Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030101170 A1
Publication typeApplication
Application numberUS 10/159,516
Publication dateMay 29, 2003
Filing dateMay 31, 2002
Priority dateMay 25, 2001
Also published asUS7472137, US7475084, US7921098, US20050216500, US20050240606, US20060167927
Publication number10159516, 159516, US 2003/0101170 A1, US 2003/101170 A1, US 20030101170 A1, US 20030101170A1, US 2003101170 A1, US 2003101170A1, US-A1-20030101170, US-A1-2003101170, US2003/0101170A1, US2003/101170A1, US20030101170 A1, US20030101170A1, US2003101170 A1, US2003101170A1
InventorsJoseph Edelstein, Hayden Marchant, Rannen Meir, Marcel Schreiber
Original AssigneeJoseph Edelstein, Hayden Marchant, Rannen Meir, Schreiber Marcel Zvi
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Data query and location through a central ontology model
US 20030101170 A1
Abstract
A data query system including a first storage medium including a data schema having a data schema query language associated therewith, a second storage medium including an ontology model including classes and properties, the ontology model having an ontology query language associated therewith, wherein constructs of the database schema are mapped to corresponding classes, properties or compositions of properties of the ontology model, and an ontology query processor generating a query expressed in the data schema query language corresponding to a specified query expressed in the ontology query language. A method is also described and claimed.
Images(15)
Previous page
Next page
Claims(166)
What is claimed is:
1. A data query system comprising:
a first storage medium including a data schema having a data schema query language associated therewith;
a second storage medium including an ontology model including classes and properties, the ontology model having an ontology query language associated therewith, wherein constructs of the data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model; and
an ontology query processor generating a query expressed in the data schema query language corresponding to a specified query expressed in the ontology query language.
2. The data query system of claim 1 wherein said second storage medium is the same as said first storage medium.
3. The data query system of claim 1 wherein said second storage medium is different from said first storage medium.
4. The data query system of claim 1 wherein said first storage medium also provides at least one data source conforming to the data schema, and further comprising a database query processor executing the query expressed in the data schema query language on the at least one data source.
5. The data query system of claim 1 wherein the specified query expressed in the ontology query language includes a clause indicating at least one subject class to which a query applies.
6. The data query system of claim 5 wherein the specified query expressed in the ontology query language includes at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.
7. The data query system of claim 6 wherein at least one of the at least one property or composition of properties defined on the at least one subject class, are inherited from at least one property or composition of properties defined on a superclass of the subject class.
8. The data query system of claim 5 wherein the specified query expressed in the ontology query language includes at least one condition that must be satisfied by at least one value of a property or composition of properties defined on the at least one subject class.
9. The data query system of claim 8 wherein the property or composition of properties defined on the at least one subject class, is inherited from a property or composition of properties defined on a superclass of the subject class.
10. The data query system of claim 1 further comprising an ontology query builder generating a query expressed in the ontology query language.
11. The data query system of claim 10 wherein said ontology query builder enables a user to specify at least one subject class to which the query applies.
12. The data query system of claim 11 wherein said query builder enables a user to specify at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.
13. The data query system of claim 12 wherein at least one of the at least one property or composition of properties defined on the at least one subject class, are inherited from at least one property or composition of properties defined on a superclass of the subject class.
14. The data query system of claim 11 wherein said query builder enables a user to specify at least one condition that must be satisfied by at least one value of a property or composition of properties defined on the at least one subject class.
15. The data query system of claim 14 wherein the property or composition of properties defined on the at least one subject class, is inherited from a property or composition of properties defined on a superclass of the subject class.
16. The data query system of claim 1 wherein the data schema is a relational database schema, the constructs of which are tables and fields, and wherein the data schema query language is SQL.
17. The data query system of claim 1 wherein the data schema is an XML schema, the constructs of which are complex types, elements and attributes, and wherein the data schema query language is XQuery.
18. The data query system of claim 1 wherein the data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
19. The data query system of claim 1 wherein the data schema is an entity-relationship model.
20. The data query system of claim 1 further comprising a display processor generating a visual display of the query expressed in the data schema query language.
21. The data query system of claim 20 wherein the visual display includes a display of the query expressed in the ontology query language.
22. The data query system of claim 1 further comprising an additional storage medium including an additional data schema having an additional data schema query language associated therewith, wherein constructs of the additional data schema are also mapped to corresponding classes, properties or compositions of properties of the ontology model, and wherein said ontology query processor also generates a query expressed in the additional data schema query language corresponding to the specified query expressed in the ontology query language.
23. The data query system of claim 22 wherein said additional storage medium is the same as said first storage medium.
24. The data query system of claim 22 wherein said additional storage medium as different from said first storage medium.
25. The data query system of claim 22 wherein the additional data schema is the same as the data schema, and wherein the additional data schema query language is the same as the data schema query language.
26. The data query system of claim 22 wherein the additional data schema is different from the data schema, and wherein the additional data schema query language is different from the data schema query language.
27. The data query system of claim 26 wherein the data schema is a relational database schema and wherein the additional data schema is an XML schema.
28. A method for data query comprising:
providing a data schema having a data schema query language associated therewith;
providing an ontology model including classes and properties, the ontology model having an ontology query language associated therewith, wherein constructs of the data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model;
providing a query expressed in the ontology language; and
generating a query expressed in the data schema query language corresponding to the query expressed in the ontology query language.
29. The method of claim 28 further comprising:
providing at least one data source conforming to the data schema; and
executing the query expressed in the data schema language on the at least one data source.
30. The method of claim 28 wherein the query expressed in the ontology query language includes a clause indicating at least one subject class to which the query applies.
31. The method of claim 28 wherein the query expressed in the ontology language includes at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.
32. The method of claim 31 wherein at least one of the at least one property or composition of properties defined on the at least one subject class, are inherited from at least one property or composition of properties defined on a superclass of the subject class.
33. The method of claim 28 wherein the query expressed in the ontology language includes at least one condition that must be satisfied by at least one value of a property or composition of properties defined on the at least one subject class.
34. The method of claim 33 wherein the property or composition of properties defined on the at least one subject class, is inherited from a property or composition of properties defined on a superclass of the subject class.
35. The method of claim 28 further comprising generating a query expressed in the ontology language.
36. The method of claim 35 wherein said generating a query comprises specifying at least one subject class to which a query applies.
37. The method of claim 36 wherein said generating a query comprises specifying at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.
38. The method of claim 37 wherein at least one of the at least one property or composition of properties defined on the at least one subject class, are inherited from at least one property or composition of properties defined on a superclass of the subject class.
39. The method of claim 36 wherein said generating a query comprises specifying at least one condition that must be satisfied by at least one value of a property or composition of properties defined on the at least one subject class.
40. The method of claim 39 wherein the property or composition of properties defined on the at least one subject class, is inherited from a property or composition of properties defined on a superclass of the subject class
41. The method of claim 28 wherein the data schema is a relational database schema, the constructs of which are tables and fields, and wherein the data schema query language is SQL.
42. The method of claim 28 wherein the data schema is an XML schema, the constructs of which are complex types, elements and attributes, and wherein the data schema query language is XQuery.
43. The method of claim 28 wherein the data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
44. The method of claim 28 wherein the data schema is an entity-relationship model.
45. The method of claim 28 further comprising generating a visual display of the query expressed in the data schema query language.
46. The method of claim 45 wherein the visual display includes a display of the query expressed in the ontology query language.
47. The method of claim 28 further comprising;
providing an additional data schema having an additional data schema query language associated therewith, wherein constructs of the additional data schema are also mapped to corresponding classes, properties or compositions of properties of the ontology model; and
generating a query expressed in the additional data schema query language corresponding to the query expressed in the ontology query language.
48. The method of claim 47 wherein the additional data schema is the same as the data schema, and wherein the additional data schema query language is the same as the data schema query language.
49. The method of claim 47 wherein the additional data schema is different from the data schema, and wherein the additional data schema query language is different from the data schema query language.
50. The method of claim 47 wherein the data schema is a relational database schema and wherein the additional data schema is an XML schema.
51. A data locator system comprising:
at least one first storage medium including at least one data schema;
a second storage medium including an ontology model including classes and properties, wherein constructs of the at least one data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model; and
a data locator identifying constructs of the at least one data schema corresponding to specific classes or properties of the ontology model.
52. The data locator system of claim 51 wherein said second storage medium is the same as said first storage medium.
53. The data locator system of claim 51 wherein said second storage medium is different from said first storage medium.
54. The data locator system of claim 51 wherein said data locator identifies constructs of the at least one data schema corresponding to values of specific properties of the ontology model.
55. The data locator system of claim 54 wherein said data locator also identifies formats according to which the values of the specific properties are represented.
56. The data locator system of claim 51 wherein said at least one first storage medium comprises at least one data source conforming to the at least one data schema, and wherein said data locator also identifies, for each identified construct, data sources that contain data for the identified construct.
57. The data locator system of claim 51 wherein said data locator indicates classes and properties of the ontology model that correspond to constructs of the data schema.
58. The data locator system of claim 51 wherein at least one of the at least one data schema is a relational database schema, the constructs of which are tables and fields.
59. The data locator system of claim 58 wherein at least one of the at least one data schema is an XML schema, the constructs of which are complex types, elements and attributes.
60. The data locator system of claim 58 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
61. The data locator system of claim 58 wherein at least one of the at least one data schema is an entity relationship model.
62. The data locator system of claim 51 wherein at least one of the at least one data schema is an XML schema, the constructs of which are complex types, elements and attributes.
63. The data locator system of claim 62 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
64. The data locator system of claim 62 wherein at least one of the at least one data schema is an entity relationship model.
65. The data locator system of claim 51 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
66. The data locator system of claim 65 wherein at least one of the at least one data schema is an entity relationship model.
67. The data locator system of claim 51 wherein at least one of the at least one data schema is an entity-relationship model.
68. The data locator system of claim 51 further comprising a display processor generating a visual display of constructs of the at least one data schema identified by said data locator.
69. The data locator system of claim 68 wherein said at least one first storage medium comprises at least one data source conforming to the at least one data schema, and wherein said data locator also identifies, for each identified construct, data sources that contain data for the identified construct, and wherein the visual display includes a display of the data sources identified by said data locator.
70. The data locator system of claim 68 wherein said display processor generates an HTML page for the visual display.
71. The data locator system of claim 51 further comprising a report generator generating at least one report based on constructs of the at least one data schema identified by said data locator.
72. The data locator system of claim 70 wherein said report generator generates a list of classes and properties of the ontology model to which more than a prescribed number of constructs of the at least one data schema correspond.
73. A method for data location comprising:
providing at least one data schema;
providing an ontology model including classes and properties, wherein constructs of the at least one data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model; and
identifying constructs of the at least one data schema corresponding to specific classes or properties of the ontology model.
74. The method of claim 73 wherein said identifying constructs identifies constructs of the at least one data schema corresponding to values of specific properties of the ontology model.
75. The method of claim 73 wherein said identifying constructs also identifies formats according to which the values of the specific properties are represented.
76. The method of claim 73 further comprising providing at least one data source conforming to said at least one data schema, and wherein said identifying constructs comprises identifying, for each identified construct, data sources that contain data for the identified construct.
77. The method of claim 73 further comprising indicating classes and properties of the ontology model that correspond to constructs of the data schema.
78. The method of claim 73 wherein at least one of the at least one data schema is a relational database schema, the constructs of which are tables and fields.
79. The method of claim 78 wherein at least one of the at least one data schema is an XML schema, the constructs of which are complex types, elements and attributes.
80. The method of claim 78 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
81. The method of claim 78 wherein at least one of the at least one data schema is an entity relationship model.
82. The method of claim 73 wherein at least one of the at least one data schema is an XML schema, the constructs of which are complex types, elements and attributes.
83. The method of claim 82 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
84. The method of claim 82 wherein at least one of the at least one data schema is an entity relationship model.
85. The method of claim 73 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
86. The method of claim 85 wherein at least one of the at least one data schema is an entity relationship model.
87. The method of claim 73 wherein at least one of the at least one data schema is an entity-relationship model.
88. The method of claim 73 further comprising generating a visual display of constructs of the at least one data schema identified by said identifying constructs.
89. The method of claim 88 further comprising providing at least one data source conforming to said at least one data schema, and wherein said identifying constructs comprises identifying, for each identified construct, data sources that contain data for the identified construct, and wherein the visual display includes a display of the data sources identified by said identifying constructs.
90. The method of claim 88 wherein said generating a visual display generates an HTML page for the visual display.
91. The method of claim 73 further comprising generating at least one report based on constructs of the at least one data schema identified by said data locator.
92. The method of claim 91 wherein said generating generates a list of classes and properties of the ontology model to which more than a prescribed number of constructs of the at least one data schema correspond.
93. An ontology query system, comprising:
a storage medium providing an ontology model including classes and properties; and
a query builder generating an ontology query, the ontology query including a first clause indicating at least one subject class to which the query applies, and a second clause indicating at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.
94. The ontology query system of claim 93 wherein the ontology query includes a third clause indicating at least one condition that must be satisfied by values of properties or compositions of properties defined on the at least one subject class.
95. A method for querying ontological data, comprising:
providing an ontology model including classes and properties; and
generating an ontology query, the ontology query including a first clause indicating at least one subject class to which the query applies, and a second clause indicating at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.
96. The method of claim 95 wherein the ontology query includes a third clause indicating at least one condition that must be satisfied by values of properties or compositions of properties defined on the at least one subject class.
97. A data descriptor propagation system comprising:
at least one first storage medium including at least one data schema and at least one data source conforming to the at least one data schema;
a second storage medium including an ontology model including classes and properties, wherein constructs of the at least one data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model; and
a data descriptor propagator associating descriptors with data for data schema constructs in the at least one data source, corresponding to descriptors associated with corresponding classes and properties of the ontology system.
98. The data descriptor propagation system of claim 97 further comprising an ontology descriptor associating descriptors with classes and properties of an ontology.
99. The data descriptor propagation system of claim 97 wherein descriptors are used to specify access privileges to data.
100. The data descriptor propagation system of claim 97 wherein at least one of the at least one data schema is a relational database schema, the constructs of which are tables and fields.
101. The data descriptor propagation system of claim 97 wherein at least one of the at least one data schema is an XML schema, the constructs of which are complex types, elements and attributes.
102. The data descriptor propagation system of claim 97 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
103. The data descriptor propagation system of claim 97 wherein at least one of the at least one data schema is an entity-relationship model.
104. A method for data descriptor propagation comprising:
providing at least one data schema and at least one data source conforming to the at least one data schema;
providing an ontology model including classes and properties, wherein constructs of the at least one data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model; and
associating descriptors with data for data schema constructs in the at least one data source, corresponding to descriptors associated with corresponding classes and properties of the ontology system.
105. The method of claim 104 further comprising associating descriptors with classes and properties of an ontology.
106. The method of claim 104 wherein descriptors are used to specify access privileges to data.
107. The method of claim 104 wherein at least one of the at least one data schema is a relational database schema, the constructs of which are tables and fields.
108. The method of claim 104 wherein at least one of the at least one data schema is an XML schema, the constructs of which are complex types, elements and attributes.
109. The method of claim 104 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
110. The method of claim 104 wherein at least one of the at least one data schema is an entity-relationship model.
111. An ontology modeling system comprising:
at least one data construct for container classes for modeling sets, bags and lists;
at least one data construct for modeling multi-valued properties whose targets are said container classes; and
at least one data construct for imposing constraints on said multi-valued properties.
112. The ontology modeling system of claim 111 further comprising at least one data construct for assigning a minimum number of elements and a maximum number of elements to said multi-valued properties.
113. A COBOL mapping system for embedding a COBOL Copy Book including group items and elementary items into an ontology model including classes and properties, comprising:
at least one data construct for mapping at least one COBOL group item within a COBOL Copy Book to at least one class of an ontology model; and
at least one data construct for mapping at least one COBOL elementary items within the COBOL Copy Book to at least one property or composition of properties of the ontology model.
114. A method for embedding a COBOL Copy Book including group items and elementary items into an ontology model including classes and properties, comprising:
mapping at least one COBOL group item within a COBOL Copy Book to at least one class of an ontology model; and
at least one data construct for mapping at least one COBOL elementary items within the COBOL Copy Book to at least one property or composition of properties of the ontology model.
115. A computer readable medium (CRM) containing executable computer program instructions which, when executed on a processing system, cause the processing system to perform a method for data query comprising:
providing an ontology model including classes and properties, the ontology model having an ontology query language associated therewith, wherein constructs of a data schema having a data schema query language, associated therewith are mapped to corresponding classes, properties or compositions of properties of the ontology model;
generating a query expressed in the data schema query language corresponding to a query expressed in the ontology query language.
116. The CRM of claim 115, the method further comprising:
providing at least one data source conforming to the data schema; and
executing the query expressed in the data schema language on the at least one data source.
117. The CRM of claim 115 wherein the query expressed in the ontology query language includes a clause indicating at least one subject class to which the query applies.
118. The CRM of claim 115 wherein the query expressed in the ontology language includes at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.
119. The CRM of claim 118 wherein at least one of the at least one property or composition of properties defined on the at least one subject class, are inherited from at least one property or composition of properties defined on a superclass of the subject class.
120. The CRM of claim 115 wherein the query expressed in the ontology language includes at least one condition that must be satisfied by at least one value of a property or composition of properties defined on the at least one subject class.
121. The CRM of claim 120 wherein the property or composition of properties defined on the at least one subject class, is inherited from a property or composition of properties defined on a superclass of the subject class.
122. The CRM of claim 28, the method further comprising generating a query expressed in the ontology language.
123. The CRM of claim 122 wherein said generating a query comprises specifying at least one subject class to which a query applies.
124. The CRM of claim 123 wherein said generating a query comprises specifying at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.
125. The CRM of claim 124 wherein at least one of the at least one property or composition of properties defined on the at least one subject class, are inherited from at least one property or composition of properties defined on a superclass of the subject class.
126. The CRM of claim 123 wherein said generating a query comprises specifying at least one condition that must be satisfied by at least one value of a property or composition of properties defined on the at least one subject class.
127. The CRM of claim 126 wherein the property or composition of properties defined on the at least one subject class, is inherited from a property or composition of properties defined on a superclass of the subject class
128. The CRM of claim 115 wherein the data schema is a relational database schema, the constructs of which are tables and fields, and wherein the data schema query language is SQL.
129. The CRM of claim 115 wherein the data schema is an XML schema, the constructs of which are complex types, elements and attributes, and wherein the data schema query language is XQuery.
130. The CRM of claim 115 wherein the data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
131. The CRM of claim 115 wherein the data schema is an entity-relationship model.
132. The CRM of claim 115, the method further comprising generating a visual display of the query expressed in the data schema query language.
133. The CRM of claim 132 wherein the visual display includes a display of the query expressed in the ontology query language.
134. The CRM of claim 115, the method further comprising;
providing an additional data schema having an additional data schema query language associated therewith, wherein constructs of the additional data schema are also mapped to corresponding classes, properties or compositions of properties of the ontology model; and
generating a query expressed in the additional data schema query language corresponding to the query expressed in the ontology query language.
135. The CRM of claim 134 wherein the additional data schema is the same as the data schema, and wherein the additional data schema query language is the same as the data schema query language.
136. The CRM of claim 134 wherein the additional data schema is different from the data schema, and wherein the additional data schema query language is different from the data schema query language.
137. The CRM of claim 134 wherein the data schema is a relational database schema and wherein the additional data schema is an XML schema.
138. A computer readable medium (CRM) containing executable computer program instructions which, when executed on a processing system, cause the processing system to perform a method for data location comprising:
providing an ontology model including classes and properties, wherein constructs of at least one data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model; and
identifying constructs of the at least one data schema corresponding to specific classes or properties of the ontology model.
139. The CRM of claim 138 wherein said identifying constructs identifies constructs of the at least one data schema corresponding to values of specific properties of the ontology model.
140. The CRM of claim 138 wherein said identifying constructs also identifies formats according to which the values of the specific properties are represented.
141. The CRM of claim 138, the method further comprising providing at least one data source conforming to said at least one data schema, and wherein said identifying constructs comprises identifying, for each identified construct, data sources that contain data for the identified construct.
142. The CRM of claim 138, the method further comprising indicating classes and properties of the ontology model that correspond to constructs of the data schema.
143. The CRM of claim 138 wherein at least one of the at least one data schema is a relational database schema, the constructs of which are tables and fields.
144. The CRM of claim 143 wherein at least one of the at least one data schema is an XML schema, the constructs of which are complex types, elements and attributes.
145. The CRM of claim 143 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
146. The CRM of claim 143 wherein at least one of the at least one data schema is an entity relationship model.
147. The CRM of claim 138 wherein at least one of the at least one data schema is an XML schema, the constructs of which are complex types, elements and attributes.
148. The CRM of claim 147 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
149. The CRM of claim 147 wherein at least one of the at least one data schema is an entity relationship model.
150. The CRM of claim 138 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
151. The CRM of claim 150 wherein at least one of the at least one data schema is an entity relationship model.
152. The CRM of claim 138 wherein at least one of the at least one data schema is an entity-relationship model.
153. The CRM of claim 138 further comprising generating a visual display of constructs of the at least one data schema identified by said identifying constructs.
154. The CRM of claim 153 further comprising providing at least one data source conforming to said at least one data schema, and wherein said identifying constructs comprises identifying, for each identified construct, data sources that contain data for the identified construct, and wherein the visual display includes a display of the data sources identified by said identifying constructs.
155. The CRM of claim 153 wherein said generating a visual display generates an HTML page for the visual display.
156. The CRM of claim 138 further comprising generating at least one report based on constructs of the at least one data schema identified by said data locator.
157. The CRM of claim 156 wherein said generating generates a list of classes and properties of the ontology model to which more than a prescribed number of constructs of the at least one data schema correspond.
158. A computer readable medium (CRM) containing executable computer program instructions which, when executed on a processing system, cause the processing system to perform a method for querying ontological data, comprising:
storing an ontology model including classes and properties; and
generating an ontology query, the ontology query including a first clause indicating at least one subject class to which the query applies, and a second clause indicating at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.
159. The CRM of claim 158 wherein the ontology query includes a third clause indicating at least one condition that must be satisfied by values of properties or compositions of properties defined on the at least one subject class.
160. A computer readable medium (CRM) containing executable computer program instructions which, when executed on a processing system, cause the processing system to perform a method for data descriptor propagation comprising:
receiving an input from at least one data source conforming to the at least one data schema;
providing an ontology model including classes and properties, wherein constructs of the at least one data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model; and
associating descriptors with data for data schema constructs in the at least one data source, corresponding to descriptors associated with corresponding classes and properties of the ontology system.
161. The CRM of claim 160, the method further comprising associating descriptors with classes and properties of an ontology.
162. The CRM of claim 160 wherein descriptors are used to specify access privileges to data.
163. The CRM of claim 160 wherein at least one of the at least one data schema is a relational database schema, the constructs of which are tables and fields.
164. The CRM of claim 160 wherein at least one of the at least one data schema is an XML schema, the constructs of which are complex types, elements and attributes.
165. The CRM of claim 160 wherein at least one of the at least one data schema is a COBOL Copy Book, the constructs of which are group items and elementary items.
166. The CRM of claim 160 wherein at least one of the at least one data schema is an entity-relationship model.
Description
CROSS REFERENCES TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part of assignee's pending application U.S. Ser. No. 10/104,785, filed on Mar. 22, 2002, entitled “Run-Time Architecture for Enterprise Integration with Transformation Generation,” which is a continuation-in-part of application U.S. Ser. No. 10/053,045, filed on Jan. 15, 2002, entitled “Method and System for Deriving a Transformation by Referring Schema to a Central Model,” which is a continuation-in-part of assignee's application U.S. Ser. No. 09/904,457 filed on Jul. 6, 2001, entitled “Instance Brower for Ontology,” which is a continuation-in-part of assignee's application U.S. Ser. No. 09/866,101 filed on May 25, 2001, entitled “Method and System for Collaborative Ontology Modeling.”

FIELD OF THE INVENTION

[0002] The present invention relates to data processing; specifically to querying of data sources and locating data within data sources.

BACKGROUND OF THE INVENTION

[0003] Ontology provides a way to model things that exist. Basic constructs of an ontology model are classes, properties thereof and inheritance. Classes are sets, the elements of which are referred to as instances of the class. For example, a class People is a set of instances that represent specific people. A property, p, of a class is a function p: C→D from a class C, referred to as the source of p, to a class D, referred to as the target of p. The classes C and D may be the same class of different classes. When it is important to distinguish between properties defined on different classes, the notation C.p is used to denote a property, p, defined on C.

[0004] Properties may be composed, so that if p: C→D and q: D→E, then the composition qop: C→E has source C and target E. The composition is denoted by C.p.q.

[0005] A class C is said to be a subclass of D if C⊂D, in which case D is also said to be a superclass of C. In this case, every instance of C is also an instance of D, and properties defined on D are also defined on C by inheritance. For example, a class named Passengers may be a subclass of a class named People. A property such as firstName, defined on People is inherited by Passengers.

[0006] A special class named Being is defined in an ontology model as a universal class that contains all classes as subclasses thereof. Properties defined on Being are thus inherited by all classes in the ontology model.

[0007] Certain properties, referred to as “representations,” take on concrete fundamental alphanumeric values. The significance of representations is that they are properties one can reason about using arithmetic, logical and string operators, since their type corresponds to the types of mathematical expressions and programming language expressions.

[0008] In order to accommodate and provide values for representations, a special class Values is preferably created, so as to include all possible fundamental values a property may have. In addition, a special class Formats is also created, to include formats in which instances of Values can be expressed. Formats include inter alia conventional integer formats, real number formats, character string formats and date and time forrnats. A function representation: Values×Formats→Alphanumerics, converts a value into an alphanumeric string according to a specific format. For example, if lastName: People→Values, then representation(person.lastName, titleCase)=“Smith” (a character string), for an instance, person, of People corresponding to John Smith. Observe that lastName is a representation, and titleCase is a format.

[0009] Alternatively, various formats can be modeled as properties on the class Values, or subclasses thereof. With respect to this alternative model design choice, the last name of John Smith represented as a character string in title case is denoted person.lastName.titleCase. Observe that lastName and titleCase are both representations in this alternative model.

[0010] Applicant's co-pending application U.S. Ser. No. 10/053,045, filed on Jan. 15, 2002 and entitled “Method and System for Deriving a Transformation by Referring Schema to a Central Model” describes mapping data schema, including inter alia relational database schema and XML schema, into a central ontology model. Basic constructs of the data schema are mapped to classes, properties and compositions of properties in the central ontology model. Thus, for relational database schema, tables are generally mapped to ontology classes, and fields of tables are generally mapped to ontology properties or compositions of properties—more specifically, to properties or compositions of properties with target Values. Similarly, for XML schema, complex types are generally mapped to ontology classes, and elements and attributes within complex types are generally mapped to ontology properties or compositions of properties.

[0011] Enterprise data systems, especially for large enterprises, typically include multiple data sources that may be compliant with different data schemas. Indeed, as a result of several generations of IT and/or mergers and acquisitions, several databases with different schemas may contain information on the same functional area of the business. For example, enterprise employment data may be stored in relational databases conforming to a first relational database schema, enterprise accounting data may be stored in relational databases conforming to a second relational database schema, enterprise sales forecasts may be stored in relational databases conforming to a third relational database schema, enterprise inventory data may be stored in XML documents conforming to a first XML schema, and enterprise bill of materials data may be stored in XML documents conforming to a second XML schema. Often these various data sources may overlap, and it is difficult for a user to query across the enterprise data sources. For example, a user may want to know the bills of materials for items that need to be replenished in inventory based on demand forecasts.

[0012] There is thus a need for a unified querying tool that enables a user to query across data sources conforming to disparate data schemas.

[0013] The need for a unified querying tool also arises with one or multiple data sources, when engineers involved in application development, enterprise application integration or data warehousing may not be aware of the precise semantics of a database, and may therefore be unable to use its data appropriately.

[0014] The need for a unified querying tool also arises when a single question crosses multiple data sources.

[0015] Another difficulty faced by enterprises is being able to locate data within multiple data sources. With reference to the example above, a user may want to locate data sources containing employee stock option data. Such data may be distributed over multiple data sources, and may involve joining relational database tables that conform to different data schema.

[0016] There is thus a need for a data locator tool that enables a user to specify data of interest, and receive a list of constructs corresponding to the data of interest, and the various data sources containing data for such constructs.

[0017] The need for a data locator tool also arises when trying to locate overlaps, where a single aspect of enterprise information is stored in multiple locations. Such overlaps signal the potential for bad data quality, as they generally lead to inconsistencies.

SUMMARY OF THE INVENTION

[0018] Certain embodiments of the present invention provide a method and system for unified querying of data sources conforming to possibly disparate data schemas by use of a central ontology model into which the data schemas are embedded. In a preferred embodiment, the present invention uses an ontology query language for expressing queries about an ontology. Certain embodiments of the present invention enable a user to ask a question using an agreed business vocabulary for an ontology, and ensures that this question is translated accurately into a query on the underlying data sources.

[0019] Using mappings of the data schemas into the central ontology model, certain embodiments of the present invention convert a query referring to the central ontology model into a corresponding query referring to a data schema that is embedded within the central ontology model. Thus a user can build a generic query referring to the central ontology model, and convert it to queries that can be executed on various data sources. In a preferred embodiment, the present invention uses a query builder tool for generating queries referring to an ontology.

[0020] The present invention also provides a method and system for data location. In a preferred embodiment, a user can select a class or property from a central ontology model, and locate constructs in various data schema that correspond to his selection, as well as locations of data sources that contain data for such constructs.

[0021] Certain embodiments of the present invention enable a user to locate overlaps, where a single aspect of enterprise information is stored in multiple locations. The present invention can be used to identify ontology constructs that are mapped to too many different data sources. For example, the present invention can be used inter alia to highlight constructs that are mapped more than a given number, n, times.

[0022] There is thus provided in accordance with an embodiment of the present invention a data query system including a first storage medium including a data schema having a data schema query language associated therewith, a second storage medium including an ontology model including classes and properties, the ontology model having an ontology query language associated therewith, wherein constructs of the data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model, and an ontology query processor generating a query expressed in the data schema query language corresponding to a specified query expressed in the ontology query language.

[0023] There is further provided in accordance with an embodiment of the present invention a method for data query including providing a data schema having a data schema query language associated therewith, providing an ontology model including classes and properties, the ontology model having an ontology query language associated therewith, wherein constructs of the data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model, providing a query expressed in the ontology language, and generating a query expressed in the data schema query language corresponding to the query expressed in the ontology query language.

[0024] There is yet further provided in accordance with an embodiment of the present invention a data locator system including at least one first storage medium including at least one data schema, a second storage medium including an ontology model including classes and properties, wherein constructs of the at least one data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model, and a data locator identifying constructs of the at least one data schema corresponding to specific classes or properties of the ontology model.

[0025] There is moreover provided in accordance with an embodiment of the present invention a method for data location including providing at least one data schema, providing an ontology model including classes and properties, wherein constructs of the at least one data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model, and identifying constructs of the at least one data schema corresponding to specific classes or properties of the ontology model.

[0026] There is additionally provided in accordance with an embodiment of the present invention an ontology query system, including a storage medium providing an ontology model including classes and properties, and a query builder generating an ontology query, the ontology query including a first clause indicating at least one subject class to which the query applies, and a second clause indicating at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.

[0027] There is further provided in accordance with an embodiment of the present invention a method for querying ontological data, including providing an ontology model including classes and properties, and generating an ontology query, the ontology query including a first clause indicating at least one subject class to which the query applies, and a second clause indicating at least one property or composition of properties defined on the at least one subject class, values of which are to be displayed.

[0028] There is yet further provided in accordance with an embodiment of the present invention a data descriptor propagation system including at least one first storage medium including at least one data schema and at least one data source conforming to the at least one data schema, a second storage medium including an ontology model including classes and properties, wherein constructs of the at least one data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model, and a data descriptor propagator associating descriptors with data for data schema constructs in the at least one data source, corresponding to descriptors associated with corresponding classes and properties of the ontology system.

[0029] There is moreover provided in accordance with an embodiment of the present invention a method for data descriptor propagation including providing at least one data schema and at least one data source conforming to the at least one data schema, providing an ontology model including classes and properties, wherein constructs of the at least one data schema are mapped to corresponding classes, properties or compositions of properties of the ontology model, and associating descriptors with data for data schema constructs in the at least one data source, corresponding to descriptors associated with corresponding classes and properties of the ontology system.

[0030] There is additionally provided in accordance with an embodiment of the present invention an ontology modeling system including at least one data construct for container classes for modeling sets, bags and lists, at least one data construct for modeling multi-valued properties whose targets are said container classes, and at least one data construct for imposing constraints on the multi-valued properties.

[0031] There is further provided in accordance with an embodiment of the present invention a COBOL mapping system for embedding a COBOL Copy Book including group items and elementary items into an ontology model including classes and properties, including at least one data construct for mapping at least one COBOL group item within a COBOL Copy Book to at least one class of an ontology model, and at least one data construct for mapping at least one COBOL elementary items within the COBOL Copy Book to at least one property or composition of properties of the ontology model p There is yet further provided in accordance with an embodiment of the present invention a method for embedding a COBOL Copy Book including group items and elementary items into an ontology model including classes and properties, including mapping at least one COBOL group item within a COBOL Copy Book to at least one class of an ontology model, and at least one data construct for mapping at least one COBOL elementary items within the COBOL Copy Book to at least one property or composition of properties of the ontology model.

[0032] Other embodiments of the invention are also described, including, for example, computer readable medium (or media) containing executable computer program instructions, which when executed by a digital processing system, such as a general purpose computer having at least one microprocessor and memory and a bus, cause the system to perform one or more methods described herein. The medium may be a magnetic medium (e.g. a hard disk in a drive) or an optical medium (e.g. a CD-ROM).

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] The present invention will be more fully understood and appreciated from the following detailed description, taken in conjunction with the drawings in which:

[0034]FIG. 1 is a simplified block diagram of a data query system, in accordance with a preferred embodiment of the present invention;

[0035]FIG. 2 is a simplified flowchart of a method for querying data source, in accordance with a preferred embodiment of the present invention;

[0036]FIG. 3 is an illustration of a user interface for converting a query expressed in an ontology query language to a corresponding query expressed in a data schema query language, in accordance with a preferred embodiment of the present invention;

[0037]FIG. 4 is an illustration of a user interface for generating a query expressed in an ontology query language, in accordance with a preferred embodiment of the present invention;

[0038]FIG. 5 is a simplified block diagram of a data locator system, in accordance with a preferred embodiment of the present invention;

[0039]FIG. 6 is a simplified flowchart of a method for locating data, in accordance with a preferred embodiment of the present invention;

[0040]FIG. 7 is an illustration of a user interface for locating data within at least one data source, in accordance with a preferred embodiment of the present invention;

[0041]FIG. 8 is an illustration of a visual display for displaying data location results, in accordance with a preferred embodiment of the present invention;

[0042]FIG. 9 is an illustration of ontology model corresponding to a first example;

[0043]FIG. 10 is an illustration of ontology model corresponding to a second example;

[0044]FIG. 11 is an illustration of ontology model corresponding to a third example;

[0045]FIG. 12 is an illustration of ontology model corresponding to a fourth example;

[0046]FIG. 13 is a commutative diagram illustrating consistency of multi-valued properties; and

[0047]FIG. 14 is an illustration of ontology model with multi-valued properties.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

[0048] Certain embodiments of the present invention concern querying of data sources, and data location within the sources, through use of a central ontology model. Specifically, certain embodiments of the present invention use an ontology query language for expressing queries relating to an ontology, and a query conversion tool for converting such queries into corresponding queries relating to data schemas that are embedded within the ontology. The present invention, in one embodiment, can enable a user to ask a question using an agreed business vocabulary for an ontology, and ensures that this question is translated accurately into a query on the underlying data sources.

[0049] The present invention also uses, in certain embodiments, a data locator for locating data corresponding to specified classes and properties of an ontology, within data sources that conform to data schemas that are embedded within the ontology.

[0050] Reference is now made to FIG. 1, which is a simplified block diagram of a data query system, in accordance with a preferred embodiment of the present invention. Shown in FIG. 1 is a modeling layer 110, which enables a user to generate a central ontology model into which one or more data schemas can be embedded. While generating the central ontology model, the user preferably also maps constructs of the data schemas into corresponding classes, properties and compositions of properties in the central ontology model, through use of a mapping layer 120. Modeling and mapping layers are described in applicant's co-pending application U.S. Ser. No. 10/053,045, referenced hereinabove, the contents of which are hereby incorporated by reference.

[0051]FIG. 1 is divided by dashed vertical lines into a left part, a middle part and a right part. The left part relates to the data schemas and data sources, and the right part relates to the central ontology. The middle part relates to an engine that maps items from the left part to the right part, or vice versa.

[0052] A query later 130 processes a query expressed in an ontology language and generates a corresponding query expressed in a data schema language. Together, modules 110, 120 and 130 may reside within a single computer 140 for local computing, or may be distributed among a plurality of computers for distributed computing.

[0053] A query processor 140 is used to execute the query expressed in the data schema language on one or more data sources. In a preferred embodiment of the present invention, the query expressed in a data schema language is generated through an ontology query builder 150.

[0054] Reference is now made to FIG. 2, which is a simplified flowchart of a method for querying .data source, in accordance with a preferred embodiment of the present invention. At step 210 a central ontology model into which one or more given data schemas are embedded is generated. At step 220 constructs of the given data schemas are mapped into classes, properties and compositions of properties of the central ontology model. At step 230 a query expressed in an ontology query language is generated. At step 240 the query expressed in the ontology query language is converted to a query expressed in a data schema language. At step 250 the query expressed in the data schema language is executed on one or more data sources.

[0055] Reference is now made to FIG. 3, which is an illustration of a user interface for converting a query expressed in an ontology query language to a corresponding query expressed in a data schema query language, in accordance with a preferred embodiment of the present invention. Shown in FIG. 3 is a window 300 containing various panes. An upper left pane 305 displays components of a project named AirlinesSample. Shown highlighted in pane 305 is a “Queries” component. A lower left pane 310 displays an ontology model in a class hierarchical view. Pane 310 indicates that all classes inherit from a superclass named Being, and that a class named Person contains a subclass named Passenger, which contains a further subclass named FrequentFlyer. Shown highlighted in pane 310 is the class Passenger, which is the subject class for queries are displayed in the right-hand panes.

[0056] Specifically, upper right pane 315 displays a list of various queries on the class Passenger that already exist. Shown highlighted in pane 315 is a query named Priests_on_Board. Each query listed in pane 315 is expressed in an ontology query language. A pane 320 displays the query highlighted in pane 315 in the ontology query language. In a preferred embodiment of the present invention, a query expressed in the ontology query language includes three clauses. A first clause, designated as SELECT indicates one or more properties to be displayed. A second clause, designated as FROM indicates one or more subject class on which the properties are defined. A third clause, designated as WHERE indicates one or more conditions satisfied by one or more values of properties defined on the subject class. The three clauses for the Priests_on_Board query are displayed in a pane 320. Those skilled in the art will appreciate that the SELECT, FROM and WHERE clauses resemble their SQL counterparts. In a preferred embodiment of the present invention, an ontology query also includes a clause indicating a database for which the query is intended, as shown in pane 320.

[0057] A bottom right pane 325 displays a query expressed in a data schema language, which corresponds to the query displayed in pane 320. Specifically, in FIG. 3 pane 325 displays an SQL query for the database AIRLINES, which corresponds to the query Priests_on_Board in pane 320. The system of the present invention preferably converts the query in pane 320 to the query in pane 325 using the mapping from the relational database schema AIRLINES into the ontology model AirlinesSample.

[0058] A pane 330 is used to display system messages regarding the process of conversion from the query of pane 320 to the query of pane 325.

[0059] Various buttons are provided in window 300 for user interaction. Buttons 335, 340, 345, 350 and 355 relate to pane 315 and the list of queries. displayed therein. Button 335 enables a user to build a new query for the class Passenger. Upon clicking on button 335, a user interface for building queries is preferably invoked. Such a user interface is described with respect to FIG. 4 hereinbelow.

[0060] Button 340 enables a user to edit an existing query on the class Passenger. Button 345 enables a user to delete an existing query. Button 350 enables a user to update the SQL query displayed in pane 325 by re-executing the process that generates the SQL query from the ontology query. A button 355 enables a user to copy an existing query, for use inter alia in building a new query or editing an existing query. Finally, a button 360 is provided under pane 325 for copying a query displayed therein to a clipboard, preferably for input to a database application that executes the query on one or more data sources.

[0061] As can be seen in FIG. 3, the ontology language query

[0062] SELECT: Person firstName, Person.lastName, Passenger.passportNumber

[0063] FROM: Passenger<AirDemo>

[0064] WHERE: Person.lastName=“Cohen”

[0065] ON DATABASE: Airlines

[0066] is converts to the SQL query

[0067] SELECT FIRSTNAME, LASTNAME, PASSPORT

[0068] FROM BA_CUSTOMER

[0069] WHERE LASTNAME=“Cohen”

[0070] on the database AIRLINES. The table BA_CUSTOMER corresponds to the ontology class Passenger, and the fields FIRSTNAME, LASTNAME and PASSPORT of table BA_CUSTOMER correspond respectively to the properties firstName, lastName and passportNumber of class Passenger.

[0071] Reference is now made to FIG. 4, which is an illustration of a user interface for generating a query expressed in an ontology query language, in accordance with a preferred embodiment of the present invention. Shown in FIG. 4 is a window 400 used for filling in the SELECT, FROM and WHERE clauses of a query on an ontology class. A field 410 is provided to specify a name for the query. Fields 420, 430 and 440 are provided to enter three clauses of the query. The entries in these fields correspond to the query displayed in pane 320 of FIG. 3. Field 450 is provided to specify one or more databases on which the query is intended to be applied. In a preferred embodiment, the system of the present invention converts the query specified in fields 420, 430, 440 to a database query on the one or more databases specified in field 450. Such a converted query is displayed in pane 325 of FIG. 3.

[0072] To assist a user in filling in fields 420, 430 and 440, a lower left pane 460 displays a list of properties defined on the class Passenger. It is noted that some of these properties, such as PersonfirstName, are inherited from the superclass Person. Preferably, a user selects a desired property from the list displayed in pane 440, and uses an “Insert into Field” button 470 to insert the selected property into field 420 or field 440. Similarly, a lower right pane 480 displays a list of operators that can be used within conditions in the “Where:” clause. A user clicks on an “Insert into Field” button 490 to insert the selected operator into field 440.

[0073] Reference is now made to FIG. 5, which is a simplified block diagram of a data locator system, in accordance with a preferred embodiment of the present invention. FIG. 5 includes modeling layer 110 and mapping layer 120 from the system illustrated in FIG. 1. As in FIG. 1, FIG. 5 is also divided into three parts by dashed vertical lines; namely, data schemas and data sources on the left, central ontology model on the right, and an engine in the middle that maps items from the left to the right or vice versa.

[0074]FIG. 5 includes a data locator 530, used to identify data schema constructs corresponding to specified classes and properties of the ontology, and to identify data sources having data for such constructs.

[0075] Reference is now made to FIG. 6, which is a simplified flowchart of a method for locating data, in accordance with a preferred embodiment of the present invention. FIG. 6 includes steps 210 and 220 from the flowchart of FIG. 2. At step 630 constructs of the data schemas that map to one or more specified classes or properties of the central ontology model are identified. In a preferred embodiment of the present invention, data sources that have data for such constructs are also identified.

[0076] Reference is now made to FIG. 7, which is an illustration of a user interface for locating data within at least one data source, in accordance with a preferred embodiment of the present invention. Shown in FIG. 7 is a window 700 for locating data corresponding to selected classes or properties from a central ontology model. An upper left pane 710 displays components of a project named Order. Shown highlighted in pane 710 is a “Data Sources” component. A lower left pane 720 displays a class hierarchical view of an ontology model. Pane 710 indicates that all classes inherit from a superclass named Being. Shown highlighted in pane 710 is a class OrderItem, which is the subject class for data locating.

[0077] An upper right pane 730 displays properties defined on the class OrderItem. Shown highlighted in pane 730 is a property named quantity. In a preferred embodiment, the present invention is used to generate a list of data schema constructs and data sources having data for these constructs in a lower right pane 740. For example, pane 740 indicates that Field53 of a relational database table named Orders, within a relational database schema named TRACKER, corresponds to a representation of the property quantity, specifically to a value formatted as a real number in scientific notation. Moreover a database named GEOSTRAT has data for Field53.

[0078] An important feature of the present invention is the ability to locate data schema constructs that correspond to different representations of a specified property, such as quantity, and to identify the specific formats in which the data for such constructs are represented.

[0079] More generally, in a preferred embodiment the present invention locates data schema constructs that correspond to properties of a specified property. Consider, for example, a database table, Employee, mapped to an ontology class Employees, having a column for a laptop. Such a column Employee.laptop may be mapped to a composition of ontology properties Employee.laptop.model.name.noWhiteSpace. Here laptop is a property of class Employees of type Laptop, model is a property of class Laptop of type ComputerModel, name is a property of class ComputerModel of type String, and noWhiteSpace is a property of class String of type String. It is noted that when the present invention locates data for an employee's laptop, it points to the database table column Employee.laptop. It also provides the tail of the property so as to indicate that the column Employee.laptop contains data in the form of model.name.noWhiteSpace; i.e., the name of the laptop model formatted with no white space.

[0080] Finally, a pane 750 is used for displaying system messages regarding the results of the data locating process.

[0081] The data location features of the present invention may be used for data descriptor propagation as well. Specifically, a user may designate certain classes and properties of a central ontology as being of a certain type, such as “private” or “restricted use,” and in accordance with a preferred embodiment of the present invention, such type designation is propagated to data sources having data in schema constructs that correspond to the designated classes and properties. Appropriate data in fields of relational database tables and in elements of XML documents is thereby designated as being private or of restricted use.

[0082] Reference is now made to FIG. 8, which is an illustration of a visual display for displaying data location results, in accordance with a preferred embodiment of the present invention. Shown in FIG. 8 are relational database schemas and XML schemas that have constructs corresponding to an ontology class Order and its properties.

[0083] As can be seen in FIG. 8, a relational database named Logistics conforming to a relational database schema named Shipping has a table named PurchaseOrder that corresponds to the ontology class Order. Furthermore, the table fields PurchaseOrder.id and PurchaseOrder.totalcost correspond respectively to the ontology properties Order.id and Order.total, the former being represented in integer format and the latter being represented in the format of a string in scientific notation. In addition, the table PurchaseOrder has a field with a foreign key to a table PurchaseOrderEntry, the key corresponding to the ontology property Order.customer.

[0084] As can also be seen in FIG. 8, an XML schema named orderTargetNS has a complex type named Shipment that corresponds to the ontology class Order.

[0085] The data location feature of the present invention is useful in generating location-based reports. Such reports provide strong analysis capabilities and assist in identifying data duplication, data redundancy and data inconsistency. For example, such reports may reveal that a specific database ignores a particular property, or that multiple data sources relate to the same class with each one containing data for different subsets of properties of the class.

[0086] Such reports provide statistics for classes and properties of an ontology, including inter alia the number of data sources that are mapped to them, distributed according to source type, source location, source owner and source update frequency. Such reports also show the percentage of ontology concepts covered by a given data source, including a graph and table indicating the number of properties of a given class mapped to the data source, and including a list of such properties. Such reports also indicate the number of instances per ontology class or property, and the number of the instances having only partial data.

EXAMPLES

[0087] For purposes of clarity and exposition, the workings of the present invention are described through three examples, followed by a general description of implementation. The first three examples hereinbelow correspond to the corresponding first three examples described in applicant's co-pending application U.S. Ser. No. 10/053,045, referenced hereinabove, the contents of which are hereby incorporated by reference. The fourth example hereinbelow corresponds to the seventh example described in applicant's co-pending application U.S. Ser. No. 10/053,045.

Data Query—A First Example: Schoolchildren

[0088] In a first example, three source tables are given as follows:

TABLE I
Source Table S1 for First Example
Name School_Attending Mother_NI_Number

[0089]

TABLE II
Source Table S2 for First Example
NI_Number Name Region Car_Number

[0090]

TABLE III
Source Table S3 for First Example
Name Location HeadTeacher

[0091] The underlying ontology is illustrated in FIG. 9. The mapping of the source schema into the ontology is as follows, where the symbol o is used to indicate composition of properties.

TABLE IV
Mapping from Source schema to Ontology for First Example
schema Ontology Property Index
S1 Class: Child
S1.Name Property: Child.name 6
S1.School_Attending Property: Child.school 10o9  
attending.name
S1.Mother_NI_Number Property: Child.mother. 4o5 
national_insurance_number
S2 Class: Person
S2.NI_Number Property: Person.national 4
insurance_number
S2.Name Property: Person.name 3
S2.Region Property: Person.region 1
of_residence
S2.Car_Number Property: Person.car 2
registration_number
S3 Class: School
S3.Name Property: School.name 10 
S3.Location Property: School.location 12 
S3.HeadTeacher Property: School.headteacher. 3o11  
nameheadteacher

[0092] The following ontology language query is used to request a list of children's names and their mothers' names, for all children in the database who attend schools in London.

SELECT: Child.name, Child.mother.name
FROM: Child
WHERE: Child.school_attending.location = “London”

[0093] Using the present invention, the above ontology language query is converted to the following corresponding SQL query:

SELECT
S1.Name, S2.Name
FROM
S1, S2, S3
WHERE
S2.NI_Number = S1.Mother_NI_Number AND
S3.Name = S1.School_Attending AND
S3.Location = “London”

Data Query—A Second Example: Employees

[0094] In a second example, four source tables are given as follows:

TABLE V
Source Table S1 for Second Example
Emp_ID# Name Department

[0095]

TABLE VI
Source Table S2 for Second Example
Employee_Name Supervisor Project

[0096]

TABLE VII
Source Table S3 for Second Example
ID# Room_Assignment Telephone#

[0097]

TABLE VIII
Source Table S4 for Second Example
Department Budget

[0098] The underlying ontology is illustrated in FIG. 10. The mapping of the source schema into the ontology is as follows:

TABLE IX
Mapping from Source schema to Ontology for Second Example
Property
schema Ontology Index
S1 Class: Employee
S1.Emp_ID# Property: Employee.ID# 4
S1.Name Property: Employee.name 3
S1.Department Property: Employee.departmental 8o7 
affiliation.code
S2 Class: Employee
S2.Employee_Name Property: Employee.name 3
S2.Supervisor Property: Employee.supervisor.name 3o6 
S2.Project Property: Employee.project 5
assignment
S3 Class: Employee
S3.ID# Property: Employee.ID# 4
S3.Room_Assignment Property: Employee.room_number 1
S3.Telephone# Property: Employee.tel# 2
S4 Class: Department
S4.Department Property: Department.code 8
S4.Budget Property: Department.budget 9
amount

[0099] The following ontology language query is used to request a list of employees' names, departments and supervisors, for all employees in the database who are assigned to Room 101.

SELECT: Employee.name, Employee.department, Employee.supervisor
FROM: Employee
WHERE: Employee.room_number = “101”

[0100] Using the present invention, the above ontology language query is converted to the following corresponding SQL query:

SELECT
S1.Name, S1.Department, S2.Supervisor
FROM
S1, S2, S3
WHERE
S2.Employee_Name = S1.Name AND
S3.ID# = S1.Emp_ID# AND
S3.Room_Assignment = “101”

Data Query—A Third Example: Airline Flights

[0101] In a third example, two source tables are given as follows:

TABLE X
Source Table S1 for Third Example
Index APName Location

[0102]

TABLE XI
Source Table S2 for Third Example
FlightID FromAirport ToAirport

[0103] The underlying ontology is illustrated in FIG. 11. The mapping of the source schema into the ontology is as follows:

TABLE XII
Mapping from Source schema to Ontology for Third Example
schema Ontology Property Index
S1 Class: Airport
S1.Index Property: Airport.index 3
S1.APName Property: Airport.name 1
S1.Location Property: Airport.location 2
S2 Class: Flight
S2.FlightID Property: Flight.ID# 6
S2.FromAirport Property: Flight.from_airport.name 1o4 
S2.ToAirport Property: Flight.to_airport.name 1o5 

[0104] The following ontology language query is used to request a list of flight numbers, for all flights from New York to San Francisco.

SELECT: Flight. ID#
FROM: Flight
WHERE: Flight.from_airport.location = “New York” AND
Flight.to_airport.location = “San Francisco”

[0105] Using the present invention, the above ontology language query is converted to the following corresponding SQL query:

SELECT
S2.FlightID,
FROM
S1 S11, S1 S12, S2
WHERE
S11.APName = S2.FromAirport AND
S12.APName = S2.ToAirport AND
S11.Location = “New York” AND
S12.Location = “San Francisco”

Data Location—A Fourth Example: Employees

[0106] In the fourth example, four source tables are given as follows:

TABLE XIII
Source Table S1 for Seventh Example
ID Group

[0107]

TABLE XIV
Source Table S2 for Seventh Example
ID Email

[0108]

TABLE XV
Source Table S3 for Seventh Example
ID Email_Address

[0109]

TABLE XVI
Source Table S4 for Seventh Example
ID Unit

[0110] The underlying ontology is illustrated in FIG. 12. The mapping of the source schema into the ontology is as follows:

TABLE XVII
Mapping from Source schema to Ontology for Seventh Example
schema Ontology Property Index
S1 Class: Employee
S1.ID Property: Employee.ID# 2
S1.Group Property: Employee.department 4
S2 Class: Employee
S2.ID Property: Employee.ID# 2
S2.Email Property: Employee.e-mail 3
S3 Class: Employee
S3.ID Property: Employee.ID# 2
S3.Email_Address Property: Employee.e-mail 3
S4 Class: Employee
S4.ID Property: Employee.ID# 2
S4.Unit Property: Employee.department 4

[0111] For the property Employee, e-mail, the present invention indicates that this data is located at S2.Email and S4.Email_Address. Similarly, for the property Employee.department, the present invention indicates that this data is located at S1.Group and S3.Unit.

[0112] Multi-Valued Properties in an Ontolopy

[0113] A multi-valued property is a property that maps an instance in its source class to more than one instance in its target class. For example, a property Person.children may map a person from class Person to more than one child in class Person.

[0114] In order to effectively allow for multi-valued properties in addition to single-valued properties, provision is made in an ontology for “container” classes. Generally, container classes are built from simpler classes using tags for set, list and bag. The set symbol is used for describing a class comprising subsets of a class. The list symbol is used for describing a class comprising ordered subsets of a class; namely, sequences. The bag symbol is used for describing unordered finite sequences of a class, namely, subsets that can contain repeated elements. Thus set[C] describes the class of sets of instances of a class C, list[C] describes the class of lists of instances of class C, and bag[C] describes the class of bags of instances of class C. Elements of a sequence s ε list[C] are denoted by s[0], s[1], . . .

[0115] In terms of formal mathematics, for a set C, set[C] is 2C, the power set of C; bag[C] is NC, where N is the set of non-negative integers; and list[C] is CN; more precisely, the subset of CN consisting of finite sequences. There are natural projections

list [C]→/φbag[C]→/Ψset[C].  (1)

[0116] list[C]bag[C]set[C]. (1)

[0117] Specifically, for a sequence (c[0], c[1], . . . , c[n]) ε list[C], φ(c[0], c[1], . . . , c[n]) is the element fε bag[C] that is the “frequency histogram” defined by f(c)=#{0≦i≦n: c[i]=e}; and for fε bag[C], ψ(f)ε set[C] is the subset of C given by the support of f, namely, supp(f)={c ε C: f(c)>0}. It is noted that the composite mapping φ0ψ maps the sequence (c[0], c[1], . . . , c[n]) into the set of its elements {c[0], c[1], . . . , c[n]}. Each projection in Equation (1) removes some structure. Specifically, φ removes order and ψ removes repetition.

[0118] Using container sets, provision is made for multi-valued properties. Generally, the target of a multi-valued property is a container class. For example, a multi-valued property named children may have a class Person as its source and a container class set[Person] as its target.

[0119] A single-valued property p: C→D, from a class C to a class D has natural liftings to set[C], bag[C] and list[C]. Specifically, the lifting to sets, p: set[C]→set[D] is defined by p(S)={p(s): s ε S} for subsets S⊂C. The lifting to bags, p: bag[C]→bag[D] is defined by p ( f ) : d c p - 1 ( d ) f ( c ) ,

[0120] for f ε NC. The lifting to lists, p: list[C]→list[D] is defined by p(s)=pos, for a sequence s ε CN.

[0121] An important feature of these liftings of p is their consistency with the projections from Equation (1), as illustrated by the commutative diagrams in FIG. 13.

[0122] Compositions of multi-valued properties is governed by Equation (1). Specifically, a multi-valued property p with target bag[C] can be followed by a property q with source set[C] according to qp=qoφop. Similarly, a multi-valued property p with target list[C] can be followed by a property q with source bag[C] according to qp=qoφop, and a multi-valued property p with target list[C] can be followed by a property q with source set[C] according to qp=qoφoψop.

[0123] For example, a property totalCost: bag[Components]→Values can be applied to list[Components] by converting a list to a bag via the projection φ.

[0124] Familiar algebraic data structures including inter alia vectors and matrices correspond to lists of pre-determined length.

[0125] For data models that require the notion of an ordered set of instances without repetition, such a structures are considered as a special subset of list[C]; namely, lists without repetition.

[0126] To simplify compositions of properties, in one embodiment of the present invention special identifications are made to collapse containers of containers. Specifically, set[set[C]] is identified as set[C], through the set union. Thus, Person.children.children is identified as a set of people corresponding to a person's grandchildren, instead of as a set of sets of people. Similarly, bag[bag[C]] is identified as bag[C] by adding frequencies, and list[list[C]] is identified as list[C] by combining a list of lists into a single list.

[0127] Optionally, set[bag[C]], bag[set[C]], set[list[C]] and list[set[C] may be identified as set[C] by removing order and repetition structure through use of the projections φ and ψ from Equation (1). Similarly, bag[list[C]] and list[bag[C]] may be identified as bag[C] by removing order structure through use of the projection φ from Equation (1).

[0128] In an alternate embodiment of the present invention, containers of containers are not collapsed.

[0129] In data models it is often important to indicate minimum and maximum numbers of elements in the target of a multi-valued property. For example, a property Person.parents has a maximum of two elements in its target set. To this end, multi-valued properties may have min_elements and max_elements as attributes. Such attributes serve to limit the target of multi-valued properties to specific subsets of set[C], bag[C] and list[C]; namely, those subsets, bags and lists, respectively, having a number of elements, n, satisfying min_elements≦n≦max_elements.

[0130] In a preferred embodiment of the present invention, constraints may be imposed relating single-valued and multi-valued properties. For example, a constraint

BillOfGoods.totalCost=ΣBillOfGoods.items[k].cost relates properties totalCost: BillOfGoods→Values, items: BillOfGoods→list[Parts] and cost: Parts→Values.

[0131] Multi-valued properties can be used to model n-ary relationships within an ontology. For example, a tertiary relationship R⊂C1×C2×C3 can be modeled as a property r: C1→set[C2×C3], defined according to r(c1)={(C2, C3): R(C1, C2, C3)}. The ability to model relationships enables the present invention to import data models that support relationships, such as the entity-relationship data model. Many-to-many relationships can be imported as multi-valued ontology properties. A reference for the entity-relationship data model is Garcia-Molina, Ullman, Jeffrey D. and Widom, Jennifer, “Database Systems: The Complete Book,” Prentice Hall, Upper Saddle River, N.J., 2002.

[0132] In a preferred embodiment of the present invention, multi-valued properties are used for embedding data schema into an ontology model, for schema that include constructs that can include more than one data elements.

[0133] For example, XML complexTypes can include sets of sequences of XML elements therewithin. Consider the XML schema from Example Fourteen of applicant's above-referenced co-pending application U.S. Ser. No. 10/053,045.

[0134] The underlying ontology is illustrated in FIG. 14. Observe that the XML element “letters” within the XML complexType “storage” corresponds to the multi-valued property Storage.letters from the class Storage to the container class set[Letter]. Similarly the XML elements “articles” and “reviews” within the XML complexType “storage” correspond to multi-valued properties Storage.articles and Storage.reviews, respectively, from the class Storage to the container class set[Document].

[0135] Cobol Copy Books

[0136] The present invention can be used to query COBOL records. Using COBOL, variables are declared as follows:

01 StudentDetails.
02 StudentId PIC 9(7).
02 StudentName.
03 FirstName PIC X(10).
03 MiddleInitial PIC X.
03 Surname PIC X(15).
02 DateofBirth.
03 DayofBirth PIC 99.
03 MonthofBirth PIC 99.
03 YearofBirth PIC 9(4).
02 CourseCode PIC X(4).

[0137] The variable StudentDetails includes group items, emphasized above in bold, and elementary items. Data can be read or written from variables provided that the size of the data corresponds to the declared sizes.

[0138] In the above typing for elementary items, 9 denotes a number and X denotes an alphanumeric. The notation 9(5) denotes a five digit non-negative integer. In addition, V is used to denote a decimal point, and S is used to denote a sign.

[0139] A COBOL Copy Book (CCB) is the metadata for COBOL format data that is saved to disk. A CCB defines the format of a COBOL record. The instances of a record defined by a CCB are in binary format.

[0140] It is noted that the above CCB corresponds to the following

[0141] XML schema:

[0142] Specifically, a CCB corresponds to a restricted type of XML schema. Group items in a CCB correspond to complexTypes in an XML schema, and elementary items in a CCB correspond to elements in an XML schema.

[0143] Implementation Details

[0144] The present invention overcomes several challenges when converting queries from the three-clause SELECT-FROM-WHERE ontology query language to data schema query language. For conversion to SQL, these include:

[0145] 1. Joining appropriate tables corresponding to one or more classes in the FROM clause.

[0146] 2. Identifying fields corresponding to one or more properties in the SELECT clause.

[0147] 3. Converting conditions in the WHERE clause to SQL format.

[0148] The former two challenges involve the mapping from tables and fields of relational database schemas into classes and properties of an ontology model, and can be overcome using applicant's technology for generating SQL transformations, as described in applicant's co-pending application U.S. Ser. No. 10/053,045, referenced hereinabove. Specifically, this application describes generating transformations for populating target data conforming to a target data schema from source data conforming to a source data schema. In particular, this application describes how to express target schema constructs in terms of source schema constructs. For the case at hand, the target schema constructs are the properties in the SELECT clause.

[0149] The latter challenge involves converting a logical expression from ontology format into SQL format, and can be overcome using Codd's normalization for converting from first order logic to SQL.

[0150] For conversion of an ontology query to an XQuery, three similar challenges arise, where complex types correspond to one or more classes in the FROM clause and elements and attributes correspond to one or more properties in the SELECT clause. As above, applicant's co-pending U.S. Ser. No. 10/053,045 describes generating XSL transformations, which can be used to overcome the first two challenges.

[0151] The latter challenge involves converting a logical expression from ontology format to XQuery format.

[0152] In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made to the specific exemplary embodiments without departing from the broader spirit and scope of the invention as set forth in the appended claims. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7065602 *Jul 1, 2003Jun 20, 2006International Business Machines CorporationCircuit and method for pipelined insertion
US7293010Apr 15, 2005Nov 6, 2007Ontoprise GmbhEnterprise information integration platform
US7487142Jun 10, 2004Feb 3, 2009International Business Machines CorporationMethods and apparatus for specifying and processing descriptive queries for data sources
US7487166 *Apr 18, 2005Feb 3, 2009Ontoprise GmbhMapping web services to ontologies
US7496585Apr 23, 2004Feb 24, 2009International Business Machines CorporationMethods and apparatus for discovering data providers satisfying provider queries
US7552117 *May 26, 2005Jun 23, 2009International Business Machines CorporationUsing ontological relationships in a computer database
US7555441Oct 10, 2003Jun 30, 2009Kronos Talent Management Inc.Conceptualization of job candidate information
US7685155Mar 23, 2004Mar 23, 2010Microsoft CorporationSystem and method of providing and utilizing an object schema to facilitate mapping between disparate domains
US7698257 *May 16, 2006Apr 13, 2010Business Objects Software Ltd.Apparatus and method for recursively rationalizing data source queries
US7730098Mar 2, 2007Jun 1, 2010International Business Machines CorporationMethod for supporting ontology-related semantic queries in DBMSs with XML support
US7739223Aug 29, 2003Jun 15, 2010Microsoft CorporationMapping architecture for arbitrary data models
US7761480Jul 22, 2004Jul 20, 2010Kinor Technologies Inc.Information access using ontologies
US7779024 *Feb 28, 2008Aug 17, 2010International Business Machines CorporationUsing ontological relationships in a computer database
US7823123Mar 17, 2006Oct 26, 2010The Mitre CorporationSemantic system for integrating software components
US7840600 *Dec 29, 2007Nov 23, 2010Izenda, LLCSystems and methods for interactively creating, customizing, and executing reports over the internet
US7877726 *Jul 13, 2004Jan 25, 2011The Mitre CorporationSemantic system for integrating software components
US7912862Jul 21, 2008Mar 22, 2011Microsoft CorporationRelational schema format
US7945575 *May 27, 2004May 17, 2011International Business Machines CorporationMethod of transforming queries based upon E/R schema into multi-dimensional expression queries
US8200647 *Jan 12, 2009Jun 12, 2012International Business Machines CorporationMethods and apparatus for specifying and processing descriptive queries for data sources
US8219585 *Jun 3, 2011Jul 10, 2012Enterprise Elements, Inc.Database data dictionary
US8224855 *Jun 3, 2011Jul 17, 2012Enterprise Elements, Inc.Database data dictionary
US8478766 *Feb 2, 2011Jul 2, 2013Comindware Ltd.Unified data architecture for business process management
US8495004Mar 27, 2006Jul 23, 2013International Business Machines CorporationDetermining and storing at least one results set in a global ontology database for future use by an entity that subscribes to the global ontology database
US8515997Jun 15, 2012Aug 20, 2013Enterprise Elements, Inc.Database data dictionary
US8516016Jul 7, 2010Aug 20, 2013Johnson Controls Technology CompanySystems and methods for facilitating communication between a plurality of building automation subsystems
US8566789Aug 23, 2006Oct 22, 2013Infosys LimitedSemantic-based query techniques for source code
US8635182Oct 3, 2011Jan 21, 2014Johnson Controls Technology CompanySystems and methods for reporting a cause of an event or equipment state using causal relationship models in a building management system
US8655830Nov 5, 2010Feb 18, 2014Johnson Controls Technology CompanySystems and methods for reporting a cause of an event or equipment state using causal relationship models in a building management system
US8661016Feb 21, 2012Feb 25, 2014International Business Machines CorporationMethods and apparatus for specifying and processing descriptive queries for data sources
US8682921Jul 7, 2010Mar 25, 2014Johnson Controls Technology CompanyQuery engine for building management systems
US20090182735 *Jan 12, 2009Jul 16, 2009International Business Machines CorporationMethods and Apparatus for Specifying and Processing Descriptive Queries for Data Sources
US20120317591 *Jun 4, 2012Dec 13, 2012Progress Software CorporationImplementation System for Business Applications
EP1515250A2 *Sep 8, 2004Mar 16, 2005Hewlett-Packard Development Company, L.P.Method and apparatus for information search
EP1519266A2 *Jun 30, 2004Mar 30, 2005Microsoft CorporationMapping architecture for arbitrary data models
EP1965313A1 *Oct 31, 2006Sep 3, 2008British Telecommunications Public Limited CompanyData processing
EP2365448A1 *Mar 11, 2010Sep 14, 2011British Telecommunications PLCData integration system
WO2005008358A2Jul 22, 2004Jan 27, 2005Kinor Technologies IncInformation access using ontologies
Classifications
U.S. Classification1/1, 707/E17.006, 707/E17.032, 707/E17.058, 707/999.003, 707/999.1
International ClassificationG06F17/00, G06F7/00, G06F17/30
Cooperative ClassificationG06F17/30557, G06F17/30427, Y10S707/99944, Y10S707/99943, Y10S707/99948, Y10S707/99942, Y10S707/99945
European ClassificationG06F17/30S4P2, G06F17/30S5
Legal Events
DateCodeEventDescription
Dec 14, 2006ASAssignment
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:2006 TRIDENT COMPANY, INC.;REEL/FRAME:018627/0913
Effective date: 20061117
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION,NEW YO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:2006 TRIDENT COMPANY, INC.;US-ASSIGNMENT DATABASE UPDATED:20100302;REEL/FRAME:18627/913
Jul 27, 2006ASAssignment
Owner name: 2006 TRIDENT COMPANY, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNICORN SOLUTIONS, INC.;REEL/FRAME:018013/0001
Effective date: 20060505
Sep 27, 2002ASAssignment
Owner name: UNICORN SOLUTIONS INC, DELAWARE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EDELSTEIN, JOSEPH;MARCHANT, HAYDEN;MEIR, RANNEN;AND OTHERS;REEL/FRAME:013331/0580;SIGNING DATES FROM 20020910 TO 20020918