US20030034539A1 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
US20030034539A1
US20030034539A1 US10/255,883 US25588302A US2003034539A1 US 20030034539 A1 US20030034539 A1 US 20030034539A1 US 25588302 A US25588302 A US 25588302A US 2003034539 A1 US2003034539 A1 US 2003034539A1
Authority
US
United States
Prior art keywords
conductor
capacitor
layer
capacitance
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/255,883
Inventor
Mariko Kaku
Kazuhide Yoneya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to US10/255,883 priority Critical patent/US20030034539A1/en
Publication of US20030034539A1 publication Critical patent/US20030034539A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • This invention relates to a semiconductor integrated circuit device (LSI) and, more particularly, to a mode of adjustment of the impedance of a pad for connecting a signal wing on an LSI chip to an external pin.
  • LSI semiconductor integrated circuit device
  • Impedances of input/output pins of LSIs are determined by capacitances and resistances of wirings outside their packages, lead frames, gold bonding, pads on the LSI chips and signal wirings connected to the pads. Impedances determine propagation speeds, noises, waveform distortions, and so on, of input signals. In terms of the signal speed, capacitance and resistance had better be small. However, certain capacitance and resistance are required from the viewpoint of countermeasures against noises. Therefore, capacity and resistance of an input/output pin are designed to realize users' desired input/output characteristics, taking these requirements into consideration. Pads on LSI chips and signal wirings connected thereto are portions permitting ample freedom for adjustment of capacitance and resistance of input/output pins. However, as LSIs are large-scaled while miniaturizing their elements and wirings and increasing their density, adjustment of impedances of pads and signal wirings on LSIs are getting difficult.
  • FIG. 13 shows a layout of a DRAM chip.
  • the DRAM chip 1 has formed four divisional memory cell blocks 2 , for example, as illustrated.
  • Each memory cell block 2 includes a column decoder 3 and a row decoder 4 along inner edges thereof.
  • the region between right and left memory cell blocks 2 is used to locate a peripheral circuit formed in region 7 .
  • the region between upper and lower memory cell blocks 2 is used to locate a peripheral circuit formed in region 5 , and it is also used to make bus lines 8 such as address bus, data bus, and so forth, and pads 6 for externally drawing signal lines as shown in FIG. 14 in an enlarged scale.
  • bus lines 8 are closely packed near the alignment of pads 6 , it is difficult to adjust impedance of a single pad 6 without affecting a signal wiring connected to another pad.
  • a capacitor 9 connected to a signal line 8 a extending to a certain pad 6 is provided as shown in FIG. 15.
  • the capacitor 9 is buried, for example, under signal lines 8 a through 8 c to electrically isolate it via an insulation fllm in order not to prevent signals from travelling in adjacent signal lines 8 b and 8 c .
  • capacitance coupling still occurs between signal lines 8 b , 8 c adjacent to the signal line 8 a and the capacitor 9 , and capacitance inevitably increases in the signal lines 8 b and 8 c.
  • a semiconductor integrated circuit device including semiconductor elements, signal wirings and pads formed on a semiconductor substrate so as to connect particular one of the semiconductor elements to particular one of the signal wirings and connect the particular signal wiring to particular one of the pads, comprising:
  • a capacitor-forming conductor made in a top layer to surround the particular pad and connected to the particular pad
  • a first capacitance coupling conductor made in the top layer between the particular pad and the capacitor-forming conductor and brought into capacitance coupling with the particular pad and the capacitor-forming conductor, respectively.
  • a semiconductor integrated circuit device comprising:
  • a semiconductor integrated circuit device comprising:
  • a second capacitance-coupling conductor made under the capacitor-forming conductor via an insulation Elm and connected to the first capacitance-coupling conductor.
  • a semiconductor integrated circuit device having formed on a semiconductor substrate a plurality of elements, signal wirings connecting these elements, and a plurality of pads for connecting desired one or more of the signal wirings to one or more external pins, comprising:
  • At least one impedance adjusting conductor pattern made to surround particular one of the pads and connected to the particular pad.
  • the impedance adjusting conductor pattern may be a capacitor-forming conductor, and a source line conductor may be made to encircle the capacitor-forming conductor and get into capacitance coupling with the capacitor-forming conductor and the pad.
  • FIG. 1 is a diagram showing a pattern of conductors around a pad in a DRAM chip according to an embodiment of the invention
  • FIG. 2 is a perspective view of the structure of FIG. 1 from which a part thereof is cut off along the A-A′ line of FIG. 1;
  • FIGS. 3A and 3B are diagrams showing patterns of first-layer conductors and second-layer conductors around a pad in a DRAM chip according to a further embodiment of the invention.
  • FIG. 4 is a diagram showing a cross-sectional structure of a DRAM chip according to a still further embodiment of the invention.
  • FIG. 5 is a diagram showing a pattern of conductors around a pad in a DRAM chip of a yet further embodiment of the invention.
  • FIG. 6 is a diagram showing a pattern of conductors around a pad in a DRAM chip according to another embodiment of the invention.
  • FIG. 7 is a diagram showing a cross-sectional structure of a DRAM chip according to another embodiment of the invention.
  • FIGS. 8A and 8B are schematic, exploded, perspective views showing inter-layer connected relations of the embodiment show in FIG. 7;
  • FIGS. 9 and 9A are schematic, exploded, perspective view of a DRAM chip according to another embodiment of the invention.
  • FIG. 10 is a diagram showing a layout of an embodiment modified from the embodiment of FIG. 5;
  • FIG. 11 is a diagram showing a layout of an embodiment modified from the embodiment of FIG. 5;
  • FIG. 12 is a diagram showing a layout of an embodiment modified from the embodiment of FIG. 10;
  • FIG. 13 is a diagram showing a rough layout of a conventional DRAM chip
  • FIG. 14 is a diagram showing a layout of a row of pads and bus line regions adjacent thereto in the conventional DRAM chip of FIG. 13;
  • FIG. 15 is a diagram showing a mode of adjustment of capacitance of a pad in a conventional LSI.
  • FIG. 16 is a diagram showing a mode of adjustment of resistance of a pad in a conventional LSI.
  • FIG. 1 shows a layout of the pad portion in a DRAM chip according to an embodiment of the invention.
  • FIG. 2 is a perspective view as being cut along the A-A′ line of FIG. 1.
  • a number of elements and wirings are formed on and in a silicon substrate 11 . Its surface is covered by an insulation film 12 , and pads 13 i are provided thereon.
  • FIG. 1 merely shows a portion of a pad 13 a to be adjusted in impedance and its neighboring pad 13 b.
  • the pad 13 a is connected to a signal wiring 17 a formed in a bus line region 17 as shown in FIG. 1.
  • a capacitor-forming conductor 14 continuous from the pad 13 a is formed to surround the pad 13 a over approximately 3 ⁇ 4 of a full circle for adjustment of the capacitance of the pad 13 a .
  • the VSS conductor 15 is formed to encircle the capacitor-forming conductor 14 .
  • the pad capacitance can be increased by using the space around the pad 13 a , unlike the conventional way in which the capacitor is disposed between the pad 13 a and the signal wiring 17 a connected thereto or under the signal wiring 17 a . Therefore, in the embodiment shown here, another signal wiring 17 b and any others formed in the bus line region 17 are not affected substantially. Moreover, since the embodiment uses the portion around the pad which is not used normally, the basic layout need not be changed.
  • the area shown by the dot-and-dash line is a prohibit region 18 where wiring should be prohibited according to a design rule.
  • the capacitor-forming conductor 14 and the VSS conductor 15 are disposed outside the prohibit region 18 . Therefore, also the design rule need not be changed.
  • FIGS. 3A and 3B show a layout of a first layer (lower layer) and a layout of a second layer (upper layer) in another embodiment in which the capacitance adjustment of the foregoing embodiment is realized in a device with a multi-layered structure.
  • the second layer shown in FIG. 3A exhibits substantially the same pattern as that of the foregoing embodiment, and the capacitor-forming conductor 14 and the VSS conductor 15 are formed around the pad 13 a .
  • the second layer shown in FIG. 3A is formed so that its layout overlies the layout of the first layer via an inter-layer insulation film (not shown), locating capacitor-forming conductors 14 and a VSS conductor 15 to exhibit a pattern inverted from that of the first layer.
  • the capacitor-forming conductors 14 of the second layer are in alignment with VSS conductors 15 b of the first layer substantially over the full lengths thereof, and the VSS conductors 15 of the second layer are in alignment with the capacitor-forming conductors 14 b of the first layer substantially over the full lengths thereof.
  • capacitor-forming conductors 14 and 14 b of respective layers are connected together and the VSS conductors 15 and 15 b of respective layer are connected together by contacts 19 and 20 , respectively.
  • the capacitor-forming conductor 14 is in capacitor coupling with the VSS conductors 15 and 15 b in horizontal and vertical directions whereas the capacitor-forming conductors 14 b are in capacitance coupling with the VSS conductors 15 and 15 b in horizontal and vertical directions. Therefore, a larger capacitance can be added to the pad 13 a than the foregoing embodiment.
  • FIG. 4 is an embodiment modified from the embodiment shown in FIGS. 3A and 3B to adjust the capacitance of a device having conductor patterns in three layers.
  • the capacitor-forming conductor 14 and VSS conductors 15 forming the upper pattern in the embodiment of FIGS. 3A and 3B form a third layer in the embodiment shown here, the capacitor-forming conductors 14 b and the VSS conductor 15 b thereunder form the second layer, and a capacitor-forming conductor 14 c and VSS conductors 15 c forming the first layer are made thereunder.
  • FIGS. 4 is an embodiment modified from the embodiment shown in FIGS. 3A and 3B to adjust the capacitance of a device having conductor patterns in three layers.
  • the capacitor-forming conductor 14 and VSS conductors 15 forming the upper pattern in the embodiment of FIGS. 3A and 3B form a third layer in the embodiment shown here, the capacitor-forming conductors 14 b and the VSS conductor 15 b thereunder form the second layer, and a capacitor-
  • the capacitor-forming conductors 14 b and the VSS conductor 15 b of the second layer make a pattern approximately inverted from the pattern made by the capacitor-forming conductor 14 and the VSS conductors 15 of the third layer
  • the capacitor-forming conductor 14 c and the VSS conductors 15 c of the first layer make the same pattern as that of the capacitor-forming conductor 14 and the VSS conductors 15 of the third layer.
  • the layers are separated by inter-layer insulation films 20 and 21 , and conductors of vertically adjacent layers are connected by contacts 19 . Only two contacts 19 appear in the cross-sectional view of FIG. 4, but corresponding conductors are similarly connected between respective layers.
  • the value of the capacitance to be added to the pad 13 a can be adjusted by selecting contact holes to be made for applying contacts between respective layers. If a contact hole is not made, then the capacitor-forming conductor of a lower layer becomes a useless pattern. Nevertheless, the VSS conductor in the lower layer still contributes to an increase of the capacitance. In this manner, the embodiment shown here is advantageous in that the pad capacitance can be changed only by changing the design of contact holes.
  • FIG. 5 shows another embodiment of the invention exhibiting a layout of an example in which a resistor is connected between the particular pad 13 a and the signal wiring 17 a connected thereto.
  • the pad 13 a and the signal wiring 17 a are connected by a spiral resistor-forming conductor 31 formed to surround the pad 13 a.
  • another signal wiring 17 b and others formed in the bus line region 17 are not affected substantially. Additionally, since a normally unused space (dead space) around the pad is utilized, the resistor can be inserted and connected to the pad 13 a without changing the design of the basic layout.
  • FIG. 5 illustrates an example in which a part of the resistor-forming conductor 31 lies within the prohibit region 18 .
  • the resistor-forming conductor 31 is short-circuited to the pad 13 a in this manner, it is acceptable and not an essential defect. In this case, however, the design rule must be changed.
  • the resistor-forming conductor 31 had better be made to lie only outside the prohibit region 18 because the design rule need not be changed.
  • FIG. 6 shows an embodiment modified from the embodiment of FIG. 5 by making the pad 13 a and the resistor-forming conductor 31 in different layers.
  • the pad 13 a is made as a conductor in the top layer
  • the resistor-forming conductor 31 is made in a lower layer insulated from the upper layer by an inter-layer insulation film.
  • the resistor-forming conductor 31 exhibits an inwardly spiral pattern partly overlapping the pad 13 a when viewed in the plan view.
  • the resistor-forming conductor 31 is connected to the pad 13 a by a contact 32 at a central portion of the spiral of the resistor-forming conductor.
  • a large resistor can be inserted and connected to the pad in a smaller space than that of the embodiment shown in FIG. 5 by utilizing the area overlapping the pad 13 a when viewed in its plan view.
  • the spiral resistor-forming conductor 31 may have a multi-layered structure.
  • FIG. 7 shows an embodiment in form of a three-layered structure.
  • Each of the resistor-forming conductor 31 of the top layer (third layer), resistor-forming conductor 31 b of the second layer and resistor-forming conductor 31 c of the first layer has a spiral pattern as explained with the preceding embodiment, and they are stacked via inter-layer insulation films 20 and 21 .
  • These resistor-forming conductors 31 , 31 b and 31 c are sequentially connected in series by contacts 33 , and are inserted and connected between the pad and the signal wiring.
  • FIGS. 8A and 8B show examples of mutual connection of patterns of three-layered resistor-forming conductors 31 , 31 b and 31 c in the embodiment of FIG. 7 in schematic, exploded, perspective views.
  • a larger resistance than that of the preceding embodiment can be inserted and connected to the pad.
  • the resistance value to be inserted and connected can be changed by changing the design of contact holes in the same manner as the embodiment using capacitor-forming conductors.
  • resistor-forming conductors 31 , 31 b and 31 c connected in series can be inserted and connected between the pad 13 a and the signal wiring 17 a therefor.
  • resistor-forming conductor 31 of the third layer is connected directly to the signal wiring 17 a by another contact 34 without providing the contacts 33 as shown in FIG. 8B, a smaller resistance value can be inserted and connected. In this case, the resistor-forming conductors 31 b and 31 c remain as useless patterns.
  • this embodiment is advantageous in that the resistance value to be inserted to the pad can be adjusted appropriately merely by changing the design of contacts.
  • FIG. 9 is a schematic, exploded, perspective view showing a central part of an embodiment which can increase the pad capacitance, requiring no substantial area other than the pad portion.
  • a p + -type diffusion layer 41 Formed on the surface of a substrate 11 under the particular pad 13 a is a p + -type diffusion layer 41 to be set in a potential VSS.
  • a capacitor-forming conductor 42 Stacked on the p + -type diffusion layer 41 is a capacitor-forming conductor 42 via an inter-layer insulation film INS1, and further stacked thereon is a VSS conductor 43 via an inter-layer insulation film INS2.
  • INS3 inter-layer insulation film
  • the p + -type diffusion layer 41 and the VSS conductor 43 are connected to each other, and the pad 13 a and the capacitor-forming conductor 42 are connected to each other.
  • FIG. 9 schematically shows these connections in simple lines. Actually, however, they are connected by contacts, not shown, in regions outside the pad 13 a .
  • Each of the p + -type diffusion layer 41 , capacitor-forming conductor 42 and VSS conductor 43 is approximately equal in area to the pad 13 a.
  • FIG. 9A is another embodiment where the type of diffusion layer 41 is n + -type.
  • FIG. 1 The embodiment shown in FIG. 1 has been explained as making the pattern to turn around the pad 13 a by only (3 ⁇ 4 )+ ⁇ of a full turn for the purpose of preventing the capacitor-forming conductor 14 from overlapping the VSS conductor 15 .
  • the pattern may be shorter. It will be difficult, however, to add a practically sufficient capacitance with an excessively short pattern, and the pattern of the capacitor-forming conductor is preferably made to turn around the pad 13 a by at least a half of a full turn.
  • the resistor-forming conductor 31 has a spiral pattern making two turns around the pad 13 a ; however, a spiral pattern making one turn around the pad as shown in FIG. 10 is acceptable, and a small resistance value can be added with a pattern making at least a half turn around the pad 13 a as shown in FIG. 11.
  • FIG. 12 shows an embodiment based on the layout of FIG. 10 and additionally providing the VSS conductor 15 in the space between the resistor-forming conductor 31 and the pad 13 a similarly to the embodiment of FIG. 1. In this manner, both a resistor and a capacitor can be added to the pad 13 a.
  • the invention is applicable all kinds of LSIs not limited to DRAMs.
  • the invention realizes an LSI in which the impedance of the particular pad can be adjusted without affecting impedances of bus lines close to the row of pads or without changing the layout.

Abstract

A semiconductor integrated circuit device, which enables impedance adjustment of a particular pad without affecting other pads or signal wirings or without the need for a design change in basic layout, has formed a number of elements and wirings on and in a silicon substrate 11, and pads 13 stacked thereon via an insulation film 12. A particular pad 13a is connected to a signal wiring 17a formed in a bus line region 17, and a capacitor-forming conductor 14 behaving as an impedance adjusting conductor is formed to surround the pad 13a. A source line conductor 15 is made in a space between the pad 13a and the capacitor-forming conductor 14 to encircle the capacitor-forming conductor 14. Therefore, the pad capacitance can be increased by using the space around the pad 13a, other signal wirings 17b and any others formed in the bus line region 17 are not affected substantially. Since here is used the portion around the pad which is not used normally, the basic layout need not be changed.

Description

    FIELD OF THE INVENTION
  • This invention relates to a semiconductor integrated circuit device (LSI) and, more particularly, to a mode of adjustment of the impedance of a pad for connecting a signal wing on an LSI chip to an external pin. [0001]
  • DESCRIPTION OF THE PRIOR ART
  • Impedances of input/output pins of LSIs are determined by capacitances and resistances of wirings outside their packages, lead frames, gold bonding, pads on the LSI chips and signal wirings connected to the pads. Impedances determine propagation speeds, noises, waveform distortions, and so on, of input signals. In terms of the signal speed, capacitance and resistance had better be small. However, certain capacitance and resistance are required from the viewpoint of countermeasures against noises. Therefore, capacity and resistance of an input/output pin are designed to realize users' desired input/output characteristics, taking these requirements into consideration. Pads on LSI chips and signal wirings connected thereto are portions permitting ample freedom for adjustment of capacitance and resistance of input/output pins. However, as LSIs are large-scaled while miniaturizing their elements and wirings and increasing their density, adjustment of impedances of pads and signal wirings on LSIs are getting difficult. [0002]
  • This is explained below by way of a specific example. FIG. 13 shows a layout of a DRAM chip. The [0003] DRAM chip 1 has formed four divisional memory cell blocks 2, for example, as illustrated. Each memory cell block 2 includes a column decoder 3 and a row decoder 4 along inner edges thereof. The region between right and left memory cell blocks 2 is used to locate a peripheral circuit formed in region 7. The region between upper and lower memory cell blocks 2 is used to locate a peripheral circuit formed in region 5, and it is also used to make bus lines 8 such as address bus, data bus, and so forth, and pads 6 for externally drawing signal lines as shown in FIG. 14 in an enlarged scale.
  • In the LSI where [0004] bus lines 8 are closely packed near the alignment of pads 6, it is difficult to adjust impedance of a single pad 6 without affecting a signal wiring connected to another pad.
  • Assume here, for example, that when it is desired to add a capacity to a certain [0005] single pad 6, a capacitor 9 connected to a signal line 8 a extending to a certain pad 6 is provided as shown in FIG. 15. The capacitor 9 is buried, for example, under signal lines 8 a through 8 c to electrically isolate it via an insulation fllm in order not to prevent signals from travelling in adjacent signal lines 8 b and 8 c. Nevertheless, capacitance coupling still occurs between signal lines 8 b, 8 c adjacent to the signal line 8 a and the capacitor 9, and capacitance inevitably increases in the signal lines 8 b and 8 c.
  • Also, assume that a resistor-forming [0006] conductor 10 bent as shown in FIG. 16, for example, is provided to insert a resistor between the pad 6 and the signal line 8 a connected thereto. Here again, useless capacitance coupling inevitably occurs respectively between it and other signal lines 8 b, 8 c located nearby. Usually, a high-density LSI, as referred to above, does not have an ample space for malking such a resistor-forming conductor 10. If such a resistor-forming conductor 10 is nevertheless made there, other signal wirings in a common layer cannot be extended in that portion. That is, the adjusting mode as shown in FIG. 16 needs an essential change in layout of elements and wirings.
  • As explained above, it has been difficult to adjust impedance of a certain pad in a high-density LSI chip without affecting impedances and positions of other pads and signal lines or without changing the basic design of layout. [0007]
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the invention to provide a semiconductor integrated circuit device enabling adjustment of the impedance of a certain pad without affecting characteristics and locations of other pads and signal wirings and without inviting a design change in essential layout. [0008]
  • According to the invention, there is provided a semiconductor integrated circuit device including semiconductor elements, signal wirings and pads formed on a semiconductor substrate so as to connect particular one of the semiconductor elements to particular one of the signal wirings and connect the particular signal wiring to particular one of the pads, comprising: [0009]
  • a capacitor-forming conductor made in a top layer to surround the particular pad and connected to the particular pad; and [0010]
  • a first capacitance coupling conductor made in the top layer between the particular pad and the capacitor-forming conductor and brought into capacitance coupling with the particular pad and the capacitor-forming conductor, respectively. [0011]
  • According to the invention, there is further provided a semiconductor integrated circuit device comprising: [0012]
  • semiconductor elements, signal wirings and pads formed on a semiconductor substrate so as to connect particular one of the semiconductor elements to particular one of the signal wirings and connect the particular signal wiring to particular one of the pads; and [0013]
  • a resistor-forming conductor connected between the particular signal wiring and the particular pad. [0014]
  • According to the invention, there is further provided a semiconductor integrated circuit device comprising: [0015]
  • semiconductor elements, signal wirings and pads formed on a semiconductor substrate so as to connect particular one of the semiconductor elements to particular one of the signal wirings and connect the particular signal wiring to particular one of the pads; [0016]
  • a first capacitance-coupling conductor made under the particular pad via an insulation film; [0017]
  • a capacitor-forming conductor made under the capacitance-coupling conductor via an insulation film and connected to the particular pad; and [0018]
  • a second capacitance-coupling conductor made under the capacitor-forming conductor via an insulation Elm and connected to the first capacitance-coupling conductor. [0019]
  • According to the invention, there is further provided a semiconductor integrated circuit device having formed on a semiconductor substrate a plurality of elements, signal wirings connecting these elements, and a plurality of pads for connecting desired one or more of the signal wirings to one or more external pins, comprising: [0020]
  • at least one impedance adjusting conductor pattern made to surround particular one of the pads and connected to the particular pad. [0021]
  • The impedance adjusting conductor pattern may be a capacitor-forming conductor, and a source line conductor may be made to encircle the capacitor-forming conductor and get into capacitance coupling with the capacitor-forming conductor and the pad.[0022]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram showing a pattern of conductors around a pad in a DRAM chip according to an embodiment of the invention; [0023]
  • FIG. 2 is a perspective view of the structure of FIG. 1 from which a part thereof is cut off along the A-A′ line of FIG. 1; [0024]
  • FIGS. 3A and 3B are diagrams showing patterns of first-layer conductors and second-layer conductors around a pad in a DRAM chip according to a further embodiment of the invention; [0025]
  • FIG. 4 is a diagram showing a cross-sectional structure of a DRAM chip according to a still further embodiment of the invention; [0026]
  • FIG. 5 is a diagram showing a pattern of conductors around a pad in a DRAM chip of a yet further embodiment of the invention; [0027]
  • FIG. 6 is a diagram showing a pattern of conductors around a pad in a DRAM chip according to another embodiment of the invention; [0028]
  • FIG. 7 is a diagram showing a cross-sectional structure of a DRAM chip according to another embodiment of the invention; [0029]
  • FIGS. 8A and 8B are schematic, exploded, perspective views showing inter-layer connected relations of the embodiment show in FIG. 7; [0030]
  • FIGS. 9 and 9A are schematic, exploded, perspective view of a DRAM chip according to another embodiment of the invention; [0031]
  • FIG. 10 is a diagram showing a layout of an embodiment modified from the embodiment of FIG. 5; [0032]
  • FIG. 11 is a diagram showing a layout of an embodiment modified from the embodiment of FIG. 5; [0033]
  • FIG. 12 is a diagram showing a layout of an embodiment modified from the embodiment of FIG. 10; [0034]
  • FIG. 13 is a diagram showing a rough layout of a conventional DRAM chip; [0035]
  • FIG. 14 is a diagram showing a layout of a row of pads and bus line regions adjacent thereto in the conventional DRAM chip of FIG. 13; [0036]
  • FIG. 15 is a diagram showing a mode of adjustment of capacitance of a pad in a conventional LSI; and [0037]
  • FIG. 16 is a diagram showing a mode of adjustment of resistance of a pad in a conventional LSI.[0038]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Embodiments of the invention applied to DRAMs are explained below with reference to the drawings. [0039]
  • FIG. 1 shows a layout of the pad portion in a DRAM chip according to an embodiment of the invention. FIG. 2 is a perspective view as being cut along the A-A′ line of FIG. 1. Although not shown, a number of elements and wirings are formed on and in a [0040] silicon substrate 11. Its surface is covered by an insulation film 12, and pads 13 i are provided thereon. FIG. 1 merely shows a portion of a pad 13 a to be adjusted in impedance and its neighboring pad 13 b.
  • The [0041] pad 13 a is connected to a signal wiring 17 a formed in a bus line region 17 as shown in FIG. 1. In the embodiment shown here, a capacitor-forming conductor 14 continuous from the pad 13 a is formed to surround the pad 13 a over approximately ¾ of a full circle for adjustment of the capacitance of the pad 13 a. A VSS conductor 15 continuous to one of two source lines, VCC line and VSS line (VSS line in this example) in a space between the pad 13 a and the capacitor-forming conductor 14. The VSS conductor 15 is formed to encircle the capacitor-forming conductor 14.
  • In this embodiment, the pad capacitance can be increased by using the space around the [0042] pad 13 a, unlike the conventional way in which the capacitor is disposed between the pad 13 a and the signal wiring 17 a connected thereto or under the signal wiring 17 a. Therefore, in the embodiment shown here, another signal wiring 17 b and any others formed in the bus line region 17 are not affected substantially. Moreover, since the embodiment uses the portion around the pad which is not used normally, the basic layout need not be changed.
  • In FIG. 1, the area shown by the dot-and-dash line is a prohibit [0043] region 18 where wiring should be prohibited according to a design rule. In the embodiment shown here, the capacitor-forming conductor 14 and the VSS conductor 15 are disposed outside the prohibit region 18. Therefore, also the design rule need not be changed.
  • FIGS. 3A and 3B show a layout of a first layer (lower layer) and a layout of a second layer (upper layer) in another embodiment in which the capacitance adjustment of the foregoing embodiment is realized in a device with a multi-layered structure. The second layer shown in FIG. 3A exhibits substantially the same pattern as that of the foregoing embodiment, and the capacitor-forming [0044] conductor 14 and the VSS conductor 15 are formed around the pad 13 a. The second layer shown in FIG. 3A is formed so that its layout overlies the layout of the first layer via an inter-layer insulation film (not shown), locating capacitor-forming conductors 14 and a VSS conductor 15 to exhibit a pattern inverted from that of the first layer. In other words, the capacitor-forming conductors 14 of the second layer are in alignment with VSS conductors 15 b of the first layer substantially over the full lengths thereof, and the VSS conductors 15 of the second layer are in alignment with the capacitor-forming conductors 14 b of the first layer substantially over the full lengths thereof.
  • The capacitor-forming [0045] conductors 14 and 14 b of respective layers are connected together and the VSS conductors 15 and 15 b of respective layer are connected together by contacts 19 and 20, respectively.
  • In the embodiment shown here, the capacitor-forming [0046] conductor 14 is in capacitor coupling with the VSS conductors 15 and 15 b in horizontal and vertical directions whereas the capacitor-forming conductors 14 b are in capacitance coupling with the VSS conductors 15 and 15 b in horizontal and vertical directions. Therefore, a larger capacitance can be added to the pad 13 a than the foregoing embodiment.
  • FIG. 4 is an embodiment modified from the embodiment shown in FIGS. 3A and 3B to adjust the capacitance of a device having conductor patterns in three layers. The capacitor-forming [0047] conductor 14 and VSS conductors 15 forming the upper pattern in the embodiment of FIGS. 3A and 3B form a third layer in the embodiment shown here, the capacitor-forming conductors 14 b and the VSS conductor 15 b thereunder form the second layer, and a capacitor-forming conductor 14 c and VSS conductors 15 c forming the first layer are made thereunder. Similarly to the embodiment of FIGS. 3A and 3B, the capacitor-forming conductors 14 b and the VSS conductor 15 b of the second layer make a pattern approximately inverted from the pattern made by the capacitor-forming conductor 14 and the VSS conductors 15 of the third layer, and the capacitor-forming conductor 14 c and the VSS conductors 15 c of the first layer make the same pattern as that of the capacitor-forming conductor 14 and the VSS conductors 15 of the third layer. The layers are separated by inter-layer insulation films 20 and 21, and conductors of vertically adjacent layers are connected by contacts 19. Only two contacts 19 appear in the cross-sectional view of FIG. 4, but corresponding conductors are similarly connected between respective layers.
  • In the embodiment shown here, a larger capacitance can be added to the [0048] pad 13 a.
  • In the embodiments shown in FIGS. 3A, 3B and FIG. 4, the value of the capacitance to be added to the [0049] pad 13 a can be adjusted by selecting contact holes to be made for applying contacts between respective layers. If a contact hole is not made, then the capacitor-forming conductor of a lower layer becomes a useless pattern. Nevertheless, the VSS conductor in the lower layer still contributes to an increase of the capacitance. In this manner, the embodiment shown here is advantageous in that the pad capacitance can be changed only by changing the design of contact holes.
  • FIG. 5 shows another embodiment of the invention exhibiting a layout of an example in which a resistor is connected between the [0050] particular pad 13 a and the signal wiring 17 a connected thereto. In the embodiment shown here, the pad 13 a and the signal wiring 17 a are connected by a spiral resistor-forming conductor 31 formed to surround the pad 13 a.
  • According to the embodiment shown here, another [0051] signal wiring 17 b and others formed in the bus line region 17 are not affected substantially. Additionally, since a normally unused space (dead space) around the pad is utilized, the resistor can be inserted and connected to the pad 13 a without changing the design of the basic layout.
  • FIG. 5 illustrates an example in which a part of the resistor-forming [0052] conductor 31 lies within the prohibit region 18. However, even when the resistor-forming conductor 31 is short-circuited to the pad 13 a in this manner, it is acceptable and not an essential defect. In this case, however, the design rule must be changed. When an ample space for making the resistor-forming conductor 31 exists between pads or between the row of pads and the bus line region, the resistor-forming conductor 31 had better be made to lie only outside the prohibit region 18 because the design rule need not be changed.
  • FIG. 6 shows an embodiment modified from the embodiment of FIG. 5 by making the [0053] pad 13 a and the resistor-forming conductor 31 in different layers. Namely, the pad 13 a is made as a conductor in the top layer, and the resistor-forming conductor 31 is made in a lower layer insulated from the upper layer by an inter-layer insulation film. In this case, the resistor-forming conductor 31 exhibits an inwardly spiral pattern partly overlapping the pad 13 a when viewed in the plan view. Then, the resistor-forming conductor 31 is connected to the pad 13 a by a contact 32 at a central portion of the spiral of the resistor-forming conductor.
  • According to the embodiment, a large resistor can be inserted and connected to the pad in a smaller space than that of the embodiment shown in FIG. 5 by utilizing the area overlapping the [0054] pad 13 a when viewed in its plan view.
  • Furthermore, the spiral resistor-forming [0055] conductor 31 may have a multi-layered structure. FIG. 7 shows an embodiment in form of a three-layered structure. Each of the resistor-forming conductor 31 of the top layer (third layer), resistor-forming conductor 31 b of the second layer and resistor-forming conductor 31 c of the first layer has a spiral pattern as explained with the preceding embodiment, and they are stacked via inter-layer insulation films 20 and 21. These resistor-forming conductors 31, 31 b and 31 c are sequentially connected in series by contacts 33, and are inserted and connected between the pad and the signal wiring.
  • FIGS. 8A and 8B show examples of mutual connection of patterns of three-layered resistor-forming [0056] conductors 31, 31 b and 31 c in the embodiment of FIG. 7 in schematic, exploded, perspective views.
  • According to the embodiment, a larger resistance than that of the preceding embodiment can be inserted and connected to the pad. [0057]
  • Consequently, in case that resistor-forming conductors are stacked in some different layers, the resistance value to be inserted and connected can be changed by changing the design of contact holes in the same manner as the embodiment using capacitor-forming conductors. For example, when [0058] contacts 33 are made in all inter-layer insulation films as shown in by broken lines in FIG. 8A, resistor-forming conductors 31, 31 b and 31 c connected in series can be inserted and connected between the pad 13 a and the signal wiring 17 a therefor. In contrast, when the resistor-forming conductor 31 of the third layer is connected directly to the signal wiring 17 a by another contact 34 without providing the contacts 33 as shown in FIG. 8B, a smaller resistance value can be inserted and connected. In this case, the resistor-forming conductors 31 b and 31 c remain as useless patterns. Also this embodiment is advantageous in that the resistance value to be inserted to the pad can be adjusted appropriately merely by changing the design of contacts.
  • FIG. 9 is a schematic, exploded, perspective view showing a central part of an embodiment which can increase the pad capacitance, requiring no substantial area other than the pad portion. Formed on the surface of a [0059] substrate 11 under the particular pad 13 a is a p+-type diffusion layer 41 to be set in a potential VSS. Stacked on the p+-type diffusion layer 41 is a capacitor-forming conductor 42 via an inter-layer insulation film INS1, and further stacked thereon is a VSS conductor 43 via an inter-layer insulation film INS2. Formed thereon is the pad 13 a via an inter-layer insulation film INS3. The p+-type diffusion layer 41 and the VSS conductor 43 are connected to each other, and the pad 13 a and the capacitor-forming conductor 42 are connected to each other. FIG. 9 schematically shows these connections in simple lines. Actually, however, they are connected by contacts, not shown, in regions outside the pad 13 a. Each of the p+-type diffusion layer 41, capacitor-forming conductor 42 and VSS conductor 43 is approximately equal in area to the pad 13 a.
  • According to the embodiment shown here, since the capacitor-forming [0060] conductor 42 is in capacitance coupling with the VSS conductor 43 and the p+-type diffusion layer 41 above and below it, and the pad 13 a is in capacitance coupling with the VSS conductor 43 thereunder, it results in inserting and connecting a large capacitance to the pad 13 a. Also this embodiment needs substantially no increase in area, and it is suitable for applications with very small spaces between pad rows. FIG. 9A is another embodiment where the type of diffusion layer 41 is n+-type.
  • The embodiment shown in FIG. 1 has been explained as making the pattern to turn around the [0061] pad 13 a by only (¾ )+α of a full turn for the purpose of preventing the capacitor-forming conductor 14 from overlapping the VSS conductor 15. However, if a smaller value is acceptable as the capacitance to be added, the pattern may be shorter. It will be difficult, however, to add a practically sufficient capacitance with an excessively short pattern, and the pattern of the capacitor-forming conductor is preferably made to turn around the pad 13 a by at least a half of a full turn.
  • The same also applies to the resistor-forming [0062] conductor 31 in the embodiments shown in FIG. 5, et seq. In FIG. 5, for example, the resistor-forming conductor 31 has a spiral pattern making two turns around the pad 13 a; however, a spiral pattern making one turn around the pad as shown in FIG. 10 is acceptable, and a small resistance value can be added with a pattern making at least a half turn around the pad 13 a as shown in FIG. 11.
  • The invention is applicable also when adding both a resistance and a capacitance simultaneously. For example, FIG. 12 shows an embodiment based on the layout of FIG. 10 and additionally providing the [0063] VSS conductor 15 in the space between the resistor-forming conductor 31 and the pad 13 a similarly to the embodiment of FIG. 1. In this manner, both a resistor and a capacitor can be added to the pad 13 a.
  • All above embodiments have been explained, a capacitance or a resistance are added around a particular single pad thereto. However, by previously making similar impedance adjustment patterns also for other pads, skew by delays in signal wirings can be remedied more easily. [0064]
  • The invention is applicable all kinds of LSIs not limited to DRAMs. [0065]
  • As described above, by making an impedance adjustment pattern, such as capacitor-forming conductor and resistor-forming conductor, so as to surround a particular pad, the impedance of the particular pad, the invention realizes an LSI in which the impedance of the particular pad can be adjusted without affecting impedances of bus lines close to the row of pads or without changing the layout. [0066]

Claims (19)

What is claimed is:
1. A semiconductor integrated circuit device including semiconductor elements, signal wirings and pads each formed on a semiconductor substrate so as to connect particular one of said semiconductor elements to particular one of said signal wirings and to connect said particular signal wiring to particular one of said pads, comprising:
a capacitor-forming conductor made in a top layer, arranged around said particular pad to surround said particular pad and connected to said particular pad; and
a first capacitance coupling conductor made in the top layer between said particular pad and said capacitor-forming conductor and brought into capacitance coupling with said particular pad and said capacitor-forming conductor, respectively.
2. The semiconductor integrated circuit device according to claim 1, which further comprising a second capacitance-coupling conductor made in the top layer outside said capacitor-forming conductor and brought into capacitance coupling with said capacitor-forming conductor.
3. The semiconductor integrated circuit device according to claim 2, wherein said first and second capacitance-coupling conductors are connected to each other.
4. The semiconductor integrated circuit device according to claim 2, wherein said first and second capacitance-coupling conductors are connected to a power source line of a lower voltage.
5. The semiconductor integrated circuit device according to claim 1, which has a multi-layered structure including a first layer as the bottom layer, an Nth layer as the top layer, and an insulation film between every two vertically adjacent layers, said Nth layer including said capacitor-forming conductor of the top layer and said first capacitance-coupling conductor of the top layer, each of (N−1)th to first layers having said capacitor-forming conductor for a lower layer and said first capacitance-coupling conductor for the lower layer, every two said layers vertically adjacent to each other having patterns of said capacitor-forming conductors and said first capacitance-coupling conductors inverted from each other so as to confront the pattern of said capacitor-forming conductor of a Pth layer with said capacitance-coupling conductor of a (P−1)th layer vertically adjacent to said Pth layer via said insulation film and to confront said capacitance-coupling conductor of the Pth layer with said capacitor-forming conductor of the (P−1)th layer via said insulation film, said capacitor-forming conductors of vertically adjacent two of said layers being connected to each other, and said capacitance-coupling conductors of vertically adjacent two of said layers being connected to each other.
6. The semiconductor integrated circuit device according to claim 2, which has a multi-layered structure including a first layer as the bottom layer, an Nth layer as the top layer, and an insulation film between every two vertically adjacent layers, said Nth layer including said capacitor-forming conductor of the top layer and said first and second capacitance-coupling conductors of the top layer, each of (N−1)th to first layers having said capacitor-forming conductor for a lower layer and said first and second capacitance-coupling conductors for the lower layer, every two said layers vertically adjacent to each other having patterns of said capacitor-forming conductors and said capacitance-coupling conductors inverted from each other so as to confront the pattern of said capacitor-forming conductor of a Pth layer with said capacitance-coupling conductors of a (P−1)th layer vertically adjacent to said Pth layer via said insulation film and to confront said capacitance-coupling conductors of the Pth layer with said capacitor-forming conductor of the (P−1)th layer via said insulation film, said capacitor-forming conductors of vertically adjacent two of said layers being connected to each other, and said capacitance-coupling conductors of vertically adjacent two of said layers being connected to each other.
7. A semiconductor integrated circuit device comprising:
semiconductor elements, signal wirings and pads each formed on a semiconductor substrate so as to connect particular one of said semiconductor elements to particular one of said signal wirings and to connect said particular signal wiring to particular one of said pads; and
a resistor-forming conductor connected between said particular signal wiring and said particular pad.
8. The semiconductor integrated circuit device according to claim 7, wherein said resistor-forming conductor is located around said particular pad.
9. The semiconductor integrated circuit device according to claim 8, wherein said resistor-forming conductor has a spiral pattern.
10. The semiconductor integrated circuit device according to claim 7, wherein said particular pad formed on upper layer whereas said resistor-forming, conductor formed on a lower layer under said upper layer confronting with said upper layer via an insulation film, said particular pad and said resistor-forming conductor being connected by a contact passing through said insulation film.
11. The semiconductor integrated circuit device according to claim 10, wherein said resistor-forming conductor includes resistor-forming conductor units each made on each of a plurality of layers, and selective ones of said resistor-forming conductor units are connected to adjust the resistance value.
12. The semiconductor integrated circuit device according to claim 9, wherein a capacitance-coupling conductor is made between said particular pad and said resistor-forming conductor having the spiral pattern and brought into capacitance coupling with said particular pad and said resistor-forming conductor.
13. A semiconductor integrated circuit device comprising:
semiconductor elements, signal wirings and pads each formed on a semiconductor substrate so as to connect particular one of said semiconductor elements to particular one of said signal wirings and to connect said particular signal wiring to particular one of said pads;
a first capacitance-coupling conductor made under said particular pad via an insulation film;
a capacitor-forming conductor made under said capacitance-coupling conductor via an insulation film and connected to said particular pad; and
a second capacitance-coupling conductor made under said capacitor-forming conductor via an insulation film and connected to said first capacitance-coupling conductor.
14. A semiconductor integrated circuit device comprising a semiconductor substrate having a plurality of elements, signal wirings connecting these elements, a plurality of pads for connecting desired one or more of the signal wirings to one on more external pins formed on said semiconductor substrate, and
at least one impedance adjusting conductor pattern made to surround particular one of said pads and connected to said particular pad.
15. The semiconductor integrated circuit device according to claim 14, wherein said impedance adjusting conductor pattern is a capacitor-forming conductor, and a power source line conductor is inserted in a space between said capacitor-forming conductor and said particular one of said pads, which power source line conductor being capacitance-coupled with said capacitor-forming conductor and said pad.
16. The semiconductor integrated circuit device according to claim 15, wherein each of combination patterns of said power capacitor-forming conductor and said power source line conductor is made in each layer, said adjacent two of combination patterns being formed via each insulation layer, patterns of said capacitor-forming conductors and said source line conductors being inverted between adjacent layers, said capacitor-forming conductors of different layers being connected to each other, said source line conductors of different layers being connected to each other, and said capacitor-forming conductor of each layer being brought into capacitance coupling with said source line conductors of horizontally and vertically adjacent layers.
17. The semiconductor integrated circuit device according to claim 14, wherein said impedance adjusting conductor pattern is a resistor-forming conductor inserted between particular one of said pads and said signal wiring connected thereto, and has a spiral shape surrounding said particular pad.
18. The semiconductor integrated circuit device according to claim 14, which has a plurality of layers each having formed said impedance adjusting conductor pattern via an insulation film such that the value of impedance adjustment be controlled by making or not making contacts between said impedance adjusting conductor patterns in different layers.
19. The semiconductor integrated circuit device according to claim 14, wherein said impedance adjusting conductor pattern extends into a prohibit region around the pad where wiring layout is prohibited from a design rule.
US10/255,883 1997-12-22 2002-09-26 Semiconductor integrated circuit device Abandoned US20030034539A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/255,883 US20030034539A1 (en) 1997-12-22 2002-09-26 Semiconductor integrated circuit device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP35275697A JP4080582B2 (en) 1997-12-22 1997-12-22 Semiconductor integrated circuit device
JP352756/1997 1997-12-22
US09/217,338 US6492707B1 (en) 1997-12-22 1998-12-21 Semiconductor integrated circuit device with pad impedance adjustment mechanism
US10/255,883 US20030034539A1 (en) 1997-12-22 2002-09-26 Semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/217,338 Division US6492707B1 (en) 1997-12-22 1998-12-21 Semiconductor integrated circuit device with pad impedance adjustment mechanism

Publications (1)

Publication Number Publication Date
US20030034539A1 true US20030034539A1 (en) 2003-02-20

Family

ID=18426233

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/217,338 Expired - Fee Related US6492707B1 (en) 1997-12-22 1998-12-21 Semiconductor integrated circuit device with pad impedance adjustment mechanism
US10/255,883 Abandoned US20030034539A1 (en) 1997-12-22 2002-09-26 Semiconductor integrated circuit device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/217,338 Expired - Fee Related US6492707B1 (en) 1997-12-22 1998-12-21 Semiconductor integrated circuit device with pad impedance adjustment mechanism

Country Status (2)

Country Link
US (2) US6492707B1 (en)
JP (1) JP4080582B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512674A (en) * 2012-06-18 2014-01-15 台湾积体电路制造股份有限公司 Metallic thermal sensor for IC devices

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268579B2 (en) * 2002-08-23 2007-09-11 Samsung Electronics Co., Ltd. Semiconductor integrated circuit having on-chip termination
JP4322516B2 (en) * 2003-02-17 2009-09-02 エルピーダメモリ株式会社 Semiconductor device
JP2006086211A (en) * 2004-09-14 2006-03-30 Denso Corp Semiconductor device
JP2006332290A (en) * 2005-05-25 2006-12-07 Elpida Memory Inc Capacitive element, semiconductor device, and terminal capacitance setting method of pad electrode thereof
JP4255934B2 (en) 2005-08-26 2009-04-22 シャープ株式会社 Semiconductor device and electronic device using the semiconductor device
US8106474B2 (en) 2008-04-18 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5448584B2 (en) * 2008-06-25 2014-03-19 株式会社半導体エネルギー研究所 Semiconductor device
US8174047B2 (en) 2008-07-10 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10269489B2 (en) * 2013-03-15 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Programmable inductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604383A (en) * 1994-05-11 1997-02-18 Fuji Electric Co., Ltd. Stabilized power supply device using a flip chip as an active component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319358A (en) 1989-06-16 1991-01-28 Matsushita Electron Corp Semiconductor integrated circuit
TW275152B (en) * 1993-11-01 1996-05-01 Ikeda Takeshi
TW262595B (en) * 1993-11-17 1995-11-11 Ikeda Takeshi
US5610433A (en) * 1995-03-13 1997-03-11 National Semiconductor Corporation Multi-turn, multi-level IC inductor with crossovers
JPH10335590A (en) * 1997-06-04 1998-12-18 Nec Corp Passive element circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604383A (en) * 1994-05-11 1997-02-18 Fuji Electric Co., Ltd. Stabilized power supply device using a flip chip as an active component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512674A (en) * 2012-06-18 2014-01-15 台湾积体电路制造股份有限公司 Metallic thermal sensor for IC devices

Also Published As

Publication number Publication date
JPH11186486A (en) 1999-07-09
US6492707B1 (en) 2002-12-10
JP4080582B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US5534732A (en) Single twist layout and method for paired line conductors of integrated circuits
US5933364A (en) Semiconductor device with a metal layer for supplying a predetermined potential to a memory cell section
US6278148B1 (en) Semiconductor device having a shielding conductor
KR100298282B1 (en) Substrate for stacked module and stacked module
US9337139B2 (en) Semiconductor device having compensation capacitor to stabilize power supply voltage
US6381141B2 (en) Integrated device and method for routing a signal through the device
US7569428B2 (en) Method for manufacturing semiconductor device, semiconductor device and apparatus comprising same
US6492707B1 (en) Semiconductor integrated circuit device with pad impedance adjustment mechanism
KR20040090927A (en) Semiconductor device, manufacturing method of semiconductor device and testing method of semiconductor device
US10804243B2 (en) Dual-sided memory module with channels aligned in opposition
US20020038724A1 (en) Chip scale package, printed circuit board, and method of designing a piinted circuit board
JPH0732195B2 (en) Semiconductor integrated circuit
JP2000236029A (en) Memory cell with plane-like access line
KR19990078382A (en) Improved dynamic random access memory circuit and methods therefor
US6835971B2 (en) Semiconductor integrated circuit device with a plurality of limiter circuits
KR100401782B1 (en) Semiconductor device
US5869852A (en) Semiconductor integrated circuit and semiconductor integrated circuit having layout designed by cell base system
US5566104A (en) Memory cell layout structure for a semiconductor memory device
US4575744A (en) Interconnection of elements on integrated circuit substrate
US8766324B2 (en) Power line layout techniques for integrated circuits having modular cells
JP2915312B2 (en) Semiconductor integrated circuit device
US7566589B2 (en) Apparatus and method for signal bus line layout in semiconductor device
US20060220263A1 (en) Semiconductor device to be applied to various types of semiconductor package
US6084256A (en) Semiconductor integrated circuit device
US6229726B1 (en) Integrated circuit chip having multiple package options

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION