US20030083792A1 - Skipping filter for inertially augmented landing system - Google Patents

Skipping filter for inertially augmented landing system Download PDF

Info

Publication number
US20030083792A1
US20030083792A1 US10/001,077 US107701A US2003083792A1 US 20030083792 A1 US20030083792 A1 US 20030083792A1 US 107701 A US107701 A US 107701A US 2003083792 A1 US2003083792 A1 US 2003083792A1
Authority
US
United States
Prior art keywords
gps
filter
signal
inertial
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/001,077
Other versions
US6549829B1 (en
Inventor
Leonard Anderson
Steven Krogh
Melville McIntyre
Thimothy Murphy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21694262&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030083792(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Boeing Co filed Critical Boeing Co
Priority to US10/001,077 priority Critical patent/US6549829B1/en
Assigned to BOEING COMPANY, THE reassignment BOEING COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANDERSON, LEONARD R., KROGH, STEVEN B., MCINTRYE, MELVILLE D., MURPHY, TIMOTHY
Priority to DE60220488T priority patent/DE60220488T3/en
Priority to EP02079013.5A priority patent/EP1308746B2/en
Application granted granted Critical
Publication of US6549829B1 publication Critical patent/US6549829B1/en
Publication of US20030083792A1 publication Critical patent/US20030083792A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/15Aircraft landing systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/52Determining velocity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]

Definitions

  • This invention relates to inertially augmented landing systems and more particularly methods and apparatus for overcoming delays in detection of GLS input signal errors essential to safe guidance in landing and rollout of an aircraft.
  • GLS GNSS Landing System
  • GLS developments to support CAT 1 operations are nearly complete.
  • the industry is now working on standards and performance requirements for GLS to support CAT II/III operations.
  • a key issue associated with GLS CAT II/III operations is the expected failure modes and effects of the GLS guidance system. It is anticipated that the most common failure mode for GLS will be a total loss of the signal for hundreds of seconds.
  • U.S. Pat. No. 6,178,363B1 shows a GPS/Inertial filtering scheme to enable the airplane to continue to land and roll out after a total loss of GLS guidance below the alert height.
  • FIG. 1 is a block diagram of a coasting filter as shown in U.S. Pat. No. 6,178,363B1 issued Jan. 23, 2001 to McIntyre et al. and assigned to The Boeing Company;
  • FIG. 2 is a block diagram of a preferred embodiment of the present combination coasting filter and skipping filter
  • the detection of an anomalous GPS position or GPS velocity signal could require from 3 to 6 seconds. Consequently, the coasting filter is potentially exposed to up to 6 seconds of an error in progress before the guidance signal is flagged. Once the GPS anomaly is detected, the coasting filter switches to pure inertial guidance mode. However, due to this 3-6 second lag time to alarm, the landing guidance signal may be corrupted. It is necessary to find a means of avoiding guidance corruption due to the delay in GPS fault detection.
  • the coasting filter of FIG. 1 is shown in U.S. Pat. No. 6,178,363B1.
  • the coasting filter of FIG. 1 receives GLS (differential GPS) position and velocity signals as shown. These high accuracy signals are used to identify the bias and bias-rate in the IRU (Inertial Reference Unit) velocity signal, shown.
  • the IRU velocity and acceleration biases are estimated by integrator outputs x 1 and x 2 .
  • the IRU position offset is estimated by the output of integrator x 3 .
  • the bias values for IRU velocity and acceleration are slowly varying quantities. They can be estimated with high accuracy (limited by the accuracy of GLS signals) during two or more minutes of landing approach. The IRU velocity and acceleration bias values are thus estimated for the subsequent coasting interval which can be up to one minute in duration.
  • the coasting filter may be exposed to several seconds of corrupted GPS input before detection. In this case, after the switch to inertial mode, the complementary velocity and complementary position would have been corrupted and would therefore yield reduced accuracy guidance.
  • the skipping filter of FIG. 2 is directed to a solution for overcoming this problem.
  • the general concept of the present skipping filter is as follows: The states of the filters (along with any filter inputs if necessary;) are stored in a time buffer for 6 seconds. When the GLS guidance signal is lost and the switches are set to the “coast” position, the filter states are reset to the states from N seconds prior. Then the filter states are propagated forward in time by applying the filter information recorded over the last N seconds. In this manner, any corruption of the filter state due to GLS guidance failures in progress will be removed. The time period N depends on the exact conditions causing the coast mode to be entered.
  • a specific embodiment of the present skipping filter comprises a complementary filter.
  • the skipping filter may be applied to any linear state space filter (including a Kalman Filter) implementation.
  • the integrators x 1 , x 2 , x 3 , x 4 are reset with stored values as follows: Assume the delayed signal detection interval is ⁇ t seconds, and the values of the integrators just before the corrupted GLS signal are x 1 old, x 2 old, x 3 old and x 4 old. These old values of integrator outputs would be stored in MMR memory (up to 6 seconds).
  • the current integrator values at the time of failure detection are x 1 now, x 2 now, x 3 now.
  • the velocity bias rate estimator x 1 is replaced with the before-corruption value x 1 old.
  • the velocity bias estimator x 2 is replaced with the before-corruption value x 2 old+ ⁇ t x 1 old, and the “position-effect-of-velocity-bias” integrator x 4 is replaced with the value x 4 old+ ⁇ t (x 2 old+ ⁇ t x 1 old/2).
  • the position bias estimator x 3 is replaced with the before-corruption value x 3 old.
  • the IRU velocity/position information at integrator x 5 is uncorrupted by the GLS signal fault and can be used without change.
  • the present skipping filter method allows the guidance error to recover immediately to its low pre-fault value with minor increase in filter complexity.
  • This improvement in guidance accuracy is provided through utilization of two additional integrators and storage of a few values for integrators x 1 , x 2 and x 3 .
  • limiters are placed on the difference between GLS and IRU position/velocity to minimize temporary misguidance during delayed error detection.
  • the error limiting is performed by the two limiters shown in FIG. 2.
  • the error limit values will be chosen so that the required MMR guidance accuracy is achieved without interfering with normal mode filter operation.
  • the present skipping filter has been tested in simulations with the result that whereas a 6-second uncorrected delay in detecting GLS signal faults can increase final lateral position error on the runway from 23 ft rms to 42 ft rms, the hereinbefore described skipping filter allows the recovery of guidance accuracy to a 24 ft rms level.

Abstract

The present method and apparatus consists of storing past values of estimated IRU error and using these past values to update the coasting filter when switching from GPS to inertial mode. Through the storage of past IRU error estimates, it is possible to avoid misdirected guidance from an erroneous GPS signal. The MMR and ground station can require up to 6 seconds to identify a failed GLS signal.

Description

    TECHNICAL FIELD
  • This invention relates to inertially augmented landing systems and more particularly methods and apparatus for overcoming delays in detection of GLS input signal errors essential to safe guidance in landing and rollout of an aircraft. [0001]
  • BACKGROUND OF THE INVENTION
  • Since 1993, the industry has been working to develop automatic landing capability using differential GPS. This capability is known as the GNSS Landing System GLS). GLS developments to support [0002] CAT 1 operations are nearly complete. The industry is now working on standards and performance requirements for GLS to support CAT II/III operations. A key issue associated with GLS CAT II/III operations is the expected failure modes and effects of the GLS guidance system. It is anticipated that the most common failure mode for GLS will be a total loss of the signal for hundreds of seconds. U.S. Pat. No. 6,178,363B1 shows a GPS/Inertial filtering scheme to enable the airplane to continue to land and roll out after a total loss of GLS guidance below the alert height.
  • Key to this concept is the ability of the GLS groundstation to provide the aircraft systems with the information required to determine with certainty when the GLS guidance signals are unusable. The airborne multi-mode receiver (MMR) must respond rapidly to switch away from the faulty GLS signals to updated inertial guidance in order to prevent the inertial signals from becoming corrupted by the errors in the GLS signals. Unfortunately, the GLS groundstation cannot communicate the status of the guidance signals instantaneously, and therefore the likelihood of corruption exists. Accordingly, the present method and apparatus as hereinafter described address this problem. [0003]
  • SUMMARY OF THE INVENTION
  • During a failure condition, it is possible for a differential GPS ground station to provide corrupted data for up to 3 seconds before raising an alarm. Furthermore, the airplane is allowed to continue to use the last data provided by the ground station for up to 3.5 seconds after the ground station stops transmitting data. Consequently, there could be a 3-6 second delay between GPS signal corruption and detection of the corruption by the airborne receiver. The present invention provides a means for correcting the integrated GPS/INS solution and protecting the airplane landing performance from any effects due to this potential for data corruption. A skipping filter in combination with a coasting filter shown in U.S. Pat. No. 6,178,363B1 enables recovery from up to 6 seconds of corrupted GPS signal, thereby avoiding subsequent miss-guidance from the anomalous GPS signal.[0004]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein: [0005]
  • FIG. 1 is a block diagram of a coasting filter as shown in U.S. Pat. No. 6,178,363B1 issued Jan. 23, 2001 to McIntyre et al. and assigned to The Boeing Company; [0006]
  • FIG. 2 is a block diagram of a preferred embodiment of the present combination coasting filter and skipping filter; [0007]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Preferred Embodiment [0008]
  • Due to the requirements on the Ground Based Augmentation System (i.e., the differential GPS ground station supporting the GLS function) the detection of an anomalous GPS position or GPS velocity signal could require from 3 to 6 seconds. Consequently, the coasting filter is potentially exposed to up to 6 seconds of an error in progress before the guidance signal is flagged. Once the GPS anomaly is detected, the coasting filter switches to pure inertial guidance mode. However, due to this 3-6 second lag time to alarm, the landing guidance signal may be corrupted. It is necessary to find a means of avoiding guidance corruption due to the delay in GPS fault detection. [0009]
  • The solution to this problem is the hereinafter described signal skipping filter which separates the inertial guidance signal from the GPS guidance signal, and therefore avoids corruption caused by the delayed detection of the GLS signal loss. [0010]
  • The coasting filter of FIG. 1 is shown in U.S. Pat. No. 6,178,363B1. The coasting filter of FIG. 1 receives GLS (differential GPS) position and velocity signals as shown. These high accuracy signals are used to identify the bias and bias-rate in the IRU (Inertial Reference Unit) velocity signal, shown. At the time of loss of GPS signal, the two switches go to open or “coast” position and the aircraft landing guidance is completed with IRU guidance alone. The IRU velocity and acceleration biases are estimated by integrator outputs x[0011] 1 and x2. The IRU position offset is estimated by the output of integrator x3. The bias values for IRU velocity and acceleration are slowly varying quantities. They can be estimated with high accuracy (limited by the accuracy of GLS signals) during two or more minutes of landing approach. The IRU velocity and acceleration bias values are thus estimated for the subsequent coasting interval which can be up to one minute in duration.
  • Due to the time delay to alarm of the ground station, the coasting filter may be exposed to several seconds of corrupted GPS input before detection. In this case, after the switch to inertial mode, the complementary velocity and complementary position would have been corrupted and would therefore yield reduced accuracy guidance. The skipping filter of FIG. 2 is directed to a solution for overcoming this problem. [0012]
  • The general concept of the present skipping filter is as follows: The states of the filters (along with any filter inputs if necessary;) are stored in a time buffer for 6 seconds. When the GLS guidance signal is lost and the switches are set to the “coast” position, the filter states are reset to the states from N seconds prior. Then the filter states are propagated forward in time by applying the filter information recorded over the last N seconds. In this manner, any corruption of the filter state due to GLS guidance failures in progress will be removed. The time period N depends on the exact conditions causing the coast mode to be entered. [0013]
  • A specific embodiment of the present skipping filter comprises a complementary filter. The skipping filter may be applied to any linear state space filter (including a Kalman Filter) implementation. [0014]
  • With the addition of two integrators it is possible to avoid corruption of the IRU guidance signal. Also, in order to avoid any unwanted effects of the anomalous 3-6 second GPS signal (either position or velocity), at the time coasting filter switches to inertial mode, the integrators x[0015] 1, x2, x3, x4 are reset with stored values as follows: Assume the delayed signal detection interval is Δt seconds, and the values of the integrators just before the corrupted GLS signal are x1old, x2old, x3old and x4old. These old values of integrator outputs would be stored in MMR memory (up to 6 seconds). The current integrator values at the time of failure detection are x1now, x2now, x3now. When a GPS anomaly is detected the delay, Δt, will be estimated based on the failure mode. The velocity bias rate estimator x1 is replaced with the before-corruption value x1old. The velocity bias estimator x2 is replaced with the before-corruption value x2old+Δt x1 old, and the “position-effect-of-velocity-bias” integrator x4 is replaced with the value x4old+Δt (x2old+Δt x 1old/2). The position bias estimator x3 is replaced with the before-corruption value x3old.
  • The IRU velocity/position information at integrator x[0016] 5 is uncorrupted by the GLS signal fault and can be used without change.
  • It can thus be seen that the present skipping filter method allows the guidance error to recover immediately to its low pre-fault value with minor increase in filter complexity. This improvement in guidance accuracy is provided through utilization of two additional integrators and storage of a few values for integrators x[0017] 1, x2 and x3.
  • In addition to recovering best estimates of IRU bias values when the coasting filter switches to coast mode, limiters are placed on the difference between GLS and IRU position/velocity to minimize temporary misguidance during delayed error detection. The error limiting is performed by the two limiters shown in FIG. 2. The error limit values will be chosen so that the required MMR guidance accuracy is achieved without interfering with normal mode filter operation. [0018]
  • The present skipping filter has been tested in simulations with the result that whereas a 6-second uncorrected delay in detecting GLS signal faults can increase final lateral position error on the runway from 23 ft rms to 42 ft rms, the hereinbefore described skipping filter allows the recovery of guidance accuracy to a 24 ft rms level. [0019]
  • The present improvement to the MMR (Multi-Mode Receiver) with GLS (differential GPS) will improve the availability of the aircraft landing system in the event of loss of GPS signal. [0020]
  • While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention. [0021]

Claims (5)

What is claimed is:
1. In combination in an inertially augmented GPS landing system:
means for continuously storing a moving time period window of data representative of an aircraft GPS and inertial state for the last time period; and
means for reconstructing the estimate of the inertial state errors in the event of a GPS signal failure.
2. The invention according to claim 1 wherein said moving time period window is 6 seconds.
3. A method for correcting the corruption of an inertial guidance signal caused by a faulty GPS signal comprising the steps of:
recognizing a GPS signal failure; and,
reconstructing in non-real time the prior 6 seconds of blended GPS inertial filtering; and
replacing the 6 seconds of corrupted filter output data with an uncorrupted set of data representing said 6 seconds.
4. In combination in an inertially augmented landing system:
a coasting filter; and
a skipping filter; and,
said skipping filter comprising a complementary filter including two integrators for separating an inertial guidance signal from a GPS guidance signal thereby avoiding corruption for the delayed detection of a GLS signal loss.
5. A method for utilizing a skipping filter comprising the steps of:
storing past values of estimated IRU error; and, then
utilizing said stored past values of estimated IRU error to update a coasting filter when switching from GPS to inertial mode.
US10/001,077 2001-10-31 2001-10-31 Skipping filter for inertially augmented landing system Expired - Lifetime US6549829B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/001,077 US6549829B1 (en) 2001-10-31 2001-10-31 Skipping filter for inertially augmented landing system
DE60220488T DE60220488T3 (en) 2001-10-31 2002-09-27 Filter for an inertially supported landing system
EP02079013.5A EP1308746B2 (en) 2001-10-31 2002-09-27 Filter for inertially augmented landing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/001,077 US6549829B1 (en) 2001-10-31 2001-10-31 Skipping filter for inertially augmented landing system

Publications (2)

Publication Number Publication Date
US6549829B1 US6549829B1 (en) 2003-04-15
US20030083792A1 true US20030083792A1 (en) 2003-05-01

Family

ID=21694262

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/001,077 Expired - Lifetime US6549829B1 (en) 2001-10-31 2001-10-31 Skipping filter for inertially augmented landing system

Country Status (3)

Country Link
US (1) US6549829B1 (en)
EP (1) EP1308746B2 (en)
DE (1) DE60220488T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060167619A1 (en) * 2004-12-03 2006-07-27 Thales Architecture of an onboard aircraft piloting aid system
WO2007099211A2 (en) * 2006-03-01 2007-09-07 Eurocopter Hybrid positioning method and device
US20080140315A1 (en) * 2006-12-12 2008-06-12 Krogh Steven B System and method for estimating inertial acceleration bias errors
FR2947342A1 (en) * 2009-06-30 2010-12-31 Thales Sa METHOD FOR DETERMINING THE POSITION OF A MOBILE TO A MOMENTUM AND MONITORING THE INTEGRITY OF THE POSITION OF THE MOBILE
EP2765390A1 (en) * 2013-02-08 2014-08-13 Dassault Aviation System and method for assisting with the navigation of an aircraft

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8203486B1 (en) 1999-03-05 2012-06-19 Omnipol A.S. Transmitter independent techniques to extend the performance of passive coherent location
US7782256B2 (en) 1999-03-05 2010-08-24 Era Systems Corporation Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects
US7667647B2 (en) 1999-03-05 2010-02-23 Era Systems Corporation Extension of aircraft tracking and positive identification from movement areas into non-movement areas
US7889133B2 (en) 1999-03-05 2011-02-15 Itt Manufacturing Enterprises, Inc. Multilateration enhancements for noise and operations management
US7777675B2 (en) 1999-03-05 2010-08-17 Era Systems Corporation Deployable passive broadband aircraft tracking
US7739167B2 (en) 1999-03-05 2010-06-15 Era Systems Corporation Automated management of airport revenues
US8446321B2 (en) 1999-03-05 2013-05-21 Omnipol A.S. Deployable intelligence and tracking system for homeland security and search and rescue
US7908077B2 (en) 2003-06-10 2011-03-15 Itt Manufacturing Enterprises, Inc. Land use compatibility planning software
US7570214B2 (en) 1999-03-05 2009-08-04 Era Systems, Inc. Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surviellance
US7219013B1 (en) * 2003-07-31 2007-05-15 Rockwell Collins, Inc. Method and system for fault detection and exclusion for multi-sensor navigation systems
US7965227B2 (en) 2006-05-08 2011-06-21 Era Systems, Inc. Aircraft tracking using low cost tagging as a discriminator
US7970503B2 (en) * 2007-09-12 2011-06-28 The Boeing Company Method and apparatus for detecting anomalies in landing systems utilizing a global navigation satellite system
US8260552B2 (en) 2008-04-30 2012-09-04 Honeywell International Inc. Systems and methods for determining location information using dual filters
US20110181465A1 (en) * 2010-01-26 2011-07-28 Rongsheng Li Multi-constellation global navigation satellite system augmentation and assistance
US8259012B2 (en) 2010-04-14 2012-09-04 The Boeing Company Software GNSS receiver for high-altitude spacecraft applications
US9159241B1 (en) 2011-04-15 2015-10-13 The Boeing Company Methods, systems, and apparatus for synthetic instrument landing system (SILS)
US8996598B2 (en) 2012-06-15 2015-03-31 The Boeing Company Latency compensation
US8958932B2 (en) 2013-02-11 2015-02-17 The Boeing Company Methods and apparatus to mitigate instrument landing system overflight interference
US8928527B2 (en) 2013-03-19 2015-01-06 Honeywell International Inc. Systems and methods for reducing error detection latency in LPV approaches
US9746562B2 (en) 2014-06-30 2017-08-29 The Boeing Company Portable ground based augmentation system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511829A (en) * 1994-04-12 1997-11-25 エヌエフエス ナヴィガツィオーンス− ウント フルークフュールングス−ジステーメ ゲゼルシャフト ミット ベシュレンクテル ハフツング Satellite navigation method
US5820080A (en) * 1996-03-14 1998-10-13 Trimble Navigation Limited Precision equivalent landing system using gps and an altimeter
US5948044A (en) * 1996-05-20 1999-09-07 Harris Corporation Hybrid GPS/inertially aided platform stabilization system
US5923286A (en) * 1996-10-23 1999-07-13 Honeywell Inc. GPS/IRS global position determination method and apparatus with integrity loss provisions
US5969672A (en) * 1998-07-17 1999-10-19 Honeywell Inc. GPS signal fault isolation monitor
US6178363B1 (en) 1998-12-22 2001-01-23 The Boeing Company Inertially augmented GPS landing system
US6760663B2 (en) * 1999-09-14 2004-07-06 Honeywell International Inc. Solution separation method and apparatus for ground-augmented global positioning system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7447590B2 (en) * 2004-12-03 2008-11-04 Thales Architecture of an onboard aircraft piloting aid system
US20060167619A1 (en) * 2004-12-03 2006-07-27 Thales Architecture of an onboard aircraft piloting aid system
US7911380B2 (en) 2006-03-01 2011-03-22 Eurocopter Hybrid positioning method and device
WO2007099211A2 (en) * 2006-03-01 2007-09-07 Eurocopter Hybrid positioning method and device
FR2898196A1 (en) * 2006-03-01 2007-09-07 Eurocopter France HYBRID POSITIONING METHOD AND DEVICE
WO2007099211A3 (en) * 2006-03-01 2007-10-18 Eurocopter France Hybrid positioning method and device
US20080140315A1 (en) * 2006-12-12 2008-06-12 Krogh Steven B System and method for estimating inertial acceleration bias errors
GB2444814A (en) * 2006-12-12 2008-06-18 Boeing Co Estimating inertial acceleration bias errors
GB2444814B (en) * 2006-12-12 2008-11-12 Boeing Co System and method for estimating inertial acceleration bias errors
US7962255B2 (en) 2006-12-12 2011-06-14 The Boeing Company System and method for estimating inertial acceleration bias errors
FR2947342A1 (en) * 2009-06-30 2010-12-31 Thales Sa METHOD FOR DETERMINING THE POSITION OF A MOBILE TO A MOMENTUM AND MONITORING THE INTEGRITY OF THE POSITION OF THE MOBILE
WO2011000643A1 (en) * 2009-06-30 2011-01-06 Thales Method for determining the position of a mobile body at a given instant and for monitoring the integrity of the position of said mobile body
US8566033B2 (en) 2009-06-30 2013-10-22 Thales Method for determining the position of a mobile body at a given instant and for monitoring the integrity of the position of said mobile body
EP2765390A1 (en) * 2013-02-08 2014-08-13 Dassault Aviation System and method for assisting with the navigation of an aircraft
US20140229100A1 (en) * 2013-02-08 2014-08-14 Dassault Aviation System and method for aircraft navigation assistance
FR3002032A1 (en) * 2013-02-08 2014-08-15 Dassault Aviat SYSTEM AND METHOD FOR AIDING NAVIGATION OF AN AIRCRAFT
US9031785B2 (en) * 2013-02-08 2015-05-12 Dassault Aviation System and method for aircraft navigation assistance

Also Published As

Publication number Publication date
EP1308746B1 (en) 2007-06-06
DE60220488T3 (en) 2013-10-10
US6549829B1 (en) 2003-04-15
EP1308746A2 (en) 2003-05-07
DE60220488T2 (en) 2008-02-07
EP1308746B2 (en) 2013-04-24
EP1308746A3 (en) 2004-12-15
DE60220488D1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
US6549829B1 (en) Skipping filter for inertially augmented landing system
EP2037344B1 (en) Method and apparatus for detecting anomalies in landing systems utilizing a global navigation satellite system
EP2113784B1 (en) Systems and methods for determining location information using dual filters
CN109100748B (en) Navigation integrity monitoring system and method based on low-orbit constellation
CA2337876C (en) Gps signal fault isolation monitor
CN111060133B (en) Integrated navigation integrity monitoring method for urban complex environment
US8131287B2 (en) Apparatus and method for diagnosing fault and managing data in satellite ground system
CN101685150B (en) Method and device for recapturing unlocked signals of satellite receiver
Nikiforov et al. Application of statistical fault detection algorithms to navigation systems monitoring
EP1097390B1 (en) Gps satellite drift monitor
CN104267410A (en) Method and device for excluding multiple faults in airborne integrity monitoring
Lee Receiver autonomous integrity monitoring (RAIM) capability for sole-means GPS navigation in the oceanic phase of flight
US20220065980A1 (en) Fault detection, exclusion, isolation, and re-configuration of navigation sensors using an abstraction layer
US20190049590A1 (en) Method for Determining Protection Levels of Navigation Solutions, Associated Computer Program Product and Receiver
EP3757518B1 (en) Method to assure integrity of integrated certified and non-certified sensors
CA3070808A1 (en) Alternate uncertainty limits in the presence of a detected satellite fault
US20100010692A1 (en) Integrating avionics system with single event upset autonomous recovery
CN115540907A (en) Multi-fault detection and elimination method based on GPS/BDS/INS tightly-combined navigation facing inter-satellite difference
CN111913192B (en) GBAS integrity risk allocation method based on key star
US20230358895A1 (en) System and method for multi-track environmental fault monitoring for aerial platforms
Bhatti An improved sensor level integrity algorithm for GPS/INS integrated system
Braff et al. Derivation of ranging source integrity requirements for the local area augmentation system (LAAS)
CN116699655A (en) Carrier rocket satellite navigation redundancy diagnosis method based on double receivers
CN116295519A (en) Navigation system fault diagnosis method
CN116821843A (en) Redundancy guide information fusion method based on federal filtering

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOEING COMPANY, THE, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDERSON, LEONARD R.;KROGH, STEVEN B.;MCINTRYE, MELVILLE D.;AND OTHERS;REEL/FRAME:012586/0417

Effective date: 20011031

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12