Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030155045 A1
Publication typeApplication
Application numberUS 10/358,946
Publication dateAug 21, 2003
Filing dateFeb 5, 2003
Priority dateFeb 5, 2002
Publication number10358946, 358946, US 2003/0155045 A1, US 2003/155045 A1, US 20030155045 A1, US 20030155045A1, US 2003155045 A1, US 2003155045A1, US-A1-20030155045, US-A1-2003155045, US2003/0155045A1, US2003/155045A1, US20030155045 A1, US20030155045A1, US2003155045 A1, US2003155045A1
InventorsPeter Williams
Original AssigneeWilliams Peter C.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Lubricated low temperature carburized stainless steel parts
US 20030155045 A1
Abstract
The surfaces of a stainless steel part are made harder without sacrificing corrosion resistance by subjecting the part to low temperature carburization. The soot layer formed as a by-product of carburization is then removed without removing the non-coherent metal oxide layer which also forms as a by-product. A solid lubricant is then applied to reduce the coefficient of friction of the carburized surface. The by-product metal oxide layer acts as an anchor keeping the solid lubricant in place.
Images(3)
Previous page
Next page
Claims(16)
We claim:
1. A stainless steel part having at least one carburized surface substantially free of carbide precipitates, the part further comprising an metal oxide layer on the carburized surface and a solid lubricant on the metal oxide layer.
2. The stainless steel part of claim 1, wherein the metal oxide layer is a by-product of the carburization reaction used for forming the carburized surface substantially free of carbide precipitates.
3. The stainless steel part of claim 1, wherein the solid lubricant is graphite, molybdenum disulfide, tungsten disulfide, ultra high molecular weight polyethylene or a halogenated polymer.
4. The stainless steel part of claim 1, wherein the solid lubricant is particulate in form and includes a binder.
5. The stainless steel part of claim 1, wherein the carburized surface is a bearing surface.
6. The stainless steel part of claim 5, wherein the part is a nut.
7. The stainless steel part of claim 1, wherein the stainless steel is substantially or partially austenite.
8. The stainless steel part of claim 7, wherein the stainless steel is AISI 316, 316L, 317, 317L and 304 stainless steels, alloy 600, alloy C-276 and alloy-20 Cb, Nitronic alloy, alloy-58, alloy-825, alloy-254 SmO.
9. A process for enhancing the slipperiness of the carburized surface of a stainless steel part, the carburized surface being produced by low temperature carburization whereby the carburized surface is substantially free of carbide precipitates, the process comprising coating the metal oxide layer produced as a by-product of carburization with a solid lubricant.
10. The process of claim 9, wherein a soot layer on the metal oxide layer is also formed as a by-product of carburization, the process further including removing the soot layer without substantially removing the metal oxide layer before application of the solid lubricant.
11. The process of claim 9, wherein the stainless steel is substantially or partially austenite.
12. The process of claim 11, wherein the stainless steel is AISI 316, 316L, 317, 317L and 304 stainless steels, alloy 600, alloy C-276 and alloy-20 Cb, Nitronic alloy, alloy-58, alloy-825, alloy-254 SmO.
13. The process of claim 9, wherein the solid lubricant is graphite, molybdenum disulfide, tungsten disulfide, ultra high molecular weight polyethylene or a halogenated polymer.
14. The process of claim 9, wherein the solid lubricant is particulate in form and includes a binder.
15. The process of claim 9, wherein the carburized surface is a bearing surface.
16. A stainless steel part having at least one carburized surface substantially free of carbide precipitates, the part further comprising an adherent, non-coherent metal oxide layer on the carburized surface and a solid lubricant on the metal oxide layer.
Description
    CROSS-REFERENCE TO RELATED APPLICATION
  • [0001]
    This document is based on U.S. Provisional Application Ser. No. 60/354,594, filed Feb. 5, 2002, the benefit of which is hereby claimed and the disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Commonly assigned U.S. Pat. No. 6,093,303 and U.S. application Ser. No. 09/494,093, filed Jan. 28, 2000, describe processes for increasing the hardness of stainless steel parts without sacrificing corrosion resistance by carburizing the parts at low temperatures, e.g., temperatures less than about 1000° F. See, also U.S. Pat. No. 5,556,483, U.S. Pat. No. 5,593,510, U.S. Pat. No. 5,792,282, EPO 0787817 and Japanese Patent Document 9-14019 (Kokai 9-268364). The disclosures of each of these documents is incorporated herein by reference. As taught in these patents, the corrosion resistance of such parts is maintained because formation of carbide precipitates, which occurs during conventional carburization at higher temperatures, is substantially avoided.
  • [0003]
    Stainless steel is stainless because of the thin, coherent chromium oxide film which inherently forms when the steel is exposed to air. Low temperature carburization of stainless steel parts, such as those made from AISI 316 and 316L stainless steels, usually leaves the part surfaces coated with a layer of soot. Before use this soot is usually removed by washing. When carbon monoxide or other oxygen-containing gas is used as the carbon source in low temperature carburization, not only does soot form but in addition a heavy oxide film also forms. This heavy oxide film is considerably different from the coherent chromium oxide film which makes stainless steel stainless in that it is thicker and not coherent. Therefore, this film is also removed before use to uncover the part's carburized surface.
  • SUMMARY OF THE INVENTION
  • [0004]
    In accordance with the present invention, it has been found that this heavy oxide film, because of its porous structure, serves as an ideal anchor for solid lubricants. Accordingly, it is possible in accordance with the present invention to provide stainless steel parts which are not only exceptionally hard and exceptionally corrosion resistance but which also exhibit enhanced and sustained surface slipperiness as well.
  • [0005]
    Thus, the present invention provides a new article of manufacture comprising a stainless steel part having at least one carburized surface substantially free of carbide precipitates, the part further comprising an adherent, non-coherent metal oxide layer on the carbide surface and a solid lubricant on the metal oxide layer.
  • [0006]
    In addition, the present invention also provides a new process of manufacture comprising applying a solid lubricant to the metal oxide layer of a stainless steel part having at least one carburized surface substantially free of carbide precipitates, the part further comprising an adherent, non-coherent metal oxide layer on the carbide surface.
  • DETAILED DESCRIPTION
  • [0007]
    Stainless Steel Substrate
  • [0008]
    The present invention is applicable to all types of stainless steels. As well known, stainless steel is a steel which forms a coherent chromium oxide coating when exposed to air. To this end, most stainless steels contain at least about 16 wt. % chromium Preferred are substantially or partially austenite. Of special interest are AISI 316, 316L, 317, 317L and 304 stainless steels, alloy 600, alloy C-276 and alloy 20 Cb, Nitronic alloy, alloy 58, alloy 825, alloy 254 SmO to name a few examples.
  • [0009]
    Formation of Metal Oxide Layer
  • [0010]
    As indicated above, low temperature carburization of stainless steel parts, when done using an oxygen containing gas, leaves the carburized surface carrying a layer of soot as well as a porous, i.e. non-coherent, adherent metal oxide layer. Normally, this metal oxide layer is composed of chromium oxide, although other metal oxides can be present. In conventional practice, this metal oxide layer is removed together with or independently of the soot layer which also forms. In accordance with the present invention, however, this heavy metal oxide layer is left on at least a portion of the part surfaces, since it has been found that this metal oxide layer serves as an ideal anchor for bonding subsequently applied solid lubricants.
  • [0011]
    The particular conditions under which this metal oxide layer can be formed are already well known in the art, since this formation occurs to a greater or lesser degree during low temperature carburization when carbon monoxide or other oxygen containing gas is present in the carburizing gas. Especially heavy (i.e., thick) metal oxide layers can be obtained by using carbon monoxide as the predominant carbon source for carburization. Carburization gases in which carbon monoxide accounts for at least about 75%, 85%, 95% or even 100% of the carbon source for carburization are especially interesting.
  • [0012]
    Other approaches that can be used for fostering the formation of this metal oxide coating during carburization are small percentages of CO2, H2O, etc.
  • [0013]
    Normally, the oxide layer will be about 200 to 400 Angstroms thick, although thinner and thicker layers can also be used so long as they serve to anchor the applied solid lubricant in the manner indicated herein.
  • [0014]
    Removal of Soot Layer
  • [0015]
    Removal of the soot layer which forms during low temperature carburization can be done in a conventional manner. For example, washing the carburized part aqueously with ultrasonics will effectively remove all or substantially all the soot without adversely affecting the metal oxide layer in any significant way.
  • [0016]
    Solid Lubricants
  • [0017]
    In accordance with the present invention, a solid lubricant is applied to the metal oxide layer formed by low temperature carburization.
  • [0018]
    For this purpose, essentially any solid lubricant can be used. Many such solid lubricants are well known. Some are particulate in form while other are supplied larger in size. A few examples are graphite, molybdenum disulfide, tungsten disulfide, UHMWPE (ultra high molecular weight polyethylene), halogenated polymers such as PFA, PTFE, PCTFE and the like. Examples of commercially available solid lubricants include Dow Corning® 321 Dry Film Lubricant available from Dow Coming Corporation of Midland, Mich. and Slickote® Dry Lube 100 available from Trans Chem Coatings, of Monrovia, Calif.
  • [0019]
    These lubricants can be used not combined with another material, or mixed with another material such as a resinous carrier or the like. In addition, they can be used in essentially any solid form including powders, granules, pastes and bulk solids.
  • [0020]
    Application of Solid Lubricants
  • [0021]
    The solid lubricants of the present invention can be applied to the metal oxide layer by any standard method such as by hand, such as by rubbing, by aerosol or air spraying or by automatic equipment. Any coating thickness can be used which will provide lubricating properties. Solid lubricant thicknesses exceeding standard class 2 thread clearances are usually not required.
  • [0022]
    If appropriate, the lubricant can also be heated to enhance its adhesion. For example, some lubricants, especially those supplied in a resinous binder, can be heated to effect cure of the binder. For example, Slickote® Dry Lube 100 can be heated following manufacturer's instructions to 300° F. for 1 hour, for example.
  • [0023]
    Utility
  • [0024]
    The present invention can be used anywhere it is desirable to enhance the surface slipperiness of case hardened, corrosion resistant stainless steel parts. Particular examples are nuts, bolts, gears, valves, connectors, fasteners, ferrules and the like whose bearing surfaces have been case hardened by low temperature carburization. Because of the lubricant, these surfaces slide easier, thereby reducing stress imparted by resistance to sliding movement. Moreover, because of the anchoring nature of the metal oxide layer, the lubricant remains effective far longer than would be the case if the lubricant were applied to a comparable product whose metal oxide layer were removed first.
  • [0025]
    The present invention finds particular utility in making stainless steel nuts having case hardened threads lubricated in accordance with the present invention. Because of the lubricant, less pull-up torque is required during tightening as compared to a similar case hardened nut without lubricant. Moreover, this enhanced lubricating effect is retained longer than a lubricated nut made in a conventional manner, i.e. by removing the metal oxide layer before applying the lubricant, because the metal layer anchors the lubricant in place even after repeated use. Thus, nuts made in accordance with the present invention can withstand repeated fitting remakes (i.e., loosenings and retightenings of the nut) without being removed or replaced.
  • [0026]
    Although only a few embodiments of the present invention have been described above, it should be appreciated that many modifications can be made without departing from the spirit and scope of the invention. All such modifications are intended to be included within the scope of the present invention, which is to be limited only by the following claims:
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1279457 *Jan 3, 1918Sep 17, 1918Porter W ShimerCase-hardening of metals.
US1789259 *Jan 16, 1930Jan 13, 1931American Cyanamid CoCase hardening method
US1923814 *Aug 11, 1931Aug 22, 1933Electro Metallurg CoNitriding
US2057813 *Dec 1, 1933Oct 20, 1936Nitralloy CorpProcess for hardening iron and steel alloys and article produced thereby
US2204148 *Jul 16, 1936Jun 11, 1940Nelms Joseph CMethod of treating sulphur bearing coals
US2789930 *Oct 11, 1954Apr 23, 1957Engelhard William FMethod of nitriding ferrous alloys
US2851387 *May 8, 1957Sep 9, 1958Chapman Valve Mfg CompanyMethod of depassifying high chromium steels prior to nitriding
US2991206 *Dec 26, 1957Jul 4, 1961Battelle Development CorpSolid-film lubricants
US3321338 *Dec 10, 1964May 23, 1967Berliet AutomobilesFriction elements especially resistant to wear by abrasion
US3535169 *Jun 14, 1968Oct 20, 1970Berliet AutomobilesFriction elements especially resistant to wear by abrasion
US3876512 *Sep 10, 1973Apr 8, 1975Nippon Furnace Koga Kaisha LtdElectrolytic carburizing process using a carbonate electrolyte
US4268323 *Jul 1, 1980May 19, 1981Kolene Corp.Process for case hardening steel
US4746375 *May 8, 1987May 24, 1988General Electric CompanyActivation of refractory metal surfaces for electroless plating
US4975147 *Feb 23, 1990Dec 4, 1990Daidousanso Co., Ltd.Method of pretreating metallic works
US5013371 *Feb 12, 1990May 7, 1991Daidousanso Co., Ltd.Method of nitriding steel
US5102476 *Oct 1, 1990Apr 7, 1992Degussa AktiengesellschaftProcess for nitrocarburizing components made from steel
US5141567 *Jan 22, 1991Aug 25, 1992Daidousanso Co., LtdMethod of nitriding steel
US5160553 *Oct 23, 1990Nov 3, 1992Bohler Gesellschaft M.B.H.Cold-worked steel of high compressive strength and articles made thereof
US5194097 *Jan 17, 1992Mar 16, 1993Daidousanso Co., Ltd.Method of nitriding steel and heat treat furnaces used therein
US5252145 *Mar 3, 1992Oct 12, 1993Daidousanso Co., Ltd.Method of nitriding nickel alloy
US5254181 *Jul 10, 1991Oct 19, 1993Daidousanso Co., Ltd.Method of nitriding steel utilizing fluoriding
US5340412 *May 6, 1993Aug 23, 1994Daidousanso Co., Ltd.Method of fluorinated nitriding of austenitic stainless steel screw
US5376188 *Feb 12, 1993Dec 27, 1994Daidousanso Co., Ltd.Method of nitriding austenitic stainless steel products
US5424028 *Dec 23, 1993Jun 13, 1995Latrobe Steel CompanyCase carburized stainless steel alloy for high temperature applications
US5447181 *Dec 7, 1993Sep 5, 1995Daido Hoxan Inc.Loom guide bar blade with its surface nitrided for hardening
US5556483 *Oct 19, 1994Sep 17, 1996Daido Hoxan, Inc.Method of carburizing austenitic metal
US5593510 *Apr 17, 1995Jan 14, 1997Daido Hoxan, Inc.Method of carburizing austenitic metal
US5650022 *May 16, 1996Jul 22, 1997Daido Hoxan Inc.Method of nitriding steel
US5653822 *Jul 5, 1995Aug 5, 1997Ford Motor CompanyCoating method of gas carburizing highly alloyed steels
US5735971 *Nov 28, 1995Apr 7, 1998Durferrit Gmbh ThermotechnikMethod for the Pre-treatment of steel parts prior to salt bath nitriding
US5753052 *Feb 27, 1996May 19, 1998Centre Stephanois De Recherches Mecaniques Hydromecanique Et FrottementMethod of treating ferrous surfaces subjected to high friction strains
US5792282 *May 13, 1996Aug 11, 1998Daido Hoxan, Inc.Method of carburizing austenitic stainless steel and austenitic stainless steel products obtained thereby
US6093303 *Aug 12, 1998Jul 25, 2000Swagelok CompanyLow temperature case hardening processes
US6093703 *Aug 18, 1993Jul 25, 2000Bioresearch S.P.A.Pharmaceutical compositions, containing S-adenosyl-L-methionine salt, 5-methyl-tetrahydrofolic acid and 5-formyltetrahydrofolic acid
US6126102 *Nov 10, 1998Oct 3, 2000E. I. Du Pont De Nemours And CompanyApparatus for high speed beaming of elastomeric yarns
US6461448 *May 15, 2000Oct 8, 2002Swagelok CompanyLow temperature case hardening processes
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7677602Oct 30, 2007Mar 16, 2010Swagelok CompanyTube fitting
US7695027Apr 22, 2005Apr 13, 2010Swagelok CompanyFitting for tube and pipe
US7784837Nov 2, 2004Aug 31, 2010Swagelok CompanyFitting for metal pipe and tubing
US8038180Feb 23, 2009Oct 18, 2011Swagelok CompanyFitting with taper and single ferrule
US9187831Oct 29, 2004Nov 17, 2015Ishikawajima-Harima Heavy Industries Co., Ltd.Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US20060035068 *Oct 29, 2004Feb 16, 2006Ishikawajima-Harima Heavy Industries Co., Ltd.Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US20060237962 *Mar 14, 2006Oct 26, 2006Anderson Bret MTool for preparing fitting and conduit connection
US20080007050 *Jan 4, 2006Jan 10, 2008Williams Peter CFitting for metal pipe and tubing
US20080012301 *Nov 3, 2004Jan 17, 2008Swagelok CompanyFitting for metal pipe and tubing
US20080023110 *Jul 23, 2007Jan 31, 2008Williams Peter CMetal article with high interstitial content
US20100086398 *Apr 8, 2010Ihi CorporationMethod for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US20100133812 *Jun 26, 2006Jun 3, 2010Swagelok CompanyTube Fitting
US20100320755 *Jun 25, 2008Dec 23, 2010Swagelok CompanyApparatus and method of zero clearance connection with optional sensing function
US20110089687 *Jul 9, 2009Apr 21, 2011Swagelok CompanyModular fitting with gripping device for conduits
WO2008013765A1 *Jul 23, 2007Jan 31, 2008Swagelok CoMetal article with high interstitial content
WO2008030375A2Aug 30, 2007Mar 13, 2008Swagelok CoFitting for fluid conduits
Classifications
U.S. Classification148/319, 148/209, 428/469
International ClassificationC23C8/80, C23C8/28
Cooperative ClassificationC23C8/28, C23C8/80
European ClassificationC23C8/28, C23C8/80
Legal Events
DateCodeEventDescription
Apr 24, 2003ASAssignment
Owner name: SWAGELOK COMPANY, OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WILLIAMS, PETER C.;REEL/FRAME:013600/0103
Effective date: 20030211