Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030079149 A1
Publication typeApplication
Application numberUS 10/260,118
Publication dateApr 24, 2003
Filing dateSep 27, 2002
Priority dateSep 28, 2001
Also published asUS7254724, US7681057, US20030126481, US20080215903
Publication number10260118, 260118, US 2003/0079149 A1, US 2003/079149 A1, US 20030079149 A1, US 20030079149A1, US 2003079149 A1, US 2003079149A1, US-A1-20030079149, US-A1-2003079149, US2003/0079149A1, US2003/079149A1, US20030079149 A1, US20030079149A1, US2003079149 A1, US2003079149A1
InventorsPayne Edwin
Original AssigneeEdwin Payne Robert
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Power management system
US 20030079149 A1
Abstract
According to one embodiment of the present invention, there is provided a power management system for use in a computer system having a memory system incorporating a non-volatile memory and a controller which presents the logical characteristics of a disc storage device to a host, the power management system comprising means for monitoring the operational activity levels within at least some of the components of the controller and arranged, in response to the monitored levels, to vary the power consumed by selected components of the controller.
Images(4)
Previous page
Next page
Claims(2)
What is claimed is:
1. A power management system for use in a computer system comprising:
A memory system including,
A non-volatile memory; and
A controller coupled to the non-volatile memory representing the logical characteristics of a disc storage device to a host and including power management means for monitoring the operational activity levels within at least some of the components of the controller and arranged, in response to the monitored levels, to vary the power consumed by selected components of the controller.
2. A power management system as recited in claim 1 wherein the system is embodied in a discrete system manager.
Description
    CROSS REFERENCE TO RELATED APPLICATION
  • [0001]
    This application claims the benefit of the priority date of my earlier filed British Application No. 0123421.0, entitled “Power Management System”, filed on Sep. 28, 2001.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    This invention relates generally to a power management system for managing power used and energy consumed in a computer system, particularly a portable computer system where there is often a limit to the peak power that can be supplied and where the energy is usually provided by batteries which have a shorter life if required to deliver increased energy and particularly to a flash disc device which is a memory system having a controller which presents the logical characteristics of a disc storage device to a host, but, which uses a non-volatile semiconductor memory device as its physical storage medium.
  • [0004]
    2. Description of the Prior Art
  • [0005]
    Minimizing peak power (where power is energy per unit time) and minimizing energy consumption are sometimes conflicting aims. To minimize the peak power drawn by a Flash Storage System may require that the Flash Storage System takes longer to perform its operations, which can lead to higher energy dissipation since the system is active over a longer period, though at a lower power over this period.
  • [0006]
    The standard Flash Controller includes a number of hardware blocks. These blocks include a Host Interface Block, a Flash Interface Block and a Microprocessor Block, which are connected to memories via a System Bus. Each of these hardware blocks consumes energy within the Flash Controller. The Host Interface and Flash interface blocks also consume energy on external interfaces. To minimize the energy consumption of the whole computer system requires the minimization of energy consumption within the Flash Controller itself, within the Flash memory, and on the Flash and Host Interfaces.
  • [0007]
    Thus, a need arises to obviate or mitigate at least one of the aforementioned problems.
  • SUMMARY OF THE INVENTION
  • [0008]
    According to a first aspect of the invention there is provided a power management system for use in a computer system having a memory system incorporating a non-volatile memory and a controller which presents the logical characteristics of a disc storage device to a host, the power management system comprising means for monitoring the operational activity levels within at least some of the components of the controller and arranged, in response to the monitored levels, to vary the power consumed by selected components of the controller.
  • [0009]
    Preferably the power management system further comprises at least one power management algorithm which is implemented within firmware of the power management system.
  • [0010]
    In another of its aspects the present invention comprises a non-volatile memory system having a controller incorporating a plurality of components and which presents the logical characteristics of a disc storage device to a host, where the controller incorporates a power management system having means for monitoring the operational activity levels within at least some of the components of the controller, said means being arranged, in response to the monitored levels, to vary the power consumed by selected components of the controller.
  • [0011]
    The power management system may be embodied in a discrete system manager or in a distributed manner through components of the controller.
  • [0012]
    Preferably the power management system generates the main clock signals for the controller and determines which are active and the frequency of such active clock signals.
  • [0013]
    The foregoing and other objects, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments which make reference to several figures of the drawing.
  • IN THE DRAWINGS
  • [0014]
    [0014]FIG. 1 illustrates a computer system incorporating a power management system in accordance with the present invention;
  • [0015]
    [0015]FIG. 2 illustrates the power management system of FIG. 1 in greater detail; and
  • [0016]
    [0016]FIG. 3 illustrates an example of the way in which the controller 16 of FIG. 1 switches between different power levels during the execution of a Write Sector command from a host.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0017]
    As is shown in FIG. 1, a computer system 10 comprises a flash memory 14, a flash controller 16 and host system 12. The controller 16 comprises a host interface block 16, a microprocessor 24, a flash interface block 22, an SRAM 28, a ROM 30, all of which are connected to a memory access control structure or system bus 21 in a manner which is well known in the art and which enables the memory system 16, 14, to present to the host system 12 the logical characteristics of a disc storage device.
  • [0018]
    Controller 16 of a system 10 additionally incorporates a power management system in the form of a system manager 20.
  • [0019]
    Having a discrete System Manager Block 20 simplifies the design and explanation of the power management features, however, the features to be described could equally be distributed and incorporated into other blocks within the hardware of controller 16. The term ‘system manager’ is intended to embrace both the distributed and the discrete arrangements.
  • [0020]
    The System Manager 20 is concerned with the control of reset, timing and interrupt signals within the controller 16, and the control logic for these signals may also be incorporated within the System Manager, however, this is not necessary for achieving power management.
  • [0021]
    [0021]FIG. 2 shows the structure of the system manager 20. The system manager 20 comprises a system manager bus interface and control logic block 30 which connects the system manager 20 to the system bus 21 via bus interface 22. The system manager 20 also includes an event monitor block 32, a microprocessor throttle control block 34, system clock control block 36, a phase locked loop (PLL) block 38, clock oscillator block 40 power-down controller (PDC) level 1 block 42, PDC level 2 block 44, PDC level 3 block 46 and PDC level block 48.
  • [0022]
    The System Manager 20 generates clock signals for the rest of the controller 16. Though one clock is shown, multiple clocks for different parts of the controller 16 may be generated. Whether a clock is enabled, and its frequency, are determined by power management features. The system Manager 20 also generates other control signals to control activity within the Flash Controller 16. One signal enables the microprocessor 24. Firmware reads and writes to memory-mapped registers within the system manager 20 across the interface 30 via the system bus 21.
  • [0023]
    The Event Monitor 32 takes signals from a number of event sources 29 within the Flash Controller 16. These event sources 29 indicate when significant system events have occurred within other blocks of the controller 16 such as the Flash and Host Interface Blocks 22, 26 or the Microprocessor 24. For example, the flash and host interface blocks 22, 26 typically indicate when certain operations have completed via these signals. Events that are used to generate processor interrupts or wake-up from a power-down state are listed in Table 3. Synchronous events require the system clock to be running and so will not be generated when the controller is in power-down level 2 or higher. The processor 24 typically indicates when a special event has occurred, such as a request to enter a Debug or Test Mode. The event monitor 32 and system manger bus interface and control logic block 30 communicate via four channels which carry the signals EVT_CLEAR 31A, EVT_LEVEL 31B, EVT_STATUS 31C, and EVT_WAKEUP 31D.
  • [0024]
    The Event Monitor 32 feeds the existing level of these events to the Bus Interface and control logic block 30 on the EVT_LEVEL signal, which is composed of one bit per event. The event source signals can be de-asserted by the source at any time. In some cases, when the controller 16 is in a low-power state, it may not be able to respond to the EVT_LEVEL signal immediately, and could miss an event. Thus, the event monitor 32 provides a second copy of the events called EVT_STATUS, that cannot be de-asserted by the source of the event, but can be set (even when the rest of the system is in a low-power state). An event in EVT_STATUS can only be de-asserted by the Bus Control Logic Block 30 asserting the appropriate bit on the EVT_CLEAR signal or a System Reset.
  • [0025]
    During certain low-power modes, the Event Monitor 32 may be the only active part of the system manager 20. If required, it outputs a signal 31E to the rest of the System Manager 20 called WAKEUP, which causes the rest of the system manager 20 to exit from a low-power mode. The WAKEUP signal is asserted when an event is asserted on EVT_STATUS and the corresponding event bit is asserted on EVT_WAKEUP. Thus, the GBus Interface block 30 can control which events cause the manger 20 to wake-up. firmware via the Bus Interface 30 block reads the values of both EVT_LEVEL and EVT_STATUS and asserts EVT_CLEAR and EVT_WAKEUP.
  • [0026]
    Included within the System Manager 20 are blocks 36, 38, 40 for generating the main clock signals for the controller 16 and for enabling other blocks within the controller 16 such as the Microprocessor 24.
  • [0027]
    The clock generation chain consists of clock oscillator module 40, that generates the fundamental clock for the controller 16 (named OSC_CLK). The frequency of this clock is normally determined by external components such as a Quartz Crystal or a Resistor-Capacitor charging/discharging circuit. The next stage in the clock generation is the PLL (Phase Locked Loop) block 38 which takes the fundamental clock frequency OSC_CLK and multiplies it by a factor to generate the signal PLL_CLK. Finally, this goes into the system clock control block 36, which controls the distribution of the clock to the rest of the controller 16.
  • [0028]
    The System Manager 20 has four power-down modes that are used to control which clock signals are active within the controller 16. Successive Levels of Power-Down mode turn off more functionality within the controller 16 to save power. The term Power-Down Mode 0 is used to describe normal system operation when all parts of the controller 16 are active. Table 1 illustrates how functionality of the controller 16 is progressively turned off to save power with successive Power-Down Modes.
  • [0029]
    In Power-Down Mode 1 which is determined by block 42, the Microprocessor 24 is disabled in a controlled fashion, so that other blocks within the controller 16 such as the Flash and Host Interface Blocks 22, 26 can continue to access memory 14 and perform their functions. The enable signal to the processor 24 is turned off using the MP_ENABLE signal from block 42 that feeds into the Processor Throttling Block 34.
  • [0030]
    In Power-Down Mode 2 which is determined by block 44, the System Clock 36 is disabled using the CLK_ENABLE signal from block 44. Functions within the controller 16 that rely on the system clock being enabled are disabled and their power dissipation reduced or eliminated. A result of this is that the main system bus 21 will be disabled so that communication between blocks within the controller 16 across the bus 21 will be disabled.
  • [0031]
    In Power-Down Mode 3 which is determined by block 46, the PLL 38 is disabled using the PLL_ENABLE signal from block 46. PLL 38 may take a certain time to synchronize with the OSC_CLK signal from oscillator 40, so a synchronization delay is usually required when the controller is powering up from Power-Down Mode 3 to Power-Down Mode 2.
  • [0032]
    In Power-Down mode 4 which is determined by block 48, the clock oscillator 40 is disabled using the OSC_ENABLE signal from block 48. The clock oscillator 40 may take a certain time to start oscillating again depending on the nature of the external components used to determine the clock frequency, so a delay is required when the controller is powering up from Power-Down Mode 4 to Power-Down Mode 3.
  • [0033]
    As regards sequencing of power-down and power-up each PDC 42, 44, 46, 48 receives a request for entry to a power-down mode on a PDOWN signal or entry to a power-up mode on the PUP signal. For example, the first PDC 42 will power-down the part of the controller 16 that it controls and then if this is not the target Power-Down Mode (as indicated on the PMODE signal issued by block 30), it will assert its PDOWN signal to the next PDC 44 so that it should power-down and so on.
  • [0034]
    When the Event Monitor 32 asserts the WAKEUP signal 31E, the PDC's sequentially from the PDC of the target Power-Down Mode will wake-up the part of the controller 16 that it is responsible for. If a delay is required before this part of the controller 16 is ready then the PDC's ensure that this delay is met. The length of the delay may be configured Firmware writing to registers within the Bus Interface and Control Logic 30. The value of these registers is passed onto the appropriate PDC, which alters the Power-Up delay to reflect the register value. These signals indicating the length of the delay are not illustrated. Finally the PDC asserts its Power-Up output PUP which causes the next PDC in the chain to wake-up in a similar fashion.
  • [0035]
    Initially entry to a power-down mode is made by firmware writing to a register within the System Manager Bus Interface and Control Logic block 30, which indicates the desired Power-Down Mode. This causes the PMODE signal to indicate the target power-down level, and the PDOWN0 signal to be asserted which initiates the entry into the Power-Down Mode.
  • [0036]
    The modular structure of one PDC 42, 44, 46, 48 for each section of the clock generation and processor control 34, 36, 38, 40 allows the structure to be easily adapted for different clock generation structures. In addition, this structure is robust in that it guarantees that the controller 16 is powered-down and powered-up in an orderly manner, so that, for example, the processor 24 is not powered-up before the system clock signal is enabled.
  • [0037]
    A second power-management feature of the manager 20 is the ability to change the clock frequency by changing the multiplication factor that relates the PLL 38 input frequency to its output frequency. Lowering the Clock frequency lowers the power dissipation within the controller l6, but, also can reduce the data transfer performance of the controller 16.
  • [0038]
    To vary the PLL multiplication factor firmware writes to a register within the Bus Interface and Control Logic block 30 which sets the value of PLL_FACTOR that indicates the PLL Multiplication Factor. In some cases, Firmware may want the value of PLL_FACTOR to be reset to a certain value when a system event occurs. For example, the Firmware sets a low clock frequency to reduce power, but it then wants to process an interrupt quickly, the firmware may not want to continue to run at the low clock frequency. However, it takes a certain amount of time to write to the register that determines PLL_FACTOR. To overcome this problem, the firmware can set a flag within the Bus Interface and Control Logic block 30 which will cause the block 30 to reset the PLL_FACTOR when certain events occur as indicated by the Event Monitor 32.
  • [0039]
    The Microprocessor 24 is often the main source of power dissipation in the Controller 16 as it consumes power itself and also is the main source of memory access requests within the Controller 16. To allow the power consumption of the Microprocessor 24 to be controlled the System Manager 20 includes a Microprocessor Throttle Block 34.
  • [0040]
    The Throttle Block 34 controls how often the Microprocessor 24 is enabled. The fewer clock cycles that the Microprocessor 24 is enabled for, the lower the power it consumes. The mechanism used to achieve disablement of the Microprocessor 24 can vary. For example, the output of throttle block 34 can be used directly to disable the Microprocessor 24 or to switch off the clock signal within controller 16 to the Microprocessor 24. Alternatively, the output of the throttle block 34 can be used to deny access of the Microprocessor 24 to the Main-System Bus 21, thus preventing it from fetching instructions and causing it to halt.
  • [0041]
    The Throttle Block 34 takes two inputs: one is MP_ENABLE from the PDC 42 for the Power-Down Mode 1. The MP_ENABLE signal is used to completely disable the Microprocessor 24 when Power-Down Mode 1 is entered. The other input to the Throttle Block 34 is THROTTLE which consists of three values M, S and B which determine the proportion of time that the Microprocessor 24 is enabled. The value of THROTTLE can be changed by the firmware writing to registers within the Bus Interface and Control Logic Block 30.
  • [0042]
    The values M (Mark) and S (Space) determine the ratio of clock cycles for which the Microprocessor 24 is enabled and disabled. The B value determines the minimum number of clock cycles in a row the Microprocessor 24 will be enabled or disabled for. This allows the Microprocessor 24 to gain access to the Memory 14 for a minimum number of clock cycles, since there would be overhead and inefficiencies when enabling and disabling the Microprocessor 24 for too few clocks cycles.
  • [0043]
    Thus, the values M, S and B indicate that the Microprocessor 24 is enabled for M*B clock cycles from every (M+S)*B clock cycles. The hardware interleaves M blocks of cycles with S blocks of cycles in an optimum way to minimize long sequences of cycles with the Microprocessor 24 disabled, which could reduce the Microprocessor 24 responsiveness to events such as interrupts.
  • [0044]
    The pattern set by M, S, and B is as follows. The pattern starts with a block of B clock cycles with the Microprocessor 24 being enabled and then B clock cycles this with the Microprocessor 24 being disabled. The alternation of blocks of the Microprocessor 24 being enabled and disabled repeats up to the minimum value from M and S. If M=S then the pattern now repeats, otherwise, if M>S, then the Microprocessor 24 is enabled for M−S blocks of B clock cycles and then the pattern repeats, but, if M<S then the Microprocessor 24 is disabled for S−M blocks of B clock cycles and then the pattern repeats.
  • [0045]
    The hardware always ensures that the first block within a pattern of enabling and disabling the Microprocessor 24 has the Microprocessor 24 enabled regardless of the value of M, thus setting M=0 is equivalent to M=1 in order to prevent the Microprocessor 24 being never enabled. The hardware also interprets the value of B=0 as the maximum block size allowed by the hardware.
  • [0046]
    Some examples of the patterns possible of the hardware enabling and disabling the Microprocessor 24 for different values of M, S and B are shown in Table 2.
  • [0047]
    Other schemes for defining the ratio of cycles for which the microprocessor 24 is enabled and disabled are possible.
  • [0048]
    As with the PLL Multiplication Factor feature discussed previously, it is useful to allow Firmware to allow the Microprocessor Throttle 34 to reset the time for which the Microprocessor 24 is enabled to its maximum value when certain system events occurs, to allow for fast reaction to controller events. Firmware can write to a register within the Bus Interface and Control Logic block 30 to enable this feature.
  • [0049]
    It will be appreciated that the Flash Interface Block 22 is non standard in that it incorporates features to operate with a range of different main system clock frequencies, since the main clock frequency of the controller 16 may be changed to reduce power consumption by operation of blocks 36, 38 of the system manager 20.
  • [0050]
    If the main clock frequency of the flash controller is changed then this will affect the timing of signals generated by the Flash Interface Block 22. If the clock frequency is increased then the timing of signals on the flash interface may become too quick for the Flash memory 14. If the clock frequency is decreased then the transfer rate of data to and from the Flash memory 14 will be reduced.
  • [0051]
    If the Flash Interface 22 is a major source of power dissipation, then it may be advantageous to reduce the transfer rate on the interface to reduce peak power consumption, but this reduces the data transfer rate to and from the Flash memory 14.
  • [0052]
    Accordingly, to support these power management modes, the Flash Interface Block 22 is designed to allow the timing of signals to and from the Flash memory 14 to be changed relative to the main controller system clock. Two features in the Flash Interface Block 22 are incorporated to support this. The first feature is a frequency divider circuit that is placed on the main clock that supplies the basic timing reference for the signals on the Flash interface 22. This allows the speed of the Flash Interface to be reduced to reduce peak power consumption, without affecting the frequency of the main clock. The second feature is the timing of signals in the Flash interface 22 can be controlled on a clock cycle by clock cycle basis. When the main clock frequency is decreased; this allows the timing of signals to be made quicker by reducing the number of clock cycles for which a signal on the Flash Interface is asserted or de-asserted.
  • [0053]
    Finally, the Flash Interface Block 22 is designed so that it can use the power management features within the Flash memory 14 which requires that Flash memory select signal to be taken to a voltage close to that of the power supply rail to engage a low power mode.
  • [0054]
    It will further be understood that the host interface block 26 is different from the flash interface block 22, in the most actions on the host interface block 26 are initiated and timed by the host 12 and not by the controller 15. Many host interface protocols allow the Flash Storage System 14, 16 to indicate at system power-up what host interface timing will be used, but do not allow this timing to be changed later.
  • [0055]
    Though in most Host interface protocols, the data transfer rate to and from the Flash Storage System 14, 16 is determined by the host 12, most host interface transfer protocols allow the Flash Storage System 14, 16 to indicate when it is ready to accept the transfer of data or of a command. The Flash Controller 16 uses this feature of the host interface 26 to control the rate of data and command transfer and thus minimize peak power though this reduces system performance. To support this, the Host Interface block 26 needs to be flexible in when it asserts signals that say if it is ready to accept a command or do a data transfer. If features are incorporated to let hardware automatically set these signals, then the automatic setting of these signals should configurable, so that flags can be set under direct Firmware control if necessary for power management.
  • [0056]
    If the protocol allows for the basic timing of a data or command transfer to be slowed down by asserting signals on the interface 26 during the transfer then these should also be settable by Firmware to allow the transfer rate to be reduced.
  • [0057]
    Reference has been made to firmware that has to utilize the power management features within the flash controller hardware to minimize power consumption with minimal impact or performance. This will now be explained.
  • [0058]
    If at a point within the firmware, the firmware has to stop and wait for an event monitored by the Event Monitor 32, then the firmware enables the system manager 20 to wake-up on this event and then enter a power-down mode. The Power-Down Mode powered-down to is determined by activity in other parts of the controller 16. For example, if the Host or Flash interface 26, 22 need the clock to be running to transfer data then Power-Down Level 1 is the maximum level that can be entered. Higher power down levels can be entered if no such constraint exists, but may be limited by the time taken for the Oscillator 40 and PLL 38 to power-up.
  • [0059]
    Other events that are required to interrupt the processor 24 also trigger the system manager 20 to wake-up. If the system manager 20 is woken-up by an interrupt event, it then responds to the interrupt and then the Firmware returns to the Power-down mode selected, if the system event being waited for has not occurred.
  • [0060]
    Examples of doing this are events such as waiting for the host 12 to issue a command or transfer data, or waiting for Flash memory 14 to complete an operation.
  • [0061]
    Events within the controller 16 that are not monitored by the Event Monitor 32 cannot cause the system manager 20 to wake-up. In these cases the Microprocessor 24 has to wait, polling a register until the event occurs. In this mode, the Microprocessor 24 must be active, but, need not run at full speed.
  • [0062]
    Accordingly using the Microprocessor Throttling mechanism of block 34 can reduce power consumption in this case by reducing the frequency of polling the register. Also, when reducing the clock frequency will not affect the performance of other parts of the controller 16 then the PLL multiplication factor of block 38 can be reduced. When the event being polled for has occurred, the firmware can return the controller 16 to its normal operating frequency.
  • [0063]
    When firmware determines that it needs to limit power consumption on the Host Interface Block 26, then it can reduce the power being consumed by indicating to the Host 12 that it is busy, even when it has actually finished an operation or is ready to accept data. During this time, the controller 16 can perform other operations, or the controller 16 can enter a Power-Down Mode for a period of time to lower power consumption and trigger the system manager 20 to wake-up after a specified time by using an event triggered by a timer within the Flash Controller 16. At this point, the controller 16 can release busy and continue operation. As an alternative to asserting busy, the controller 16, if the host interface transfer protocol permits, can slow sown the host transfer timing. This allows the host 12 to continue data transfer but at a reduced rate.
  • [0064]
    When the controller cycle time is changed to reduce power, Firmware may choose to adjust the timing of the Flash interface 22 to use fewer clock cycles to ensure that the transfer rate to memory 14 is maintained.
  • [0065]
    If Firmware wants to reduce power consumption specifically on the Flash interface 22 then it can lengthen the timing of commands on the Flash Interface 22, though this will reduce the transfer rate to memory 14. One example, of lengthening Flash Commands is when polling the status of the memory 14. Firmware can lengthen the timing of the polling command, and then set the Flash Interface 22 to trigger an event when the Polling command has finished. Firmware can then go to sleep for the duration of the polling command.
  • [0066]
    When Firmware enters sections of code that requires the Microprocessor 24 to be active for a long period of time, then peak power consumption can be reduced by using the Microprocessor Throttle Mechanism of block 34 and the PLL Multiplication Factor of block 38.
  • [0067]
    An example of the way in which the controller switches between different power levels during the execution of a Write Sector command from a host is given with reference to FIG. 3. The relative levels of the different power levels are for illustration only. In this example, the controller does not need to respond rapidly to host commands, and the startup times of clock oscillator 40 and phase locked loop 38 during wake-up from power-down levels 4 and 3 are not important. If fast response to a host command is required, it might not be possible to switch to power-down level 4 when the host interface is in the idle state.
  • [0068]
    At time A the host writes a command to the controller, which generates event 4 shown in Table 3 and causes the controller to wake-up through levels 3, 2 and 1 before the processor starts executing in level 0.
  • [0069]
    The processor clears the host command event and sets up the DMA hardware to allow the host to transfer data to the controller. Once the DMA is set up, the controller is put into power-down level 1 at time B. It is not possible to enter a higher power down level as the MDA transfer requires that the system clock is running.
  • [0070]
    When the host transfers the required data at time C, event 5 is generated and wakes up the controller to power-down level 0. The processor now sets up the Flash Interface Control to transfer the data to Flash memory and then reverts to power-down level 1 at time D. Again, a higher power-down mode cannot be used because the transfer to Flash memory requires that the system clock is running.,
  • [0071]
    When the data transfer to Flash memory completes at time E, event 7 is generated. The controller again wakes up to power down level 0. The processor checks that the transfer was successful, starts the Flash programming operation and then enters power-down level 2 at time F, which halts the system clock.
  • [0072]
    At time G, the Flash programming operation completes and the Flash busy line makes a low to high transition, which generates event 6. The controller wakes up through power-down level 1 to power-down level 0. The processor checks that the programming operation was successfuil, sets up the response to the host and powers-down to level 4 at time H.
  • [0073]
    Although the present invention has been described in terms of specific embodiments it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modification as fall within the true spirit and scope of the invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4309627 *Mar 27, 1979Jan 5, 1982Kabushiki Kaisha Daini SeikoshaDetecting circuit for a power source voltage
US4450559 *Dec 24, 1981May 22, 1984International Business Machines CorporationMemory system with selective assignment of spare locations
US4456971 *Feb 4, 1982Jun 26, 1984Sony CorporationSemiconductor RAM that is accessible in magnetic disc storage format
US4498146 *Jul 30, 1982Feb 5, 1985At&T Bell LaboratoriesManagement of defects in storage media
US4525839 *Oct 26, 1982Jun 25, 1985Hitachi, Ltd.Method of controlling storage device
US4654847 *Dec 28, 1984Mar 31, 1987International Business MachinesApparatus for automatically correcting erroneous data and for storing the corrected data in a common pool alternate memory array
US4746998 *Nov 20, 1985May 24, 1988Seagate Technology, Inc.Method for mapping around defective sectors in a disc drive
US4748320 *Oct 27, 1986May 31, 1988Toppan Printing Co., Ltd.IC card
US4797543 *Jul 30, 1986Jan 10, 1989501 Toppan Moore Company, Ltd.Selectable data readout IC card
US4800520 *Oct 23, 1986Jan 24, 1989Kabushiki Kaisha ToshibaPortable electronic device with garbage collection function
US4829169 *Jun 27, 1986May 9, 1989Toppan Moore Company, Inc.IC card having state marker for record access
US4843224 *Jun 6, 1988Jun 27, 1989Oki Electric Industry Co., Ltd.IC card
US4896262 *Feb 22, 1985Jan 23, 1990Kabushiki Kaisha MeidenshaEmulation device for converting magnetic disc memory mode signal from computer into semiconductor memory access mode signal for semiconductor memory
US4914529 *Jul 18, 1988Apr 3, 1990Western Digital Corp.Data disk defect handling using relocation ID fields
US4920518 *Mar 28, 1989Apr 24, 1990Hitachi, Ltd.Semiconductor integrated circuit with nonvolatile memory
US4924331 *May 23, 1988May 8, 1990Seagate Technology, Inc.Method for mapping around defective sectors in a disc drive
US5093785 *Mar 13, 1989Mar 3, 1992Kabushiki Kaisha ToshibaPortable electronic device with memory having data pointers and circuitry for determining whether a next unwritten memory location exist
US5198380 *Jul 17, 1989Mar 30, 1993Sundisk CorporationMethod of highly compact EPROM and flash EEPROM devices
US5200959 *Oct 17, 1989Apr 6, 1993Sundisk CorporationDevice and method for defect handling in semi-conductor memory
US5218695 *Feb 5, 1990Jun 8, 1993Epoch Systems, Inc.File server system having high-speed write execution
US5220518 *Oct 25, 1991Jun 15, 1993Vlsi Technology, Inc.Integrated circuit memory with non-binary array configuration
US5293560 *Nov 3, 1992Mar 8, 1994Eliyahou HarariMulti-state flash EEPROM system using incremental programing and erasing methods
US5297148 *Oct 20, 1992Mar 22, 1994Sundisk CorporationFlash eeprom system
US5303198 *Jul 5, 1991Apr 12, 1994Fuji Photo Film Co., Ltd.Method of recording data in memory card having EEPROM and memory card system using the same
US5305276 *Sep 11, 1992Apr 19, 1994Rohm Co., Ltd.Non-volatile IC memory
US5305278 *Dec 6, 1991Apr 19, 1994Mitsubishi Denki Kabushiki KaishaSemiconductor memory device having block write function
US5315541 *Jul 24, 1992May 24, 1994Sundisk CorporationSegmented column memory array
US5315558 *Apr 21, 1993May 24, 1994Vlsi Technology, Inc.Integrated circuit memory with non-binary array configuration
US5381539 *Jun 4, 1992Jan 10, 1995Emc CorporationSystem and method for dynamically controlling cache management
US5382839 *Sep 15, 1993Jan 17, 1995Mitsubishi Denki Kabushiki KaishaPower supply control circuit for use in IC memory card
US5384743 *Mar 8, 1993Jan 24, 1995Sgs-Thomson Microelectronics, S.A.Structure and method for flash eprom memory erasable by sectors
US5388083 *Mar 26, 1993Feb 7, 1995Cirrus Logic, Inc.Flash memory mass storage architecture
US5396468 *Nov 8, 1993Mar 7, 1995Sundisk CorporationStreamlined write operation for EEPROM system
US5404485 *Mar 8, 1993Apr 4, 1995M-Systems Flash Disk Pioneers Ltd.Flash file system
US5406527 *Jun 25, 1993Apr 11, 1995Kabushiki Kaisha ToshibaPartial write transferable multiport memory
US5418752 *Oct 20, 1992May 23, 1995Sundisk CorporationFlash EEPROM system with erase sector select
US5422842 *Jul 8, 1993Jun 6, 1995Sundisk CorporationMethod and circuit for simultaneously programming and verifying the programming of selected EEPROM cells
US5422856 *Mar 1, 1994Jun 6, 1995Hitachi, Ltd.Non-volatile memory programming at arbitrary timing based on current requirements
US5428621 *Sep 21, 1992Jun 27, 1995Sundisk CorporationLatent defect handling in EEPROM devices
US5485595 *Oct 4, 1993Jan 16, 1996Cirrus Logic, Inc.Flash memory mass storage architecture incorporating wear leveling technique without using cam cells
US5490117 *Mar 23, 1994Feb 6, 1996Seiko Epson CorporationIC card with dual level power supply interface and method for operating the IC card
US5495442 *May 4, 1995Feb 27, 1996Sandisk CorporationMethod and circuit for simultaneously programming and verifying the programming of selected EEPROM cells
US5504760 *Nov 8, 1993Apr 2, 1996Sandisk CorporationMixed data encoding EEPROM system
US5508971 *Oct 17, 1994Apr 16, 1996Sandisk CorporationProgrammable power generation circuit for flash EEPROM memory systems
US5513138 *Apr 7, 1994Apr 30, 1996Ricoh Co., Ltd.Memory card having a plurality of EEPROM chips
US5515333 *Jun 17, 1994May 7, 1996Hitachi, Ltd.Semiconductor memory
US5519847 *Jun 30, 1993May 21, 1996Intel CorporationMethod of pipelining sequential writes in a flash memory
US5523980 *Dec 28, 1994Jun 4, 1996Kabushiki Kaisha ToshibaSemiconductor memory device
US5524230 *Mar 27, 1995Jun 4, 1996International Business Machines IncorporatedExternal information storage system with a semiconductor memory
US5530673 *Apr 8, 1994Jun 25, 1996Hitachi, Ltd.Flash memory control method and information processing system therewith
US5530828 *Jun 22, 1993Jun 25, 1996Hitachi, Ltd.Semiconductor storage device including a controller for continuously writing data to and erasing data from a plurality of flash memories
US5530938 *Feb 5, 1993Jun 25, 1996Seiko Instruments Inc.Non-volatile memory card device having flash EEPROM memory chips with designated spare memory chips and the method of rewriting data into the memory card device
US5592415 *Dec 10, 1993Jan 7, 1997Hitachi, Ltd.Non-volatile semiconductor memory
US5592420 *Jun 7, 1995Jan 7, 1997Sandisk CorporationProgrammable power generation circuit for flash EEPROM memory systems
US5598370 *Apr 26, 1995Jan 28, 1997International Business Machines CorporationNonvolatile memory with cluster-erase flash capability and solid state file apparatus using the same
US5602987 *Dec 29, 1993Feb 11, 1997Sandisk CorporationFlash EEprom system
US5603001 *May 5, 1995Feb 11, 1997Kabushiki Kaisha ToshibaSemiconductor disk system having a plurality of flash memories
US5606704 *Oct 26, 1994Feb 25, 1997Intel CorporationActive power down for PC card I/O applications
US5611067 *Mar 29, 1993Mar 11, 1997Kabushiki Kaisha ToshibaNonvolatile semiconductor memory device having means for selective transfer of memory block contents and for chaining together unused memory blocks
US5640528 *Jun 6, 1995Jun 17, 1997Intel CorporationMethod and apparatus for translating addresses using mask and replacement value registers
US5642312 *May 22, 1996Jun 24, 1997Harari; EliyahouFlash EEPROM system cell array with more than two storage states per memory cell
US5712819 *May 22, 1996Jan 27, 1998Harari; EliyahouFlash EEPROM system with storage of sector characteristic information within the sector
US5719808 *Mar 21, 1995Feb 17, 1998Sandisk CorporationFlash EEPROM system
US5723990 *Jun 21, 1995Mar 3, 1998Micron Quantum Devices, Inc.Integrated circuit having high voltage detection circuit
US5734567 *Sep 24, 1996Mar 31, 1998Siemens AktiengesellschaftDiagnosis system for a plant
US5745418 *Nov 25, 1996Apr 28, 1998Macronix International Co., Ltd.Flash memory mass storage system
US5754567 *Oct 15, 1996May 19, 1998Micron Quantum Devices, Inc.Write reduction in flash memory systems through ECC usage
US5757712 *Jul 12, 1996May 26, 1998International Business Machines CorporationMemory modules with voltage regulation and level translation
US5758100 *Jul 1, 1996May 26, 1998Sun Microsystems, Inc.Dual voltage module interconnect
US5761117 *Aug 29, 1996Jun 2, 1998Sanyo Electric Co., Ltd.Non-volatile multi-state memory device with memory cell capable of storing multi-state data
US5768190 *Nov 14, 1996Jun 16, 1998Kabushiki Kaisha ToshibaElectrically erasable and programmable non-volatile semiconductor memory with automatic write-verify controller
US5860083 *Mar 14, 1997Jan 12, 1999Kabushiki Kaisha ToshibaData storage system having flash memory and disk drive
US5860124 *Sep 30, 1996Jan 12, 1999Intel CorporationMethod for performing a continuous over-write of a file in nonvolatile memory
US5862099 *Sep 29, 1997Jan 19, 1999Integrated Silicon Solution, Inc.Non-volatile programmable memory having a buffering capability and method of operation thereof
US5890192 *Nov 5, 1996Mar 30, 1999Sandisk CorporationConcurrent write of multiple chunks of data into multiple subarrays of flash EEPROM
US5901086 *Dec 26, 1996May 4, 1999Motorola, Inc.Pipelined fast-access floating gate memory architecture and method of operation
US5907856 *Mar 31, 1997May 25, 1999Lexar Media, Inc.Moving sectors within a block of information in a flash memory mass storage architecture
US6011322 *Jul 28, 1997Jan 4, 2000Sony CorporationApparatus and method for providing power to circuitry implementing two different power sources
US6011323 *Sep 30, 1997Jan 4, 2000International Business Machines CorporationApparatus, method and article of manufacture providing for auxiliary battery conservation in adapters
US6021408 *Sep 12, 1996Feb 1, 2000Veritas Software Corp.Methods for operating a log device
US6026020 *Jan 24, 1997Feb 15, 2000Hitachi, Ltd.Data line disturbance free memory block divided flash memory and microcomputer having flash memory therein
US6026027 *Apr 25, 1995Feb 15, 2000Norand CorporationFlash memory system having memory cache
US6034897 *Apr 1, 1999Mar 7, 2000Lexar Media, Inc.Space management for managing high capacity nonvolatile memory
US6035357 *Jun 3, 1997Mar 7, 2000Kabushiki Kaisha ToshibaIC card compatible with different supply voltages, IC card system comprising the same, and IC for the IC card
US6040997 *Mar 25, 1998Mar 21, 2000Lexar Media, Inc.Flash memory leveling architecture having no external latch
US6047352 *Oct 29, 1996Apr 4, 2000Micron Technology, Inc.Memory system, method and predecoding circuit operable in different modes for selectively accessing multiple blocks of memory cells for simultaneous writing or erasure
US6055184 *Sep 1, 1999Apr 25, 2000Texas Instruments IncorporatedSemiconductor memory device having programmable parallel erase operation
US6055188 *Apr 30, 1998Apr 25, 2000Kabushiki Kaishi ToshibaNonvolatile semiconductor memory device having a data circuit for erasing and writing operations
US6173362 *Aug 26, 1997Jan 9, 2001Kabushiki Kaisha ToshibaStorage system with selective optimization of data location
US6181118 *Jun 24, 1999Jan 30, 2001Analog Devices, Inc.Control circuit for controlling a semi-conductor switch for selectively outputting an output voltage at two voltage levels
US6182162 *Mar 2, 1998Jan 30, 2001Lexar Media, Inc.Externally coupled compact flash memory card that configures itself one of a plurality of appropriate operating protocol modes of a host computer
US6202138 *Jan 20, 2000Mar 13, 2001Lexar Media, IncIncreasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6223308 *Mar 7, 2000Apr 24, 2001Lexar Media, Inc.Identification and verification of a sector within a block of mass STO rage flash memory
US6226708 *Aug 18, 1998May 1, 2001Texas Instruments IncorporatedMethod and system for efficiently programming non-volatile memory
US6230264 *Aug 30, 1999May 8, 2001Microsoft CorporationParameterless language in a machine for implementation thereof
US6374337 *Nov 16, 1999Apr 16, 2002Lexar Media, Inc.Data pipelining method and apparatus for memory control circuit
US6377185 *Nov 13, 2000Apr 23, 2002Ilife Systems, Inc.Apparatus and method for reducing power consumption in physiological condition monitors
US6393513 *Apr 23, 2001May 21, 2002Lexar Media, Inc.Identification and verification of a sector within a block of mass storage flash memory
US6725385 *Sep 11, 2000Apr 20, 2004International Business Machines CorporationIntelligent electronic power controller
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7487376 *Oct 31, 2007Feb 3, 2009Actel CorporationProgrammable system on a chip
US7603578Oct 13, 2009Actel CorporationProgrammable system on a chip for power-supply voltage and current monitoring and control
US7616026Jul 21, 2008Nov 10, 2009Actel CorporationSystem-on-a-chip integrated circuit including dual-function analog and digital inputs
US7937601Aug 5, 2009May 3, 2011Actel CorporationProgrammable system on a chip
US8286018 *Oct 9, 2012Seagate Technology LlcPower management in data storage device determining utilization of a control circuit by its rate of command processing
US20050289368 *Jun 29, 2004Dec 29, 2005Lai Kein ChangPower management device and method
US20080122481 *Oct 31, 2007May 29, 2008Actel CorporationProgrammable system on a chip
US20080303547 *Jul 24, 2008Dec 11, 2008Actel CorporationProgrammable system on a chip for temperature monitoring and control
US20090128186 *Jan 8, 2009May 21, 2009Actel CorporationProgrammable system on a chip for power-supply voltage and current monitoring and control
WO2008095277A1 *Jan 9, 2008Aug 14, 2008Icp Global Technologies Inc.Hybrid renewable power monitor and data logger
Classifications
U.S. Classification713/300
International ClassificationG06F1/32
Cooperative ClassificationY02B60/32, Y02B60/1282, G06F1/3203, G06F1/324, G06F1/3287, Y02B60/1217
European ClassificationG06F1/32P5S, G06F1/32P5F, G06F1/32P
Legal Events
DateCodeEventDescription
Sep 27, 2002ASAssignment
Owner name: LEXAR MEDIA, INC, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PAYNE, ROBERT EDWIN;REEL/FRAME:013351/0405
Effective date: 20011109