US20030143111A1 - Methods of using chlorine dioxide as a fumigant - Google Patents

Methods of using chlorine dioxide as a fumigant Download PDF

Info

Publication number
US20030143111A1
US20030143111A1 US09/997,694 US99769401A US2003143111A1 US 20030143111 A1 US20030143111 A1 US 20030143111A1 US 99769401 A US99769401 A US 99769401A US 2003143111 A1 US2003143111 A1 US 2003143111A1
Authority
US
United States
Prior art keywords
chlorine dioxide
dioxide gas
volume
fumigation
requiring fumigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/997,694
Inventor
Gerald Cowley
John Mason
Sameh Eltomi
Darrell Dechant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sterling Pulp Chemicals Ltd
Sabre Oxidation Technologies Inc
Ineos Composites IP LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/997,694 priority Critical patent/US20030143111A1/en
Assigned to STERLING PULP CHEMICALS, LTD. reassignment STERLING PULP CHEMICALS, LTD. CORRECTED RECORDATION FORM COVER SHEET TO CORRECT APPLICATION NUMBER AND FILING DATE, PREVIOUSLY RECORDED AT REEL/FRAME 012897/0067-0069 (ASSIGNMENT OF ASSIGNOR'S INTEREST) Assignors: COWLEY, GERALD
Priority to CA002468671A priority patent/CA2468671A1/en
Priority to AU2002365884A priority patent/AU2002365884A1/en
Priority to JP2003548894A priority patent/JP2005528930A/en
Priority to EP02804451A priority patent/EP1448239A4/en
Priority to PCT/US2002/037906 priority patent/WO2003047640A1/en
Assigned to ASHLAND INC. reassignment ASHLAND INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELTOMI, SAMEH F.
Publication of US20030143111A1 publication Critical patent/US20030143111A1/en
Assigned to SABRE OXIDATION TECHNOLOGIES, INC. reassignment SABRE OXIDATION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MASON, JOHN Y.
Assigned to ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC reassignment ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASHLAND INC.
Priority to US11/270,973 priority patent/US7807101B2/en
Assigned to ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC reassignment ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENT NUMBER 6763859 PREVIOUSLY RECORDED ON REEL 016408 FRAME 0950. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: ASHLAND INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours

Definitions

  • ETO ethylene oxide
  • formaldehyde vaporized peroxide
  • ozone ethylene oxide
  • ETO epoxyethane
  • formaldehyde formaldehyde
  • ozone vaporized peroxide
  • Each of these fumigants has disadvantages that limit their utility in fumigating large volumes, e.g. buildings or vehilces.
  • Ethylene oxide is a flammable and explosive gas that is classified as both a mutagen and a carcinogen.
  • the use of ethylene oxide as a fumigant requires extensive post detoxification and clean up procedures.
  • Formaldehyde is potentially explosive and an occupational carcinogen.
  • formaldehyde as a fumigant requires extensive post detoxification and clean up procedures.
  • Vaporized peroxide reacts generally with all organic compounds in the environment to be fumigated, thus having a high demand for fumigant. Vaporized peroxide is effective in fumigating spaces of volume less than 1200 ft 3 . Ozone reacts generally with all organic compounds in the environment to be fumigated, and has the shortest half-life of these fumigants, making ozone even less suitable than vaporized peroxide for the fumigation of large volumes.
  • Chlorine dioxide is recognized as an effective sterilant. However, no guidance is available regarding the use of chlorine dioxide for the fumigation of large volumes. Sodium hypochorite is known to be useful and effective for scrubbing down surfaces. However, such procedures using sodium hypochlorite are labor intensive, affect appearance and integrity of materials scrubbed, and are not as suitable for large scale use as are the gas methods. Chlorine gas is also not suitable due to the health hazards, high corrosivity of the gas, and the production of chlorinated organic by-products.
  • Chlorine dioxide which is a selective oxidant and a protein synthesis deactivator, has been reported to be efficacious against Bacillus subtilis (a gram positive, chemoorganotroph spore former similar to Bacillus anthracis ) under controlled laboratory medical sterilizer conditions.
  • the present invention provides methods for the effective large-scale use of chlorine dioxide to allow for gaseous penetration of contents included within in a large enclosed volume requiring fumigation and sterilization in an environmentally safe manner.
  • the present invention provides a method comprising the steps of:
  • the chlorine dioxide gas is removed from the volume requiring fumigation with the same equipment that was used to introduce the chlorine dioxide gas.
  • the present invention provides a process comprising producing chlorine dioxide by using an apparatus such as a chlorine dioxide generator.
  • the chlorine dioxide is generated directly as a gas.
  • the chlorine dioxide is generated as a solution of chlorine dioxide gas in a liquid.
  • the liquid is water.
  • chlorine dioxide solution equilibrium partial pressure is optimally kept below about 26,000 ppmV.
  • the generated chlorine dioxide is transferred directly, or alternatively, indirectly via a storage tank, to a high gas:liquid ratio emitter.
  • the emitter is an apparatus such as a gas/liquid contactor having a high efficiency mist eliminator and very low liquid/gas rates.
  • the emitter is an apparatus such as a stripper.
  • the emitter is operated to maintain the gaseous chlorine dioxide concentration substantially below the explosion limit of chlorine dioxide in the air.
  • the emitters Prior to generation of the chlorine dioxide, the emitters are used with water alone to raise the relative humidity in the volume requiring fumigation, with adjustment of the temperature. Alternatively, the humidification and fumigation can be done simultaneously using the same apparatus by the appropriate adjustment in the temperature of chlorine dioxide solution.
  • the treatment is conducted in reduced illumination, preferably substantially dark, to minimize the decomposition of chlorine dioxide to chlorine.
  • the process is monitored with the use of an infrared camera or similar device.
  • chlorine dioxide should be of the highest possible purity. Specifically, chlorine gas should be present in the introduced gas at a level less than about 5%, preferably less than about 0.5%. Suitably chlorine dioxide gas is present at a concentration in the introduced gas of at least 90%, preferably at least 95%, and optimally at least 99%.
  • the variable generation rate of chlorine dioxide gas is initiated.
  • the initial rate is high to provide sufficient chlorine dioxide to penetrate the various surfaces demands within the volume requiring fumigation.
  • This rate is predetermined to accommodate the surface demand as well as to provide the initial charge of the volume requiring fumigation to a predetermined chlorine dioxide residual level.
  • the chlorine dioxide generation rate is then reduced appropriately to maintain the predetermined chlorine dioxide concentration in the air of the volume requiring fumigation for a predetermined time. This can be achieved by a number of means, such as lowering the concentration of chlorine dioxide in the solution that is fed to the emitter, or lowering the flow rate of the chlorine dioxide solution to the emitter.
  • the maintenance level of chlorine dioxide gas concentration is determined to compensate for the decay or loss rate from the volume requiring fumigation.
  • the volume requiring fumigation is preferably to be at slightly negative pressure to areas outside of it and efforts are made to seal off the volume through the use of strippable sealant, such as foam that sets up hard. Once the required time weighted average concentration and contact time are attained, then the generation of chlorine dioxide is stopped.
  • the generator, storage and emitter are then purged with fresh water. Once this is complete, the water is injected with an alkalizing and dechlorinating agent or other functional chemistry (e.g., ascorbic acid), that will absorb the chlorine dioxide.
  • This scrubbing solution is then fed to the emitter and with the blowers still in operation, the emitter begins to scrub chlorine dioxide out of the environmental air composition within the said volume that has been fumigated. This process is continued until the environmental air composition within the volume that has been fumigated is returned to acceptable limits for reopening to the exterior environment and rehabitation.
  • the emitters can be located inside or outside of the volume requiring fumigation. However, it is highly preferred to locate the emitter inside the volume requiring fumigation, since then no contaminated air is allowed to leave the volume requiring fumigation.
  • FIG. 1 is a schematic illustration of one embodiment of the present invention.
  • FIG. 1 schematically illustrates one embodiment of the invention.
  • the invention is practiced using a chlorine dioxide gas generator 100 that provides chlorine dioxide dissolved in water 180 directly 160 , or alternatively, indirectly 140 via storage 200 , to a emitter 300 comprising a blower 320 that produces chlorine dioxide gas in air 360 for treatment of building areas and/or a heating, ventilation and air conditioning (HVAC) return air system of a building 400 .
  • a chlorine dioxide gas generator 100 that provides chlorine dioxide dissolved in water 180 directly 160 , or alternatively, indirectly 140 via storage 200
  • a emitter 300 comprising a blower 320 that produces chlorine dioxide gas in air 360 for treatment of building areas and/or a heating, ventilation and air conditioning (HVAC) return air system of a building 400 .
  • HVAC heating, ventilation and air conditioning
  • the chlorine dioxide generator 100 receives an input 150 that is a mixture of city makeup water 140 and chemicals 120 or 130 .
  • Suitable mixing means are used to combine the city makeup water 140 and chemicals 120 or 130 .
  • Metering means are used to regulate the amounts and proportions of the city makeup water 140 and chemicals 120 or 130 that are combined.
  • water alone is provided to the input 150 of the chlorine dioxide generator 100 , in order to adjust the relative humidity of the volume to be treated.
  • chlorine dioxide precursor chemicals 120 are combined with the city makeup water 140 .
  • Several chemical means of generating chlorine dioxide, and their corresponding chlorine dioxide precursor chemicals are known in the art, and the choice of suitable means and chemicals is within the abilities of the skilled artisan.
  • the output of the chlorine dioxide generator 100 can be routed directly 160 to provide chlorine dioxide dissolved in water 180 to the emitter 300 .
  • the output of the chlorine dioxide generator can be routed 140 to a storage means 200 , from which chlorine dioxide dissolved in water 180 can be routed to the emitter 300 .
  • the emitter 300 removes chlorine dioxide from the water and delivers chlorine dioxide in air 360 by duct means to the volume to be fumigated, in general, building areas and/or a HVAC return air system.
  • Duct means includes, but is not limited to, temporary or permanent ductwork, pipes, hoses and the like.
  • Water 380 recovered from the emitter can be recycled and combined by mixing means with city makeup water 140 and chemicals 120 or 130 to provide input 150 to the chlorine dioxide generator 100 .
  • the chlorine dioxide generator 100 , storage 200 and emitter 300 are flushed with water alone.
  • detoxification chemicals 130 are combined with water to provide the input to the chlorine dioxide generator 100 .
  • the environment within the enclosed volume of a trailer is fumigated and restored to habitability as follows. Initially, the environment is climatized to a temperature of 70-80° F. and a relative humidity of 60-80%. During treatment, chlorine dioxide is introduced into the volume to be fumigated and maintained at a residual level of 500 ppm V for 10 hours. In other embodiments, the residual chlorine dioxide level is maintained at about 750 ppm V, about 1000 ppm V or about 3000 ppm V and the treatment time is in the range of about 8 to about 12 hours. Typically, if the enclosed volume is 2280 ft 3 , air is suitably recirculated at 5 CFM. The treatment is conducted in reduced illumination, preferably substantially dark, to minimize the decomposition of chlorine dioxide to chlorine. Suitably chlorine dioxide gas is present at a concentration in the introduced gas of at least 90%, preferably at least 95%, and optimally at least 99%.
  • the chlorine dioxide should be of the highest possible purity. Specifically, chlorine gas should be present in the introduced gas at a level less than about 5%, preferably less than about 0.5% Efficacy is measured by percent inactivation of Bacillus subtilis spores used as monitors. The contents of the trailer are inspected to determine the discoloration and functionality of all the material placed in trailer, including drapes, chairs, files, mail and other documents and computers. Apart from a slight discoloration, no discernible effects on carpets, drapes, furniture and office equipment (e.g., copiers, computers, printers, etc.) are found. No chlorine is found in the treated space after fumigation.
  • the environment within an enclosed volume was fumigated and restored to habitability as follows. HVAC equipment is inspected and fans readied. All filters are removed and burned. Cooling and heating coils are sprayed with degreaser/detergent.
  • the environment is climatized for 2.5 hours to a temperature of 60-80° F., suitably about 75° F., and a relative humidity of 70-80%, suitably about 75%.
  • the pH of the city water is adjusted to 6.5-7.0 to allow the emitters to deliver free ClO 2 into the air.
  • the building is sealed with strippable foam and air loss rate measure and used to correct the calculated chlorine dioxide dosage needed for fumigation.
  • Chlorine dioxide is introduced with an air flow rate of 2,000 CFM and maintained at a level of 500 ppm for about 12 hours.
  • the initial charge of the enclosed volume with chlorine dioxide is rapid to prevent any pathogens from reacting to the hostile environment.
  • the chlorine dioxide in the enclosed air rises to 7-14 ppm a few minutes and is greater than 30 ppm within five minutes.
  • Efficacy of fumigation is measured by percent inactivation of Bacillus subtilis spores that are used as monitors.
  • the equipment is converted to scrubbers by rinsing chlorine dioxide and emitter with water alone followed by a mixture of bisulfite and caustic in water that absorbs ClO 2 and Cl 2
  • the environmental air is detoxified for 28-32 hours or the exchange of about 30-32 building volumes, in order to reduce chlorine dioxide levels in the building air to less than about 0.1 mg/m 3 . It has been found that the chlorine dioxide levels typically decay at a rate of about 100 ppmV per hour, depending on the contents included within the volume requiring fumigation. The volume requiring fumigation can be detoxified very quickly, typically in about 5-6 hours.
  • the building air is recirculated with the air conditioning on to lower the relative humidity to less than about 35%.
  • the HVAC heating and cooling coils are sprayed with chlorine dioxide and the HVAC filters are replaced with new filters.

Abstract

The invention provides methods of using chlorine dioxide gas for the fumigation of building spaces, heating ventilation and air conditioning systems (HVAC, e.g., return supply ducts, heating and cooling coils and the like), vehicles, office spaces, process equipment, files, documents, mail, mail processing equipment, industrial process equipment and consumer related items under safe conditions.

Description

    BACKGROUND OF THE INVENTION
  • Gas fumigation as currently practiced uses either ethylene oxide (epoxyethane, ETO), formaldehyde, vaporized peroxide or ozone. Each of these fumigants has disadvantages that limit their utility in fumigating large volumes, e.g. buildings or vehilces. Ethylene oxide is a flammable and explosive gas that is classified as both a mutagen and a carcinogen. The use of ethylene oxide as a fumigant requires extensive post detoxification and clean up procedures. Formaldehyde is potentially explosive and an occupational carcinogen. Moreover, it has poor penetrating ability. The use of formaldehyde as a fumigant requires extensive post detoxification and clean up procedures. Vaporized peroxide reacts generally with all organic compounds in the environment to be fumigated, thus having a high demand for fumigant. Vaporized peroxide is effective in fumigating spaces of volume less than 1200 ft[0001] 3. Ozone reacts generally with all organic compounds in the environment to be fumigated, and has the shortest half-life of these fumigants, making ozone even less suitable than vaporized peroxide for the fumigation of large volumes.
  • Chlorine dioxide is recognized as an effective sterilant. However, no guidance is available regarding the use of chlorine dioxide for the fumigation of large volumes. Sodium hypochorite is known to be useful and effective for scrubbing down surfaces. However, such procedures using sodium hypochlorite are labor intensive, affect appearance and integrity of materials scrubbed, and are not as suitable for large scale use as are the gas methods. Chlorine gas is also not suitable due to the health hazards, high corrosivity of the gas, and the production of chlorinated organic by-products. [0002]
  • Chlorine dioxide, which is a selective oxidant and a protein synthesis deactivator, has been reported to be efficacious against [0003] Bacillus subtilis (a gram positive, chemoorganotroph spore former similar to Bacillus anthracis) under controlled laboratory medical sterilizer conditions.
  • SUMMARY OF THE INVENTION
  • The present invention provides methods for the effective large-scale use of chlorine dioxide to allow for gaseous penetration of contents included within in a large enclosed volume requiring fumigation and sterilization in an environmentally safe manner. The present invention provides a method comprising the steps of: [0004]
  • climatizing a volume requiring fumigation containing contents; [0005]
  • generating chlorine dioxide gas; [0006]
  • introducing the chlorine dioxide gas into the volume requiring fumigation; [0007]
  • distributing the introduced chlorine dioxide gas in the volume requiring fumigation; [0008]
  • maintaining a residual amount of the chlorine dioxide gas within the volume requiring fumigation under environmentally safe conditions at a level and duration permitting gaseous penetration of included contents as required for decontamination; and [0009]
  • removing the chlorine dioxide gas from the volume requiring fumigation, thereby fumigating the large enclosed volume and contents and restoring habitability. [0010]
  • In one preferred embodiment, the chlorine dioxide gas is removed from the volume requiring fumigation with the same equipment that was used to introduce the chlorine dioxide gas. [0011]
  • In one embodiment, the present invention provides a process comprising producing chlorine dioxide by using an apparatus such as a chlorine dioxide generator. In one embodiment, the chlorine dioxide is generated directly as a gas. In another embodiment, the chlorine dioxide is generated as a solution of chlorine dioxide gas in a liquid. In one preferred embodiment, the liquid is water. In an aqueous solution, chlorine dioxide solution equilibrium partial pressure is optimally kept below about 26,000 ppmV. [0012]
  • The generated chlorine dioxide is transferred directly, or alternatively, indirectly via a storage tank, to a high gas:liquid ratio emitter. In one preferred embodiment, the emitter is an apparatus such as a gas/liquid contactor having a high efficiency mist eliminator and very low liquid/gas rates. In one embodiment, the emitter is an apparatus such as a stripper. [0013]
  • The emitter is operated to maintain the gaseous chlorine dioxide concentration substantially below the explosion limit of chlorine dioxide in the air. Prior to generation of the chlorine dioxide, the emitters are used with water alone to raise the relative humidity in the volume requiring fumigation, with adjustment of the temperature. Alternatively, the humidification and fumigation can be done simultaneously using the same apparatus by the appropriate adjustment in the temperature of chlorine dioxide solution. [0014]
  • The treatment is conducted in reduced illumination, preferably substantially dark, to minimize the decomposition of chlorine dioxide to chlorine. The process is monitored with the use of an infrared camera or similar device. [0015]
  • If the space to be fumigated contains materials that are potentially susceptible to corrosion, the chlorine dioxide should be of the highest possible purity. Specifically, chlorine gas should be present in the introduced gas at a level less than about 5%, preferably less than about 0.5%. Suitably chlorine dioxide gas is present at a concentration in the introduced gas of at least 90%, preferably at least 95%, and optimally at least 99%. [0016]
  • Once the desired relative humidity and temperature are attained, then the variable generation rate of chlorine dioxide gas is initiated. The initial rate is high to provide sufficient chlorine dioxide to penetrate the various surfaces demands within the volume requiring fumigation. This rate is predetermined to accommodate the surface demand as well as to provide the initial charge of the volume requiring fumigation to a predetermined chlorine dioxide residual level. The chlorine dioxide generation rate is then reduced appropriately to maintain the predetermined chlorine dioxide concentration in the air of the volume requiring fumigation for a predetermined time. This can be achieved by a number of means, such as lowering the concentration of chlorine dioxide in the solution that is fed to the emitter, or lowering the flow rate of the chlorine dioxide solution to the emitter. [0017]
  • The maintenance level of chlorine dioxide gas concentration is determined to compensate for the decay or loss rate from the volume requiring fumigation. The volume requiring fumigation is preferably to be at slightly negative pressure to areas outside of it and efforts are made to seal off the volume through the use of strippable sealant, such as foam that sets up hard. Once the required time weighted average concentration and contact time are attained, then the generation of chlorine dioxide is stopped. [0018]
  • The generator, storage and emitter are then purged with fresh water. Once this is complete, the water is injected with an alkalizing and dechlorinating agent or other functional chemistry (e.g., ascorbic acid), that will absorb the chlorine dioxide. This scrubbing solution is then fed to the emitter and with the blowers still in operation, the emitter begins to scrub chlorine dioxide out of the environmental air composition within the said volume that has been fumigated. This process is continued until the environmental air composition within the volume that has been fumigated is returned to acceptable limits for reopening to the exterior environment and rehabitation. [0019]
  • The emitters can be located inside or outside of the volume requiring fumigation. However, it is highly preferred to locate the emitter inside the volume requiring fumigation, since then no contaminated air is allowed to leave the volume requiring fumigation.[0020]
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is a schematic illustration of one embodiment of the present invention.[0021]
  • DESCRIPTION OF A PREFERRED EMBODIMENT
  • The present invention can be further understood by reference to FIG. 1, which schematically illustrates one embodiment of the invention. The invention is practiced using a chlorine [0022] dioxide gas generator 100 that provides chlorine dioxide dissolved in water 180 directly 160, or alternatively, indirectly 140 via storage 200, to a emitter 300 comprising a blower 320 that produces chlorine dioxide gas in air 360 for treatment of building areas and/or a heating, ventilation and air conditioning (HVAC) return air system of a building 400.
  • The [0023] chlorine dioxide generator 100 receives an input 150 that is a mixture of city makeup water 140 and chemicals 120 or 130. Suitable mixing means are used to combine the city makeup water 140 and chemicals 120 or 130. Metering means are used to regulate the amounts and proportions of the city makeup water 140 and chemicals 120 or 130 that are combined. In the initial climatizing stage of the process, water alone is provided to the input 150 of the chlorine dioxide generator 100, in order to adjust the relative humidity of the volume to be treated. In the second stage of the process, chlorine dioxide precursor chemicals 120 are combined with the city makeup water 140. Several chemical means of generating chlorine dioxide, and their corresponding chlorine dioxide precursor chemicals are known in the art, and the choice of suitable means and chemicals is within the abilities of the skilled artisan. Exemplary chemical means of generating chlorine dioxide are disclosed in U.S. Pat. Nos. 4,689,169 (Mason et al.), 5,204,081 (Mason et al.), 5,227,306 (Eltomi et al.), 5,258,171 (Eltomi et al.) and 5,965,004 (Cowley et al.), the teachings of which are hereby incorporated by reference.
  • The output of the [0024] chlorine dioxide generator 100 can be routed directly 160 to provide chlorine dioxide dissolved in water 180 to the emitter 300. Alternatively, the output of the chlorine dioxide generator can be routed 140 to a storage means 200, from which chlorine dioxide dissolved in water 180 can be routed to the emitter 300.
  • The [0025] emitter 300 removes chlorine dioxide from the water and delivers chlorine dioxide in air 360 by duct means to the volume to be fumigated, in general, building areas and/or a HVAC return air system. “Duct means” includes, but is not limited to, temporary or permanent ductwork, pipes, hoses and the like. Water 380 recovered from the emitter can be recycled and combined by mixing means with city makeup water 140 and chemicals 120 or 130 to provide input 150 to the chlorine dioxide generator 100.
  • In a third stage of the process, the [0026] chlorine dioxide generator 100, storage 200 and emitter 300 are flushed with water alone. During a further stage of the process, detoxification chemicals 130 are combined with water to provide the input to the chlorine dioxide generator 100.
  • Monitoring and controlling the dew point within the volume requiring fumigation is a significant aspect. During the process of fumigation, steps must be taken to avoid condensation. Therefore during the entire fumigation process the atmosphere within the volume requiring fumigation must be carefully controlled using space heaters or the HVAC system both to avoid over-humidification and to regulate the temperature of the chlorine dioxide solution fed to the emitter. Failure to control these factors can lead to spot damage as well as a higher use to chlorine dioxide. [0027]
  • EXAMPLE 1
  • The environment within the enclosed volume of a trailer is fumigated and restored to habitability as follows. Initially, the environment is climatized to a temperature of 70-80° F. and a relative humidity of 60-80%. During treatment, chlorine dioxide is introduced into the volume to be fumigated and maintained at a residual level of 500 ppm V for 10 hours. In other embodiments, the residual chlorine dioxide level is maintained at about 750 ppm V, about 1000 ppm V or about 3000 ppm V and the treatment time is in the range of about 8 to about 12 hours. Typically, if the enclosed volume is 2280 ft[0028] 3, air is suitably recirculated at 5 CFM. The treatment is conducted in reduced illumination, preferably substantially dark, to minimize the decomposition of chlorine dioxide to chlorine. Suitably chlorine dioxide gas is present at a concentration in the introduced gas of at least 90%, preferably at least 95%, and optimally at least 99%.
  • If the space to be fumigated contains materials that are potentially susceptible to corrosion, the chlorine dioxide should be of the highest possible purity. Specifically, chlorine gas should be present in the introduced gas at a level less than about 5%, preferably less than about 0.5% Efficacy is measured by percent inactivation of [0029] Bacillus subtilis spores used as monitors. The contents of the trailer are inspected to determine the discoloration and functionality of all the material placed in trailer, including drapes, chairs, files, mail and other documents and computers. Apart from a slight discoloration, no discernible effects on carpets, drapes, furniture and office equipment (e.g., copiers, computers, printers, etc.) are found. No chlorine is found in the treated space after fumigation.
  • EXAMPLE 2
  • The environment within an enclosed volume was fumigated and restored to habitability as follows. HVAC equipment is inspected and fans readied. All filters are removed and burned. Cooling and heating coils are sprayed with degreaser/detergent. The environment is climatized for 2.5 hours to a temperature of 60-80° F., suitably about 75° F., and a relative humidity of 70-80%, suitably about 75%. The pH of the city water is adjusted to 6.5-7.0 to allow the emitters to deliver free ClO[0030] 2 into the air. The building is sealed with strippable foam and air loss rate measure and used to correct the calculated chlorine dioxide dosage needed for fumigation.
  • Additional internal fans are placed in positions determined by modeling to assist the HVAC in approaching ideal mixing. Chlorine dioxide is introduced with an air flow rate of 2,000 CFM and maintained at a level of 500 ppm for about 12 hours. The initial charge of the enclosed volume with chlorine dioxide is rapid to prevent any pathogens from reacting to the hostile environment. Typically the chlorine dioxide in the enclosed air rises to 7-14 ppm a few minutes and is greater than 30 ppm within five minutes. Efficacy of fumigation is measured by percent inactivation of [0031] Bacillus subtilis spores that are used as monitors.
  • The equipment is converted to scrubbers by rinsing chlorine dioxide and emitter with water alone followed by a mixture of bisulfite and caustic in water that absorbs ClO[0032] 2 and Cl2 The environmental air is detoxified for 28-32 hours or the exchange of about 30-32 building volumes, in order to reduce chlorine dioxide levels in the building air to less than about 0.1 mg/m3. It has been found that the chlorine dioxide levels typically decay at a rate of about 100 ppmV per hour, depending on the contents included within the volume requiring fumigation. The volume requiring fumigation can be detoxified very quickly, typically in about 5-6 hours.
  • The building air is recirculated with the air conditioning on to lower the relative humidity to less than about 35%. The HVAC heating and cooling coils are sprayed with chlorine dioxide and the HVAC filters are replaced with new filters. [0033]
  • The present invention is not to be limited in scope by the specific embodiments described herein, but by the appended claims. The described embodiments are intended as illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawing. Such modifications are intended to fall within the scope of the appended claims. [0034]

Claims (18)

We claim:
1. A method suitable for fumigating a large enclosed volume and contents requiring fumigation and restoring habitability, comprising the steps of:
climatizing a volume requiring fumigation containing contents;
generating chlorine dioxide gas;
introducing the chlorine dioxide gas into the volume requiring fumigation;
distributing the introduced chlorine dioxide gas in the volume requiring fumigation;
maintaining a residual amount of the chlorine dioxide gas within the volume requiring fumigation under environmentally safe conditions at a level and duration permitting gaseous penetration of included contents as required for decontamination; and
removing the chlorine dioxide gas from the volume requiring fumigation, thereby fumigating the large enclosed volume and contents and restoring habitability.
2. The method of claim 1 wherein the chlorine dioxide gas is removed from the volume requiring fumigation with the same equipment that was used to introduce the chlorine dioxide gas.
3. The method of claim 1 wherein the chlorine dioxide gas is generated as a solution of chlorine dioxide gas in a liquid.
4. The method of claim 3 wherein the liquid is water.
5. The method of claim 1 wherein the chlorine dioxide gas is introduced using an emitter.
6. The method of claim 5 wherein the emitter is a stripper.
7. The method of claim 1 wherein the step of climatizing the volume requiring fumigation includes the step of adjusting the relative humidity.
8. The method of claim 1 wherein the step of climatizing the volume requiring fumigation includes the step of adjusting the temperature.
9. The method of claim 1 wherein the step of climatizing the volume requiring fumigation includes the step of avoiding exceeding the dew point.
10. The method of claim 1 wherein the step of climatizing the volume requiring fumigation includes the step of reducing the level of illumination.
11. The method of claim 1 wherein the volume requiring fumigation is a portion of a building.
12. The method of claim 1 wherein the volume requiring fumigation is a vehicle.
13. The method of claim 1 wherein the step distributing the introduced chlorine dioxide gas comprises using a heating ventilation and air conditioning (HVAC) system.
14. The method of claim 1 wherein the volume requiring fumigation is maintained substantially dark.
15. The method of claim 1 wherein the chlorine dioxide gas is present in the introduced gas at a concentration of at least 90%.
16. The method of claim 1 wherein the chlorine dioxide gas is present in the introduced gas at a concentration of at least 95%.
17. The method of claim 1 wherein the chlorine dioxide gas is present in the introduced gas at a concentration of at least 99%.
18. The method of claim 1 wherein the same apparatus is used to climatize the volume requiring fumigation and to introduce the chlorine dioxide gas into the volume requiring fumigation.
US09/997,694 2001-11-30 2001-11-30 Methods of using chlorine dioxide as a fumigant Abandoned US20030143111A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/997,694 US20030143111A1 (en) 2001-11-30 2001-11-30 Methods of using chlorine dioxide as a fumigant
PCT/US2002/037906 WO2003047640A1 (en) 2001-11-30 2002-11-27 Methods of using chlorine dioxide as a fumigant
EP02804451A EP1448239A4 (en) 2001-11-30 2002-11-27 Methods of using chlorine dioxide as a fumigant
AU2002365884A AU2002365884A1 (en) 2001-11-30 2002-11-27 Methods of using chlorine dioxide as a fumigant
JP2003548894A JP2005528930A (en) 2001-11-30 2002-11-27 How to use chlorine dioxide as a fumigant
CA002468671A CA2468671A1 (en) 2001-11-30 2002-11-27 Methods of using chlorine dioxide as a fumigant
US11/270,973 US7807101B2 (en) 2001-11-30 2005-11-11 Methods of using chlorine dioxide as a fumigant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/997,694 US20030143111A1 (en) 2001-11-30 2001-11-30 Methods of using chlorine dioxide as a fumigant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/270,973 Continuation-In-Part US7807101B2 (en) 2001-11-30 2005-11-11 Methods of using chlorine dioxide as a fumigant

Publications (1)

Publication Number Publication Date
US20030143111A1 true US20030143111A1 (en) 2003-07-31

Family

ID=25544283

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/997,694 Abandoned US20030143111A1 (en) 2001-11-30 2001-11-30 Methods of using chlorine dioxide as a fumigant
US11/270,973 Expired - Fee Related US7807101B2 (en) 2001-11-30 2005-11-11 Methods of using chlorine dioxide as a fumigant

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/270,973 Expired - Fee Related US7807101B2 (en) 2001-11-30 2005-11-11 Methods of using chlorine dioxide as a fumigant

Country Status (6)

Country Link
US (2) US20030143111A1 (en)
EP (1) EP1448239A4 (en)
JP (1) JP2005528930A (en)
AU (1) AU2002365884A1 (en)
CA (1) CA2468671A1 (en)
WO (1) WO2003047640A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001777A1 (en) * 2002-04-05 2004-01-01 Hobson David W. Mold remediation system and method
US20040009094A1 (en) * 2002-05-02 2004-01-15 Adiga Kayyani C. Method for bioeradication using fine mist of biocide solutions
US20040211923A1 (en) * 2003-04-24 2004-10-28 Bridges John H. Anthrax remediation and response
US20050019210A1 (en) * 2001-11-05 2005-01-27 Rosenblatt Aron A Parametric decontamination of bio-contaminated facities using chlorine dioxide gas
US20050079123A1 (en) * 2003-10-10 2005-04-14 Shuler Robert K. Method and apparatus for microbial decontamination
US20070212256A1 (en) * 2002-04-05 2007-09-13 Helton Danny O Mold remediation system and method
US20070231220A1 (en) * 2005-02-22 2007-10-04 Agius George J Method and apparatus for producing and dispensing a cleaning solution
US20080025870A1 (en) * 2006-07-27 2008-01-31 Groenewegen Cornelis H Method and apparatus for treating items
US20080025874A1 (en) * 2006-07-27 2008-01-31 Coughlin Michael F Method and apparatus for measuring and/or controlling the concentration of a gas in a solution
US7459700B2 (en) 2002-04-24 2008-12-02 United States Postal Service Anthrax remediation and response
US20090169424A1 (en) * 2008-01-02 2009-07-02 Richard Michael Franchi Method of disinfecting and wetiing the interior of a building
WO2010127032A2 (en) * 2009-04-29 2010-11-04 Sabre Intellectual Property Holdings Company Llc Remediation of gypsum board using gaseous chlorine dioxide
WO2017204747A1 (en) * 2016-05-23 2017-11-30 Mitrol Biologic Pte. Ltd. System and method of cleaning an environment

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1802354A4 (en) * 2004-10-01 2009-05-06 John Y Mason Method for remediating a structure contaminated with mold
US20080286147A1 (en) * 2004-10-18 2008-11-20 Government Of The U.S.A. Of America As Represented Apparatus and Method for Decontamination
JP5379976B2 (en) * 2005-11-28 2013-12-25 大幸薬品株式会社 Airborne virus countermeasures
JP2010207539A (en) * 2009-03-12 2010-09-24 Takasago Thermal Eng Co Ltd Indoor processing method and processing apparatus
AU2010257064B2 (en) * 2009-06-04 2015-11-05 Sabre Intellectual Property Holdings Llc Decontamination of enclosed space using gaseous chlorine dioxide
US20140271355A1 (en) * 2013-03-15 2014-09-18 Sabre Intellectual Property Holdings Llc Apparatus and process for focused gas phase application of biocide
CA3009039A1 (en) 2015-12-18 2017-06-22 John Y. Mason Methods of drawing out oils and fats from solid material using chlorine dioxide
US10233100B2 (en) 2016-06-21 2019-03-19 Sabre Intellectual Property Holdings Llc Methods for inactivating mosquito larvae using aqueous chlorine dioxide treatment solutions
US10434208B1 (en) 2018-05-09 2019-10-08 Zuna Inc. Integrated disinfection system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272019A (en) * 1978-10-17 1981-06-09 Halaby Jr Samuel A Fluid sprayer apparatus and method
US4681739A (en) * 1982-10-19 1987-07-21 The Scopas Technology Co., Inc. Use of chlorine dioxide gas as a chemosterilizing agent
US4780333A (en) * 1986-12-29 1988-10-25 Ford Motor Company Method for treatment of air conditioning system
US5565180A (en) * 1987-03-02 1996-10-15 Turbotak Inc. Method of treating gases
US6077495A (en) * 1997-03-03 2000-06-20 Engelhard Corporation Method, composition and system for the controlled release of chlorine dioxide gas
US20020125196A1 (en) * 2001-03-08 2002-09-12 Cdg Technology, Inc. Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
US6537821B1 (en) * 2000-06-08 2003-03-25 Cdg Technology Inc. Method and apparatus for detecting, measuring, and/or removing chlorine gas contamination in gaseous chlorine dioxide
US20030138371A1 (en) * 2002-01-18 2003-07-24 Cdg Technology, Inc. Method and apparatus for generating gaseous chlorine dioxide-chlorine mixtures
US20040259188A1 (en) * 2001-11-05 2004-12-23 Rosenblatt Aaron A. Method and system for processing bio-contaminated articles
US20050019210A1 (en) * 2001-11-05 2005-01-27 Rosenblatt Aron A Parametric decontamination of bio-contaminated facities using chlorine dioxide gas
US20050031467A1 (en) * 2003-08-07 2005-02-10 Caldwell Denise M. Fluid driven pump with improved exhaust port arrangement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908188A (en) * 1985-02-05 1990-03-13 The Scopas Technology Company, Inc. Gas sterilant system
JPS6434904A (en) * 1987-07-30 1989-02-06 Japan Carlit Co Ltd Composition for generating chlorine dioxide gas
US5006326A (en) * 1989-05-02 1991-04-09 International Dioxcide, Inc. Gaseous generator system for preparing chlorine dioxide
US5110580A (en) * 1989-09-14 1992-05-05 Iolab Corporation Method and apparatus for chlorine dioxide manufacture
US5713137A (en) * 1995-05-17 1998-02-03 Fujita; Sanai Apparatus for deodorizing, sterilizing and drying bedding and clothing
JPH09220274A (en) * 1996-02-16 1997-08-26 Sanai Fujita Gas supplying device for sterilizing, deodorizing and drying
US5961936A (en) 1996-12-12 1999-10-05 Johnson & Johnson Arrangement for adapting a gas generation and recovery system to a target volume
US6235240B1 (en) * 1996-12-12 2001-05-22 Johnson & Johnson Gas recovery system
JP3815015B2 (en) * 1997-12-11 2006-08-30 チッソ株式会社 Fumigation equipment using chlorine dioxide gas
JP2001314492A (en) * 2000-05-02 2001-11-13 San Seal:Kk Air conditioner provided with deodorizing and sterilizing gas supplying means
JP2002272827A (en) * 2001-03-14 2002-09-24 San Seal:Kk Infection prevention system for treatment room, dissecting room and the like
US20040022667A1 (en) * 2001-11-07 2004-02-05 Sunggyu Lee Microbial decontamination and detoxification system and method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272019A (en) * 1978-10-17 1981-06-09 Halaby Jr Samuel A Fluid sprayer apparatus and method
US4681739A (en) * 1982-10-19 1987-07-21 The Scopas Technology Co., Inc. Use of chlorine dioxide gas as a chemosterilizing agent
US4780333A (en) * 1986-12-29 1988-10-25 Ford Motor Company Method for treatment of air conditioning system
US5565180A (en) * 1987-03-02 1996-10-15 Turbotak Inc. Method of treating gases
US20020036284A1 (en) * 1997-03-03 2002-03-28 Engelhard Corporation Method, composition and system for the controlled release of chlorine dioxide gas
US20010036421A1 (en) * 1997-03-03 2001-11-01 Engelhard Corporation Method and system for the controlled release of chlorine dioxide gas
US6077495A (en) * 1997-03-03 2000-06-20 Engelhard Corporation Method, composition and system for the controlled release of chlorine dioxide gas
US6537821B1 (en) * 2000-06-08 2003-03-25 Cdg Technology Inc. Method and apparatus for detecting, measuring, and/or removing chlorine gas contamination in gaseous chlorine dioxide
US20020125196A1 (en) * 2001-03-08 2002-09-12 Cdg Technology, Inc. Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
US20040259188A1 (en) * 2001-11-05 2004-12-23 Rosenblatt Aaron A. Method and system for processing bio-contaminated articles
US20050019210A1 (en) * 2001-11-05 2005-01-27 Rosenblatt Aron A Parametric decontamination of bio-contaminated facities using chlorine dioxide gas
US20030138371A1 (en) * 2002-01-18 2003-07-24 Cdg Technology, Inc. Method and apparatus for generating gaseous chlorine dioxide-chlorine mixtures
US20050031467A1 (en) * 2003-08-07 2005-02-10 Caldwell Denise M. Fluid driven pump with improved exhaust port arrangement

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050019210A1 (en) * 2001-11-05 2005-01-27 Rosenblatt Aron A Parametric decontamination of bio-contaminated facities using chlorine dioxide gas
US7144551B2 (en) * 2002-04-05 2006-12-05 Dh Technologies, L.L.P. Mold remediation system and method
US20070212256A1 (en) * 2002-04-05 2007-09-13 Helton Danny O Mold remediation system and method
US20040001777A1 (en) * 2002-04-05 2004-01-01 Hobson David W. Mold remediation system and method
US7459700B2 (en) 2002-04-24 2008-12-02 United States Postal Service Anthrax remediation and response
US20040009094A1 (en) * 2002-05-02 2004-01-15 Adiga Kayyani C. Method for bioeradication using fine mist of biocide solutions
US7264773B2 (en) * 2002-05-02 2007-09-04 Nanomist Systems, Llc Method for bioeradication using fine mist of biocide solutions
US20040211923A1 (en) * 2003-04-24 2004-10-28 Bridges John H. Anthrax remediation and response
US20050079123A1 (en) * 2003-10-10 2005-04-14 Shuler Robert K. Method and apparatus for microbial decontamination
US20070231220A1 (en) * 2005-02-22 2007-10-04 Agius George J Method and apparatus for producing and dispensing a cleaning solution
US20080025874A1 (en) * 2006-07-27 2008-01-31 Coughlin Michael F Method and apparatus for measuring and/or controlling the concentration of a gas in a solution
US20080025870A1 (en) * 2006-07-27 2008-01-31 Groenewegen Cornelis H Method and apparatus for treating items
US20090169424A1 (en) * 2008-01-02 2009-07-02 Richard Michael Franchi Method of disinfecting and wetiing the interior of a building
US7988910B2 (en) * 2008-01-02 2011-08-02 Richard Michael Franchi Method of disinfecting and wetting the interior of a building
WO2010127032A2 (en) * 2009-04-29 2010-11-04 Sabre Intellectual Property Holdings Company Llc Remediation of gypsum board using gaseous chlorine dioxide
WO2010127032A3 (en) * 2009-04-29 2011-03-03 Sabre Intellectual Property Holdings Llc Remediation of gypsum board using gaseous chlorine dioxide
WO2017204747A1 (en) * 2016-05-23 2017-11-30 Mitrol Biologic Pte. Ltd. System and method of cleaning an environment

Also Published As

Publication number Publication date
EP1448239A1 (en) 2004-08-25
US7807101B2 (en) 2010-10-05
US20060228253A1 (en) 2006-10-12
AU2002365884A1 (en) 2003-06-17
WO2003047640A1 (en) 2003-06-12
CA2468671A1 (en) 2003-06-12
JP2005528930A (en) 2005-09-29
EP1448239A4 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
US7807101B2 (en) Methods of using chlorine dioxide as a fumigant
US9186428B2 (en) Sterilization and decontamination of an enclosed environment
JP5823957B2 (en) Decontamination of enclosed spaces using gaseous chlorine dioxide
US9656865B2 (en) Use of storage-stable aqueous solutions of chlorine dioxide to generate pure chlorine dioxide gas for decontamination
JP5735761B2 (en) Toxic substance decontamination equipment
AU2005334259A1 (en) Room decontamination with hydrogen peroxide vapor
CN110121366B (en) Decontamination device and decontamination method using same
US20050019210A1 (en) Parametric decontamination of bio-contaminated facities using chlorine dioxide gas
JP4538452B2 (en) Activated vapor deposition treatment to neutralize war weapons
US7144551B2 (en) Mold remediation system and method
JP5452997B2 (en) Indoor decontamination system
CA2583459C (en) Method for remediating a structure contaminated with mold
US20080286147A1 (en) Apparatus and Method for Decontamination
GB2468520A (en) Sterilisation of a environment with ozone and increased humidity
US20040022667A1 (en) Microbial decontamination and detoxification system and method
KR101839844B1 (en) air sterilization, disinfection and deodorization equipment and method with circulation function and keeping density of Chlorine dioxide
EP1265643B1 (en) Method for the fumigation of closed systems
Fukuzaki Uses of gaseous hypochlorous acid for controlling microorganisms in indoor spaces
WO2012066295A1 (en) Ozone decomposition catalyst for use in a sterilisation and/or decontamination process
US20070212256A1 (en) Mold remediation system and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: STERLING PULP CHEMICALS, LTD., CANADA

Free format text: CORRECTED RECORDATION FORM COVER SHEET TO CORRECT APPLICATION NUMBER AND FILING DATE, PREVIOUSLY RECORDED AT REEL/FRAME 012897/0067-0069 (ASSIGNMENT OF ASSIGNOR'S INTEREST);ASSIGNOR:COWLEY, GERALD;REEL/FRAME:013443/0237

Effective date: 20021003

AS Assignment

Owner name: ASHLAND INC., KENTUCKY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELTOMI, SAMEH F.;REEL/FRAME:013759/0971

Effective date: 20030204

AS Assignment

Owner name: SABRE OXIDATION TECHNOLOGIES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MASON, JOHN Y.;REEL/FRAME:015579/0325

Effective date: 20040715

AS Assignment

Owner name: ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC, O

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASHLAND INC.;REEL/FRAME:016408/0950

Effective date: 20050629

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC, O

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENT NUMBER 6763859 PREVIOUSLY RECORDED ON REEL 016408 FRAME 0950. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:ASHLAND INC.;REEL/FRAME:032867/0391

Effective date: 20050629