil shale formation
US20030155111 *Oct 24, 2002Aug 21, 2003Shell Oil CoIn situ thermal processing of a tar sands formation
US20030205378 *Oct 24, 2002Nov 6, 2003Wellington Scott LeeIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US20030209348 *Apr 24, 2002Nov 13, 2003Ward John MichaelIn situ thermal processing and remediation of an oil shale formation
US20040140096 *Oct 24, 2003Jul 22, 2004Sandberg Chester LedlieInsulated conductor temperature limited heaters
US20040144541 *Oct 24, 2003Jul 29, 2004Picha Mark GregoryForming wellbores using acoustic methods
US20040145969 *Oct 24, 2003Jul 29, 2004Taixu BaiInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US20040177966 *Oct 24, 2003Sep 16, 2004Vinegar Harold J.Conductor-in-conduit temperature limited heaters
US20050051327 *Apr 23, 2004Mar 10, 2005Vinegar Harold J.Thermal processes for subsurface formations
US20060039842 *Aug 17, 2005Feb 23, 2006Sesqui Mining, LlcMethods for constructing underground borehole configurations and related solution mining methods
US20070284108 *Apr 20, 2007Dec 13, 2007Roes Augustinus W MCompositions produced using an in situ heat treatment process
US20080217016 *Oct 19, 2007Sep 11, 2008George Leo StegemeierCreating fluid injectivity in tar sands formations
US20080236831 *Oct 19, 2007Oct 2, 2008Chia-Fu HsuCondensing vaporized water in situ to treat tar sands formations
US20100066153 *Sep 24, 2009Mar 18, 2010Sesqui Mining, LlcMethods for constructing underground borehole configurations and related solution mining methods
US20110127825 *Jul 29, 2009Jun 2, 2011Solvay Chemicals, Inc.Traveling undercut solution mining systems and methods
EP2924233A1Mar 13, 2015Sep 30, 2015Solvay SAMulti-well solution mining exploitation of an evaporite mineral stratum
Classifications
U.S. Classification299/5, 166/369, 299/17
International ClassificationE21B43/28
Cooperative ClassificationE21B43/28
European ClassificationE21B43/28
Legal Events
DateCodeEventDescription
Aug 9, 2001ASAssignment
Owner name: ANADARKO PETROLEUM COMPANY, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BROWN, NEIL;NESSELRODE, KARL;REEL/FRAME:012079/0869
Effective date: 20010809