Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030137980 A1
Publication typeApplication
Application numberUS 10/321,520
Publication dateJul 24, 2003
Filing dateDec 18, 2002
Priority dateJan 21, 2002
Also published asDE60301675D1, DE60301675T2, EP1330079A1, EP1330079B1, US7333427
Publication number10321520, 321520, US 2003/0137980 A1, US 2003/137980 A1, US 20030137980 A1, US 20030137980A1, US 2003137980 A1, US 2003137980A1, US-A1-20030137980, US-A1-2003137980, US2003/0137980A1, US2003/137980A1, US20030137980 A1, US20030137980A1, US2003137980 A1, US2003137980A1
InventorsChung-Ji Jung
Original AssigneeChung-Ji Jung
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Router system and method of duplicating forwarding engine
US 20030137980 A1
Abstract
The present invention discloses a router system receiving data from a predetermined node in networks, and transmitting the data to an appropriate node by switching the data according to routing information, the router system including: a data bus; a routing controller generating routing tables and forwarding tables by operating routing protocols, and controlling mutual interactions and data flows in each devices with the router system; multiple forwarding engines performing functions of forwarding data according to the forwarding tables generated by the routing controller, having the same configurations and functions for mutual substitutions when troubles happens, and establishing main/subordinate relations among the forwarding engines; multiple in/out interfaces connected with the networks and each of the forwarding engines and data bus, performing data interfaces between the networks and the inside of the router system, and functions of switching the data to the networks, each of the forwarding engines, or each of the data bus to transmit the data; and a switch fabric switching the data among the forwarding engines according to the routing tables. Therefore, system resources, such as slots or subordinate forwarding engine, can be saved by preventing unnecessary installation of the subordinate forwarding engine, and loss time for exchanging the troubled forwarding engine.
Images(8)
Previous page
Next page
Claims(20)
What is claimed is:
1. A router system receiving data from a predetermined node in networks, and transmitting the data to an appropriate node by switching the data according to routing information, the router system comprising:
a data bus;
a routing controller generating routing tables and forwarding tables by operating routing protocols, and controlling mutual interactions and data flows in each devices with the router system;
multiple forwarding engines performing functions of forwarding data according to the forwarding tables generated by the routing controller, having the same configurations and functions for mutual substitutions when troubles happen, and establishing main/subordinate relations among the forwarding engines;
multiple input and output interfaces connected with the networks and each of the forwarding engines and data bus, performing data interfaces between the networks and the inside of the router system, and functions of switching the data to the networks, each of the forwarding engines, or each of the data bus to transmit the data; and
a switch fabric switching the data among the forwarding engines according to the routing tables.
2. The router system according to claim 1, with each of the forwarding engines having a characteristic of the same hardware configuration and the same software setting value with the other forwarding engine.
3. The router system according to claim 1, with each of the forwarding engines functioning to forward data in the main, and performs substitution functions in secondary when other forwarding engines, preset in main/subordinate relations, are in troubles.
4. The router system according to claim 1, with a predetermined forwarding engine among the multiple forwarding engines being exclusively used as the subordinate forwarding engine, when data traffics do not exist and all of the forwarding engine are not applied.
5. The router system according to claim 1, with the main/subordinate relations being set in software of the routing controller.
6. The router system according to claim 1, with each of the input and output interfaces being connected with the corresponding each of the forwarding engines, and separated from the corresponding each of the forwarding engines physically.
7. The router system according to claim 1, with each of the input and output interfaces comprises:
a data terminal converting various types of data from the networks to a specified type of data operated within the inside of the router system, performing interfaces between the inside of the router system and the networks; and
a data switching unit, connected with the data terminal, the data bus, and each of the forwarding engines, performing mutual selection switching to the data according to controls of the routing controller.
8. The router system according to claim 7, with the specified type of data belonging to the third hierachical layer, Internet protocol, of open system interfaces 7 layers.
9. The router system according to claim 7, with the mutual selection switching to the data comprising:
switching to a first direction for transmitting the data to input and output interfaces connected with a subordinate forwarding engine through the data bus according to the main/subordinate relations, when the forwarding engine is in trouble and normal data process is not possible;
switching to a second direction for transmitting the data between the data terminal and the forwarding engine mutually, when the forwarding engine is operated normally; and
switching to a third direction for transmitting the data from the data bus to the forwarding engine, when the forwarding engine is operated as a subordinate forwarding engine of other forwarding engine according to the main/subordinate relations.
10. The router system according to claim 1, with the routing controller detecting continuously whether the multiple forwarding engines are operated normally or not.
11. A method of duplicating a forwarding engine in a router system comprising multiple forwarding engines, each of the forwarding engines includes the same configuration and function, for forwarding data, multiple input and output interfaces connected with the corresponding each of the multiple forwarding engines for interfacing and switching with the outside communication networks, data bus for connecting mutually with the multiple input and output interfaces, a switch fabric for switching data among the forwarding engines, and a routing controller for controlling mutual interactions and data flows of each of the devices within the router system, the method of duplicating forwarding engine comprising the steps of:
setting main/subordinate relations to the multiple forwarding engines by the routing controller, for preparing abnormal operations of the multiple forwarding engines;
detecting continuously by the routing controller whether the forwarding engine is operated normally or not, when the routing system begins to operate; and
suspending operations of a troubled forwarding engine by the routing controller, and controlling switching of the input and output interfaces to substitute a subordinate forwarding engine for the troubled forwarding engine according to the setting values of the main/subordinate relations, when a predetermined forwarding engine is in trouble.
12. The method of duplicating a forwarding engine in a router system according to claim 11, with the step of setting the main/subordinate relation choosing more than one subordinate forwarding engines by designating a priority to the subordinate forwarding engines.
13. An apparatus receiving data from a predetermined node in networks, and transmitting the data to an appropriate node by switching the data according to routing information, the apparatus comprising:
a bus accommodating data;
a controller generating routing tables and forwarding tables by operating routing protocols, and controlling mutual interactions and data flows in each of the devices with the apparatus;
a plurality of first units performing a forwarding of data according to the forwarding tables generated by said controller, having the same configurations and functions for mutual substitutions when troubles happen, and establishing main-subordinate relations among said first units;
a plurality of interfaces connected with the networks and each of said first units and said bus, performing data interfaces between the networks and the inside of the apparatus, and functions of switching the data to the networks, each of said first units, or said bus to transmit the data; and
a second unit switching the data among said first units according to the routing tables.
14. The apparatus according to claim 13, with each of said first units including a characteristic of the same hardware configuration and the same software setting value with the other first units.
15. The apparatus according to claim 14, with each of said first units functioning to forward data in the main, and performing substitution functions in secondary when other first units, preset in main/subordinate relations, are in trouble.
16. The apparatus according to claim 15, with a predetermined first unit among said plurality of first units being exclusively used as the subordinate first unit, when data traffics do not exist and all of said first units are not applied.
17. The apparatus according to claim 16, with the main/subordinate relations being set in software of said controller.
18. The apparatus according to claim 17, with each of said interfaces being connected with a corresponding one of said first units, and separated from the corresponding one of said first units physically.
19. The apparatus according to claim 18, with each one of said interfaces comprising:
a terminal converting various types of data from the networks to a specified type of data operated within the inside of the apparatus, performing interfaces between the inside of the apparatus and the networks; and
a third unit, connected with said terminal, said bus, and each of said first units, performing mutual selection switching to the data according to controls of said controller.
20. The apparatus according to claim 19, with the mutual selection switching to the data comprising:
switching to a first direction for transmitting the data to said interfaces connected with a subordinate first unit through said bus according to the main-subordinate relations, when said first unit is in trouble and normal data process is not possible;
switching to a second direction for transmitting the data between said terminal and said first unit mutually, when said first unit is operated normally; and
switching to a third direction for transmitting the data from said bus to said first unit, when said first unit is operated as a subordinate first unit of other first unit according to the main-subordinate relations.
Description
CLAIM OF PRIORITY

[0001] This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. 119 from an application for ROUTER SYSTEM AND METHOD FOR DUPLICATION OF FORWARDING ENGINE UTILIZING earlier filed in the Korean Industrial Property Office on Jan. 21, 2002 and there duly assigned Serial No. 2002-3320.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates to a router system, and more particularly to router system duplicating a forwarding-engine and a method of duplicating a forwarding engine.

[0004] 2. Description of the Related Art

[0005] Generally, data communication networks install multiple router systems for transmitting data to destination networking components such as subscribers, switchboards, or networks, according to routing information of the transmission data.

[0006] The conventional router system includes a routing controller called a router server, a forwarding engine, a switch fabric, and other components. The router server is a main controller of a router system performing functions of creating routing information, such as a routing table and a forwarding table by operating a routing protocol. The forwarding engine forwards an Internet protocol IP packet based on the forwarding table created in the routing controller. The switch fabric transmits data among the forwarding engines. In other words, the switch fabric transmits data within the router system.

[0007] As described in the above statements, each component of the conventional router system is duplicated to cope with various possible troubles according to the situations, such as physical damage in instruments, errors in software, or abnormal data transmission, etc., and thereof to ensure operational reliability.

[0008] The conventional duplication method can duplicate extremely limited number, in other words, one or a few, routing controller, switching fabric, and power supplier/temperature controller.

[0009] In other words, the router system equips simultaneously the subordinate routing controller having the same functions with the routing controller, or the subordinate switching fabric having the same functions with the switching fabric. Therefore, when troubles happen to the switching fabric or the routing controller, the corresponding subordinate systems are operated to substitute the functions and to repair the troubled systems.

[0010] The conventional duplication method has difficulties in duplicating the forwarding engines, because many of forwarding engines are generally installed within the router system. In other words, many of subordinate forwarding engines should be necessary to substitute the many forwarding engines according to the conventional duplication method.

[0011] However, in the above cases, the router system becomes very expensive to install multiple subordinate forwarding engines. Therefore, it is hard to embody such a router system actually because it is uneconomical.

[0012] Additionally, even though subordinate forwarding engines are installed without considering economical problems, additional subordinate forwarding engines are necessary when the router system is expanded. Therefore, the expandability and the flexibility of the router system are debased.

[0013] As described in the above statement, the conventional duplication method is hard to provide successful duplicated router system, especially successful duplicated forwarding engines. Therefore, it is necessary to provide a router system and a method of duplicating forwarding engines efficiently through another configurations, and without installing multiple subordinate forwarding engines to the corresponding forwarding engines.

[0014] Additionally, according to capacity expansions in each of the forwarding engines due to expansions of data communication demands, the forwarding engines are more important than ever. As a result, successful duplication of the forwarding engines is more requested.

SUMMARY OF THE INVENTION

[0015] It is therefore an object of a preferred embodiment of the present invention to provide a router system and a method of duplicating forwarding engine to save system resources, such as slots or subordinate forwarding engines, by preventing pre-installation of unnecessary forwarding engines, and thereof not allowing loss time for exchanging the troubled forwarding engines.

[0016] The present invention does not duplicate multiple forwarding engines within a router system mechanically, but controls data paths by utilizing a data bus and an in/out (input and output) interface to substitute another forwarding engines for the troubled forwarding engines.

[0017] In order to achieve the above and other objects, a preferred embodiment of the present invention provides a router system receiving data from a predetermined node in networks, and transmitting the data to an appropriate node by switching the data according to routing information, the router system including: a data bus; a routing controller generating routing tables and forwarding tables by operating routing protocols, and controlling mutual interactions and data flows in each devices with the router system; multiple forwarding engines performing functions of forwarding data according to the forwarding tables generated by the routing controller, having the same configurations and functions for mutual substitutions when troubles happen, and establishing main/subordinate (main and subordinate) relations among the forwarding engines; multiple in/out (in and out or input and output) interfaces connected with the networks and each of the forwarding engines and data bus, performing data interfaces between the networks and the inside of the router system, and functions of switching the data to the networks, each of the forwarding engines, or each of the data bus to transmit the data; and a switch fabric switching the data among the forwarding engines according to the routing tables.

[0018] Each of the forwarding engines has characteristics of the same hardware configuration and the same software setting value with the other forwarding engine.

[0019] Each of the forwarding engines functions forwarding data in main, and performs substitution functions in secondary when other forwarding engines, preset in main/subordinate relations, are in troubles.

[0020] A predetermined forwarding engine among the multiple forwarding engines is exclusively used as the subordinate forwarding engine, when data traffics do not exist and all of the forwarding engine do not applied.

[0021] The main/subordinate relations are set in software of the routing controller.

[0022] Each of the in/out interfaces is connected with the corresponding each of the forwarding engines, and separated from the corresponding each of the forwarding engines physically.

[0023] Each of the in/out interfaces includes: a data terminal converting various types of data from the networks to a specified type of data operated within the inside of the router system, performing interfaces between the inside of the router system and the networks; and a data switching unit, connected with the data terminal, the data bus, and each of the forwarding engines, performing mutual selection switching to the data according to controls of the routing controller.

[0024] The specified type of data belongs to the third hierarchical layer, Internet protocol IP, of open system interfaces OSI 7 layers.

[0025] The mutual selection switching to the data includes: switching to a first direction for transmitting the data to in/out interfaces connected with a subordinate forwarding engine through the data bus according to the main/subordinate relations, when the forwarding engine is in troubles and normal data process is not possible; switching to a second direction for transmitting the data between the data terminal and the forwarding engine mutually, when the forwarding engine is operated normally; and switching to a third direction for transmitting the data from the data bus to the forwarding engine, when the forwarding engine is operated as a subordinate forwarding engine of other forwarding engine according to the main/subordinate relations.

[0026] The routing controller detects continuously whether the multiple forwarding engines are operated normally or not.

[0027] Another purpose of the present invention provides a method of duplicating a forwarding engine in a router system including multiple forwarding engines, each of the forwaring engines includes the same configuration and function, for forwarding data, multiple in/out interfaces connected with the corresponding each of the multiple forwarding engines for interfacing and switching with the outside communication networks, data bus for connecting mutually with the multiple in/out interfaces, a switch fabric for switching data among the forwarding engines, and a routing controller for controlling mutual interactions and data flows of each of the devices within the router system, the method of duplicating forwarding engine including the steps of: setting main/subordiante relations to the multiple forwarding engines by the routing controller, for preparing abnormal operations of the multiple forwarding engines; detecting continuously by the routing controller whether the forwarding engine is operated normally or not, when the routing sytem begins to operate; and suspending operations of a troubled forwarding engine by the routing controller, and controlling switching of the in/out interfaces to substitute a subordinate forwarding engine for the troubled forwarding engine according to the setting values of the main/subordinate relations, when a predetermined forwarding engine is in troubles.

[0028] The step of setting the main/subordinate relation chooses more than one subordinate forwarding engines by designating a priority to the subordiante fowarding engines.

[0029] The present invention does not duplicate multiple forwarding engines within a router system mechanically, but presets principal and subordinate relationships among the forwarding engines for substituting for abnormal functions in each of the forwarding engines mutually. Therefore, when arbitrary forwarding engine has troubles, data bus and in/out interface are controlled and switched to substitute the troubled forwarding engine for other forwarding engine set in the principal and subordinate relationships in prior.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] A more complete appreciation of the invention, and many of the attendant advantages thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein:

[0031]FIG. 1 is a block diagram of the conventional router system;

[0032]FIG. 2 is a block diagram of a router system according to a preferred embodiment of the present invention;

[0033]FIG. 3 is a block diagram of a first in/out interface of FIG. 2;

[0034]FIG. 4 is a flow chart illustrating a method of duplicating a forwarding engine by utilizing a router system according to the preferred embodiment of the present invention;

[0035]FIG. 5 is a data flow when the router system of the present invention is operated normally;

[0036]FIG. 6 is a data flow when a subordinate forwarding engine of the present invention is operated; and

[0037]FIG. 7 is other data flow when a subordinate forwarding engine of the present invention is operated.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0038] Turning now to the drawings, referring to FIG. 1, the conventional router system includes a routing controller called a router server 12, a forwarding engine 14, a switch fabric 11, and other components. The router server 12 is a main controller of a router system 10 performing functions of creating routing information, such as a routing table and a forwarding table by operating a routing protocol. The forwarding engine 14 forwards an internet protocol IP packet based on the forwarding table created in the routing controller 12. The switch fabric 11 transmits data among the forwarding engines 14. In other words, the switch fabric 11 transmits data within the router system 10. Sequentially, other components 20 include a power supplier, a temperature controller, and so on.

[0039] The above mentioned components 11, 12, 14, and 20 have various additional functions besides the above described functions, but the detail explanations will be omitted because the additional functions are beyond the scope of the present invention.

[0040] As described in the above statements, each component of the conventional router system 10 is duplicated to cope with various possible troubles according to the situations, such as physical damage in instruments, errors in software, or abnormal data transmission, etc, and thereof to ensure operational reliability.

[0041] Referring to FIG. 1, the conventional duplication method can duplicate extremely limited number, in other words, one or a few, routing controller 12, switching fabric 11, and power supplier/temperature controller 20.

[0042] In other words, the router system 10 equips simultaneously the subordinate routing controller having the same functions with the routing controller 12, or the subordinate switching fabric having the same functions with the switching fabric 11. Therefore, when troubles happen to the switching fabric 11 or the routing controller 12, the corresponding subordinate systems are operated to substitute the functions and to repair the troubled systems 11 or 12.

[0043] Because tens of forwarding engines 14 are generally installed within the router system 10, the conventional duplication method has difficulties in duplicating the forwarding engines 14. In other words, tens of subordinate forwarding engines should be necessary to substitute the tens of the forwarding engines 14 according to the conventional duplication method.

[0044] However, in the above cases, the router system 10 becomes very expensive to install multiple subordinate forwarding engines. Therefore, it is hard to embody such a router system 10 actually because it is uneconomical.

[0045] Additionally, even though subordinate forwarding engines are installed without considering economical problems, additional subordinate forwarding engines are necessary when the router system 10 is expanded. Therefore, the expandability and the flexibility of the router system 10 are debased.

[0046] As described in the above statement, the conventional duplication method is hard to provide successful duplicated router system, especially successful duplicated forwarding engines. Therefore, it is necessary to provide a router system and a method of duplicating forwarding engines efficiently through another configurations, and without installing multiple subordinate forwarding engines to the corresponding forwarding engines.

[0047] Additionally, according to capacity expansions in each of the forwarding engines due to expansions of data communication demands, the forwarding engines are more important than ever. As a result, successful duplication of the forwarding engines is more requested.

[0048] Reference will now be made in detail to preferred embodiments of the present invention, an example of which is illustrated in the accompanying drawings. Additionally, for the convenience of understanding, the same reference number is given to the same component in each of the accompanying drawings.

[0049] Referring to FIG. 2, the router system 100 of the present invention comprises a routing controller 101, a switch fabric 11, a data bus 130, multiple forwarding engines 111114, multiple in/out interfaces 121124 corresponding to the forwarding engines, and other components 20 such as a power supply and a temperature controller.

[0050] The routing controller 101 functions as controlling mutual interactions and data flows among the components within the router system 100, and more particularly, of generating routing information such as a routing table and a forwarding table by utilizing routing protocols.

[0051] Additionally, the routing controller 101 functions as establishing primary/subordinate (primary and subordinate, also called main/subordinate (main and subordinate)) relations for each of the forwarding engines 111114, and as changing the forwarding-table according to main/subordinate (main and subordinate) relations when a specified forwarding engine 111, 112, 113 or 114 falls in trouble.

[0052] Multiple forwarding engines 111114 (111, 112, 113, and 114) function as forwarding data according to the forwarding table generated by the routing controller 101, and includes a first forwarding engine 111, a second forwarding engine 112, a third forwarding engine 113, and a fourth forwarding engine 114, as shown in FIG. 2.

[0053] All of the four forwarding engines 111114 have the same hardware structure and the same software setting value, for example a forwarding table, configuration data, system files, and are set in main/subordinate relations mutually. Therefore, when one of the four forwarding engines 111114 falls in trouble, it is possible to substitute other forwarding engines for the troubled forwarding engine.

[0054] In other words, each of the forwarding engines 111114 performs it's own native functions of forwarding data in main, while each of the forwarding engines 111114 also performs subordinate functions to be substituted for the troubled forwarding engine.

[0055] Therefore, because each of the forwarding engines 111114 can perform main/subordinate functions simultaneously, the conventional subordinate forwarding engine is not necessary to minimize usage of system resources for duplication.

[0056] Additionally, when all of the forwarding engines are not applied because small amounts of data are processed, a predetermined forwarding engine 111, 112, 113 or 114 can be set as a subordinate forwarding engine.

[0057] On the contrary, an administrator sets a predetermined value for mutual main/subordinate functions to each of the forwarding engines 111114 through software of the router controller 101, and can change the setting value at any time.

[0058] The switch fabric 11 switches data flows among the multiple forwarding engines according to the routing table.

[0059] Each one of the multiple in/out interfaces 121124 is connected with the corresponding one of the multiple forwarding engines 111114. Therefore, the present invention includes a first in/out interface 121 connected with the first forwarding engine 111, a second in/out interface 122 connected with the second forwarding engine 112, a third in/out interface 123 connected with the third forwarding engine 113, and a fourth in/out interface 124 connected with the fourth forwarding engine 114.

[0060] Referring to FIG. 3, the first in/out interface 121 includes a data terminal 121 a, a data switching unit 121 b. As described in the above statement, the other in/out interfaces 122124 have the same configuration and functions with the first in/out interface 121.

[0061] The data terminal 121 a interfaces the inside of the router system 100 with cables connected with the external communication network 30, converts various data from the external communication network 30 to a specified type of data, and transmits the converted data to the inside of the router system 100.

[0062] The data switching unit 121 b switches data flows to three directions, in other words a first, a second and a third direction, according to the states of a first forwarding engine 111.

[0063] Switching to the first direction transmits the data flows to in/out interfaces 122, 123, or 124 of the subordinate forwarding engines 112, 113 or 114 through data bus 130 according to the main/subordinate relations, when normal data flows are not possible due to troubles in the first forwarding engine 111.

[0064] Switching to the second direction transmits the data flows between the data terminal 121 a and the first forwarding engine 111, when the forwarding engine 111 is operated normally.

[0065] Switching to the third direction transmits the data flows from the data bus 130 to the first forwarding engine 111, when the forwarding engine 111 functions as the subordinate forwarding engine. In this case, the data flows are transmitted to the first forwarding engine 111 defined as a subordinate forwarding engine, instead of troubled forwarding engine 112, 113 or 114.

[0066]FIG. 4 is a flow chart illustrating a duplication method of forwarding engines 111114 by utilizing such a router system 100.

[0067] At first, an administrator presets main/subordinate relations of the forwarding engines 111114 to a routing controller for duplicating the forwarding engines 111114 of the router system 100 (step S1).

[0068] The preferred embodiment of the present invention sets the fourth forwarding engine as a subordinate forwarding engine of the first forwarding engine 111, and sets the first or the third forwarding engine 113 as a subordinate forwarding engine of the second forwarding engine 112.

[0069] In this case, it is preferable to have multiple subordinate forwarding engines of each of the forwarding engines 111114 by assigning a priority to the multiple subordinate forwarding engines. For example, the second forwarding engine 112 sets the first forwarding engine 111 as a primary subordinate forwarding engine, and the third forwarding engine 113 as a secondary subordinate forwarding engine sequentially. Therefore, when the second forwarding engine 112 is in trouble, the first forwarding engine 111 can be substituted for the second forwarding engine 112. Additionally, when the first forwarding engine 111 is also in trouble, the third forwarding engine 113 can be substituted.

[0070] Accordingly, the first forwarding engine 111 and the third forwarding engine 114 perform not only main functions of forwarding data, but also subordinate functions of substituting any troubled forwarding engine 111, 112, 113, or 114 according to the setting value in the routing controller 101.

[0071] When main/subordinate relations are preset among the forwarding engines, and the router system 100 begins to operate, each of the in/out interfaces 121124 and the forwarding engines 111114 performs normal operations.

[0072]FIG. 5 is a data flow illustrating the normal case that data from the first in/out interface 121 is transmitted to the third in/out interface, and data from the second in/out interface 122 is transmitted to the first in/out interface 121.

[0073] Referring to FIG. 5, data from the first in/out interface 121 is interfaced with the third hierarchical layer, IP packet, of open system interface OSI 7 layers, and transmitted to the first forwarding engine 111 through switching to the second direction. Sequentially, the data is forwarded to the switch fabric 11 by the first forwarding engine 111, switched by the routing information of the packet, and transmitted to the third forwarding engine 113. Finally, the third forwarding engine 113 transmits the data to the outside through the third in/out interface 123.

[0074] Additionally, data from the second in/out interface 122 is switched to the second direction to be transmitted to the second forwarding engine 112. Sequentially, the data is forwarded to the switch fabric 11 by the second forwarding engine 112, switched by the routing information of the packet, and transmitted to the first forwarding engine 111. As a result, the first forwarding engine 111 transmits the data to the outside through the first in/out interface 121.

[0075] Referring to FIG. 4, when normal operations are performed in the routing system 100, the routing controller 101 detects troubles in each of the forwarding engine 111114 (step S2). When a specified forwarding engine 111, 112, 113, or 114 is in trouble (step S3), the troubled forwarding engine is suspended (step S4). Sequentially, for a subordinate forwarding engine to be substituted for the troubled forwarding engine according to the main/subordinate relations among the forwarding engines, the routing controller 101 controls switching to the corresponding in/out interface 121, 122, 123, or 124, and change the data transmission path to a subordinate forwarding engine of the troubled forwarding engine 111, 112, 113 or 114 (step S5).

[0076] Each of FIG. 6 and FIG. 7 is a block diagram illustrating data flows when the first forwarding engine is in trouble and is not operating normally.

[0077] Referring to FIG. 6, the routing controller 101 controls the first in/out interface 121 to be switched to the first direction, while the first in/out interface 121 is connected with the troubled first forwarding engine 111. In this case, the first direction is the switching direction when the first forwarding engine is in trouble. Additionally, the fourth in/out interface 114 connected to the fourth forwarding engine 114 as the subordinate forwarding engine performs switching to the third direction, the switching direction of subordinate functions.

[0078] Therefore, the data from the first in/out interface 121 do not pass the first forwarding engine 111, but pass through the fourth forwarding engine 114 to be transmitted to the third forwarding engine 113 like the case of normal operations.

[0079] On the contrary, as shown in FIG. 7, the data from the second in/out interface 122 are transmitted to the second forwarding engine 112 by switching to the second direction, and forwarded to the switch fabric 11 by the second forwarding engine 112.

[0080] Because the first forwarding engine 111 is not operated normally because of troubles, the switch fabric 11 does not transmit the data to the first forwarding engine 111, but switches the data to the subordinate forwarding engine, in other words the fourth forwarding engine 114.

[0081] The data transmitted to the fourth forwarding engine 114 is transmitted again to the data bus 130 by switching to the third directions of the fourth in/out interface 124. Sequentially, the data bus 130 transmits the data to the first in/out interface 121.

[0082] Therefore, the data transmitted to the second in/out interface 122 from the outside is transmitted to the first in/out interface 121 like the case of normal operations, even though the data does not pass the first forwarding engine 111.

[0083] As a result, the forwarding engine can be duplicated without following to the conventional method of installing each of the subordinate forwarding engines, having same configurations and functions with the corresponding main forwarding engine, within the router system 100.

[0084] As described in the above statements, the present invention does not duplicate multiple forwarding engines within the router system mechanically, but controls the data flows to substitute other forwarding engine for a troubled forwarding engine by utilizing the data bus and the in/out interface. Therefore, system resources, such as slots or subordinate forwarding engine, can be saved by preventing unnecessary installation of the subordinate forwarding engine, and loss time for exchanging the troubled forwarding engine.

[0085] While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7620040 *Dec 11, 2002Nov 17, 2009Aspen Networks, Inc.Application non disruptive task migration in a network edge switch
US7656672 *May 5, 2006Feb 2, 2010Infineon Technologies AgPower module
US8059644Oct 16, 2009Nov 15, 2011Aspen Networks, Inc.Application for non disruptive task migration in a network edge switch
WO2008148330A1 *May 16, 2008Dec 11, 2008Huawei Tech Co LtdA system and method for data forwarding
WO2011143940A1 *Jan 14, 2011Nov 24, 2011Huawei Technologies Co., Ltd.Data forwarding method and router
Classifications
U.S. Classification370/392
International ClassificationH04L29/14, H04L12/56, H04L12/28
Cooperative ClassificationH04L69/40, H04L45/00, H04L45/60
European ClassificationH04L45/60, H04L45/00, H04L29/14
Legal Events
DateCodeEventDescription
Jul 19, 2011FPAYFee payment
Year of fee payment: 4
Dec 18, 2002ASAssignment
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JUNG, CHUNG-JI;REEL/FRAME:013598/0821
Effective date: 20021218