Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030165270 A1
Publication typeApplication
Application numberUS 10/079,284
Publication dateSep 4, 2003
Filing dateFeb 19, 2002
Priority dateFeb 19, 2002
Also published asUS7003139
Publication number079284, 10079284, US 2003/0165270 A1, US 2003/165270 A1, US 20030165270 A1, US 20030165270A1, US 2003165270 A1, US 2003165270A1, US-A1-20030165270, US-A1-2003165270, US2003/0165270A1, US2003/165270A1, US20030165270 A1, US20030165270A1, US2003165270 A1, US2003165270A1
InventorsSerguei Endrikhovski, Elena Fedorovskaya, Tomasz Matraszek, Kenneth Parulski, Jose Mir
Original AssigneeEastman Kodak Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for using facial expression to determine affective information in an imaging system
US 20030165270 A1
Abstract
A method for determining affective information for at least one image in an imaging system includes displaying a digital image for viewing by a user; monitoring the facial expression of the user as the user views the digital image; and using the facial expression of the user to determine affective information for the digital image.
Images(7)
Previous page
Next page
Claims(20)
What is claimed is:
1. A method for determining affective information for at least one image in an imaging system, comprising the steps of:
a) displaying a digital image for viewing by a user;
b) monitoring the facial expression of the user as the user views the digital image; and
c) using the facial expression of the user to determine affective information for the digital image.
2. The method of claim 1 further including the step of:
d) associating the affective information with the digital image.
3. The method of claim 1 wherein a video camera is used to monitor the facial expression of the user.
4. The method of claim 3 wherein at least one image from the video camera is analyzed to determine the smile size of the user.
5. The method of claim 1 wherein a plurality of digital images are displayed for viewing by the user.
6. The method of claim 5 wherein the smile size of the user is determined for each of the plurality of digital images.
7. The method of claim 6 wherein a degree of preference is determined for each of the plurality of digital images by relating the smile size corresponding to each digital image to an average smile size.
8. The method of claim 7 wherein the degree of preference is stored along with the corresponding digital image in separate digital image files.
9. A method for providing affective information for images in an imaging system, comprising the steps of:
a) sequentially displaying a plurality of digital images for viewing by a user;
b) monitoring the facial expression of the user as the user views each of the plurality of digital images; and
c) using the facial expression of the user to determine affective information.
10. The method of claim 9 wherein the 1 wherein a video camera is used to monitor the facial expression of the user, and images from the video camera are analyzed to determine the smile size of the user as the user view each of the plurality of digital images.
11. A system for providing affective information for images in an imaging system, comprising:
a) a digital memory which stores a set of digital images;
b) a display which sequentially displays the set of digital images for viewing by a user;
c) a camera for automatically measuring the user's facial expression; and
d) a processor for processing the signal from the camera to provide affective information for the set of digital images.
12. The system of claim 11 wherein the camera is a video camera.
13. The system of claim 12 wherein the processor processes the signal from the video camera in order to determine the user's smile size.
14. The system of claim 13 wherein the processor determines the normalized smile size for each digital image in the set.
15. The system of claim 13 wherein the smile size is determined using the maximum distance between mouth corners.
16. The system of claim 11 wherein the system further includes a sensor for measuring the user's physiology.
17. The system of claim 16 wherein the sensor measures the user's galvanic skin response.
18. The system of claim 11 wherein the affective information is stored in the digital memory.
19. The system of claim 11 wherein the affective information is stored with each digital image in a digital image file.
20. The system of claim 19 wherein the digital image file includes affective information and user identifiers for a plurality of users.
Description
    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    Reference is made to commonly assigned U.S. patent application Ser. No. 09/721,222, filed Nov. 22, 2000, entitled “Method for Adding Personalized Metadata to a Collection of Digital Images” by Kenneth A. Parulski et al.; Ser. No. 10/036,113, filed Dec. 26, 2001, entitled “Method for Creating and Using Affective Information in a Digital Imaging System” by Tomasz Matraszek et al; Ser. No. 10/036,123, filed Dec. 26, 2001, entitled “Method for Using Affective Information Recorded With Digital Images for Producing an Album Page” by Tomasz Matraszek et al; Ser. No. 10/036,157, filed Dec. 26, 2001, entitled “An Image Format Including Affective Information” by Tomasz Matraszek et al; ______, filed concurrently herewith, entitled “Method for Providing Affective Information in an Imaging System” by Elena A. Fedorovskaya et al.; and ______, filed concurrently herewith, entitled “Method for Using Viewing Time to Determine Affective Information in an Imaging System” by Elena A. Fedorovskaya et al., the disclosures of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates to imaging systems and, more particularly, to systems which monitor a user's facial expression to determine the user's reaction to digital images.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Digital images, from digital cameras or scanned photographic film, can be viewed, stored, retrieved, and printed using a home computer, or can be uploaded to a website for viewing, as described in commonly assigned U.S. Pat. No. 5,666,215 to Fredlund et al. Using a web browser, a group of these digital images can be viewed and selected for printing, or it can be sent electronically to other family members and/or friends.
  • [0004]
    Currently, the usage of the Internet or personal computers and printing devices for picture printing, sharing and storage is growing. Customers create large personal databases of images on the computers and web servers. It is becoming increasingly important to classify or catalog images for subsequent use. Images can be organized into categories according to the people, places, subjects or events depicted, as described in a paper entitled “FotoFile: A Consumer Multimedia Organization and Retrieval System” by Kuchinsky et al. This paper describes such categories or attributes that are used to tag certain images, including a “favorite” attribute that is loosely defined as referring to the “best” images in a user's collection. Classifying images based on user's preference toward favorite images helps to quickly retrieve and share those valuable images. In this paper, the “favorite” attribute could only be used to mark and retrieve specific user's images on their home PC, since there is nothing in the “favorite” attribute designating which user has indicated that this is a “favorite” image. Moreover, this attribute, as it is suggested by Kuchinsky et al., does not allow any systematic differentiation with respect to the degree of preference within the images already marked as favorite images. As a result, after a certain time of acquiring images in the user's PC database, the number of favorite images becomes too large to serve the purpose of the favorite attribute, unless the user will change the attribute for every image in his or her database, which is a lengthy and tiresome process. In addition, the concept of the “best” image does not necessarily refer to a user's emotional reaction.
  • [0005]
    Consequently, a need exists for an improved method for recording and interpreting the user's emotional reaction to an image for subsequent association of this affective information with a corresponding image and a user identifier.
  • [0006]
    The present invention broadly defines affective information associated with the image to include various types of psychological reactions, such as affective, cognitive, physiological, or behavioral responses that are not found in any previous systems. It refers both to recorded raw signals and their interpretations.
  • SUMMARY OF THE INVENTION
  • [0007]
    It is an object of the present invention to provide affective information for images in an imaging system.
  • [0008]
    This object is achieved by a method for determining affective information for at least one image in an imaging system, comprising the steps of:
  • [0009]
    a) displaying a digital image for viewing by a user;
  • [0010]
    b) monitoring the facial expression of the user as the user views the digital image; and
  • [0011]
    c) using the facial expression of the user to determine affective information for the digital image.
  • ADVANTAGES
  • [0012]
    It is an advantage of the present invention to provide personalized affective information associated with digital images. This information provides for unique personal classification of such digital images for future possible usage, e.g. retrieval, communication and sharing, advertising and marketing.
  • [0013]
    It is an additional advantage of the present invention that affective information can be determined from the user's facial expression.
  • [0014]
    It is a further advantage of the present invention to achieve a large number of different affective categories such as happy, sad, angry, etc. for classifying digital images.
  • [0015]
    It is also an advantage of the present invention to continuously update existing affective information for classifying images by considering new affective information about a user's reaction to existing images, as well as new images added to an image database.
  • [0016]
    It is a further advantage of the present invention that affective information can be associated with the image at different times. This history of user's reaction to a given image enables analysis of changes in person's reaction that can be used for therapeutic, diagnostic, or retrospective purposes.
  • [0017]
    It is an additional advantage of the present invention that affective information is associated with a user identifier.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0018]
    [0018]FIG. 1 depicts a block diagram of home computer system for providing affective information;
  • [0019]
    [0019]FIG. 2 is a flow diagram showing an embodiment of a system for providing affective information based on analysis of facial expressions;
  • [0020]
    [0020]FIG. 3 is a flow diagram showing an embodiment of a system for providing affective information based on analysis of viewing time;
  • [0021]
    [0021]FIG. 4 is a flow diagram showing an embodiment of a system for providing affective information based on analysis of skin conductance;
  • [0022]
    [0022]FIG. 5 is a flow diagram showing an embodiment of a system for providing affective information based on combined analysis of facial expressions, viewing time, and skin conductance;
  • [0023]
    [0023]FIG. 6A is an example of a simple personal affective tag for a single user; and
  • [0024]
    [0024]FIG. 6B is an example of affective metadata for multiple users with multiple personal affective tags.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0025]
    The present invention provides a structure and method for capturing a user's reaction during the process of image viewing, such as on a display of a personal computer; and interpreting this reaction in terms of a degree of preference, importance, or a certain emotional category for subsequent association of this information and its interpretation with a specified image. The information about user's reaction to the image is based on automatically recording one or more of the following signals using physical or bio-metrical devices: the duration of time that the user views a certain image; the facial expression of the user while viewing the image; and the skin conductance of the user while viewing the image. Interpretation of the recorded information produces several gradations of user's preference, e.g. the degree to which the user likes the image and considers it to be his or her favorite image. It also provides a relative degree of importance or interest of the image to the user. Additionally, interpretation of such information classifies the recorded information in terms of the specific emotion, for example, happy or sad.
  • [0026]
    By images is meant still or moving images, or multimedia clips or fragments that include visual information. People create images for a variety of purposes and applications. Capturing memorable events is one example of an activity that ordinary people, professional photographers, or journalists alike have in common. These events are meaningful or emotionally important to an individual or a group of individuals. Images of such events attract special attention, elicit memories, feelings/emotions, or specific behavior. One can say that these pictures of special events and moments evoke certain mental or behavioral reactions or, in general terms, psychological reactions.
  • [0027]
    Often these psychological reactions are accompanied by physiological changes. Relevant information that represents or describes a particular user's reactions toward images in terms of user's affective, cognitive, physiological or behavioral responses are referred to in the present invention as affective information. The affective information can be attributable to memories and associations related to depicted events, as well as to a particular rendering of an image (image quality, beautiful picture, peculiar composition, specific people, etc.).
  • [0028]
    Affective tagging is defined as the process of determining affective information, and storing the affective information in association with the images. When the affective information is stored in association with a user identifier, it is referred to in the present invention as “personal affective information”. When the personal affective information is stored in association with the corresponding image, it is referred to as “personal affective tag”. The affective information and user identifier are types of image “metadata”, which is a term used for any information relating to an image. Examples of other types of image metadata include image capture time, capture device, capture location, date of capture, image capture parameters, image editing history etc.
  • [0029]
    Affective information can be manually entered by a user, for example, using a mouse, keyboard, or voice recognition, or it can be collected automatically. The following are examples of methods for automatically collecting affective information:
  • [0030]
    The viewing time of the image, since a longer viewing time normally indicates that this is an important image;
  • [0031]
    Other behavioral/usage information related to the usage of this image, such as how many times the image was printed or sent to others via e-mail;
  • [0032]
    The facial expression of the user, which can be captured automatically by a video camera as the user views the image;
  • [0033]
    Body gestures recorded by a video camera as the user views the image;
  • [0034]
    The user's eye movements, such as the gaze path of the user while viewing the image;
  • [0035]
    The user's voice, recorded while viewing the image;
  • [0036]
    The pressure of the user's hand on the input device (e.g. joystick or mouse) recorded while viewing the image; and
  • [0037]
    The user's biometric or physiological responses recorded as the user views the image. These can be any combination of signals, including galvanic skin response (GSR), EMG, Temperature, GSR, Heart Rate, brain waves EEG, brain-imaging signals, etc.
  • [0038]
    Affective information is determined automatically based on viewing time, the facial expression, and galvanic skin response.
  • [0039]
    Referring to FIG. 1, there is illustrated a desktop computer system made in accordance with the present invention for providing personal affective information, associating it with image(s) as image metadata, and storing the images and the associated personal affective information.
  • [0040]
    The system depicted in FIG. 1 includes a home computer 10 (with associated peripherals) located at the user location (e.g. their home). It is understood that a system such as a TV set, game console, dedicated Internet appliance, set top box, Wireless PDA devices, telephone with the embedded display, retail kiosks, electronic picture frame devices, etc. may be substituted for the home computer system 10.
  • [0041]
    The home computer 10 is connected through a modem 22 or other communications interface to a communication service provider, such as an Internet service provider 30. The home computer 10 includes a CPU motherboard 12, a display monitor 14, and a hard drive storage device 20 that can store high resolution image files such as digital still or digital motion images and associated metadata.
  • [0042]
    The home computer includes various image input peripherals, including a scanner 28, a CD reader 26, and a digital camera 24. The scanner 28 is used to scan prints or film and produce digital images. The CD reader 26 is used to input digital images from a CD-R disk, such as a Kodak PictureCD (not shown). The user can also download images from a Service Provider using the modem 22. The home computer 10 can also connect to a local printer (not shown), such as an inkjet printer, to allow images to be printed at the user's home.
  • [0043]
    The digital camera 24 can be a digital still camera such as the Kodak DC 4800 digital camera manufactured by the Eastman Kodak Company, Rochester, N.Y. Alternatively, the digital camera 24 can be a digital motion camera such as the Kodak MC3 portable multimedia device, which records motion and sound video files, in addition to still images. The digital camera 24 connects to the home computer 10 via a cable employing a common interface, such as the well known Universal Serial Bus (USB) interface or the IEEE 1394 interface. Alternatively, digital camera 24 can connect to the home computer 10 using a wireless interface, such as the well known Bluetooth interface or the IEEE Standard 802.15 interface. Alternatively, the images can be transferred from the digital camera 24 to the home computer 10 using a removable memory card, such as a CompactFlash card and a card reader (not shown).
  • [0044]
    In order to provide affective information, the home computer 10 is connected to a keyboard 16 and a pointing device 18, such as a mouse or trackball. In a preferred embodiment, the pointing device 18 also includes sensors that can detect the user's physiological signals, including the GSR (Galvanic Skin Response). The home computer 10 is also connected to video camera 4. The video camera is also a sensor which captures video images of the face of the user 2, in order to record the facial expression of the user, and stores this video information on the hard drive storage 20 prior to processing by the CPU motherboard 12 The video camera 4 can be, for example, a DV325 tethered camera sold by Eastman Kodak Company. The camera connects to the home computer 10 via a cable employing a common interface, such as the Universal Serial Bus (USB) interface.
  • [0045]
    The home computer 10 is provided with appropriate software for creating and using personalized affective information in accordance with the present invention. This software is typically stored on hard drive 20, and can be provided on a CD-ROM disc (not shown). Alternatively, this software can be downloaded from the Internet via modem 22.
  • [0046]
    In a preferred embodiment, the home computer 10 determines affective information based on one of the following: a) a degree of preference extracted from facial expression; b) a degree of interest extracted from viewing time; and c) a degree of excitement extracted from galvanic skin response, or a combination of this information.
  • [0047]
    Referring to FIG. 2, there is shown a flow diagram illustrating embodiment of the present invention for providing affective information based on the degree of preference of a particular user for each of a set of digital images. In this embodiment, affective information indicating a degree of preference for each image from a plurality of digital images is determined based on facial expression of the particular user.
  • [0048]
    In block 110, the user opens a new set of images by inserting the CD-ROM into the CD reader 26 of the home computer 10. The CD-ROM provides a database of digital images. Alternatively, the set of digital images can be provided using many other types of digital storage media, including magnetic disks and tape, optical discs, and solid-state memory. In a preferred embodiment, the CD-ROM also includes the software application that implements the method of FIG. 2. In this case, the software is automatically installed as part of block 112, if necessary, so that it can be used by CPU motherboard 12.
  • [0049]
    In block 112, the application which implements the method of the present invention is launched automatically, when a user views the images for the first time. Alternatively, the user can start the application manually and load a new set of images from the digital camera 24, the scanner 28, or from other image sources including the Internet.
  • [0050]
    In block 114, the user enters their personal ID and password. Alternatively, this step can be provided automatically by the operating system of the home computer 10 when the user “logs on” to the computer. In an alternative embodiment, the video camera 4 is used in conjunction with face recognition software to automatically determine the user, and provide an appropriate user identifier, such as their name or personal identification code.
  • [0051]
    In block 116, the home computer 10 provides a selection of signals that can be recorded in order to determine the user's emotional reaction as they view images.
  • [0052]
    In block 118, the user selects the desirable signal, i.e., facial expression in this case. In block 120, the home computer 10 retrieves the first image from the CD-ROM (or other image source) and in block 122, the home computer 10 displays the image on the monitor 14.
  • [0053]
    In block 124, the home computer 10 automatically analyses the facial expression of the user during the process of viewing images by processing images captured by the video camera 4. Frames of the video information are processed using a facial expression recognition algorithm. Facial expressions can be analyzed using a publicly disclosed algorithm for facial expression recognition such as an algorithm developed by Essa and Pentland (I. A. Essa and A. Pentland, [1995]“Facial Expression Recognition using a Dynamic Model and Motion Energy”, In Proceedings of the ICCV 95, Cambridge, Mass.). Their algorithm is based on the knowledge of the probability distribution of the facial muscle activation associated with each expression and a detailed physical model of the skin and muscles. The physics-based model is used to recognize facial expressions through comparison of estimated muscle activations from the video signal and typical muscle activations obtained from a video database of emotional expressions.
  • [0054]
    Facial expressions can also be analyzed by means of other publicly available algorithms (e.g., J. J. Lien, T. Kanade, J. F. Cohn and C. C. Li, (2000) “Detection, Tracking, and Classification of Action Units in Facial Expression,” Robotics and Autonomous Systems, 31, pp. 131-146, 2000; Bartlett, M. S., Hager, J. C., Ekman, P., and Sejnowski, T. J., [1999]“Measuring facial expressions by computer image analysis”, Psychophysiology, 36, pp. 253-263). Their algorithms are based on recognizing specific facial actions —the basic muscle movements—which were described by Ekman and Friesen (P. Ekman and W. Friesen, [1978]“Facial Action Coding System”, Consulting Psychologists Press, Inc., Palo Alto, Calif.) in the Facial Action Coding System (FACS). The basic facial actions can be combined to represent any facial expressions. For example, a spontaneous smile can be represented by two basic facial actions: 1) the corners of the mouth are lifted up by a muscle called zygomaticus major; and 2) the eyes are crinkled by a muscle called orbicularis oculi. Therefore, when uplifted mouth and crinkled eyes are detected in the video signal, it means that a person is smiling. As a result of the facial expression analysis, a user's face can be recognized as smiling when a smile on user's face is detected, or not smiling when the smile is not detected.
  • [0055]
    In block 126, the home computer 10 determines the smile size. If the smile is not detected, the smile size equals 0. If a smile has been detected for a given image I, a smile size S I for the image I is determined as the maximum distance between mouth corners within first three seconds after the onset of the specified image divided by the distance between the person's eyes. The distance between the person's eyes is determined using the facial recognition algorithms mentioned above. The necessity of taking the ratio between the size of the mouth and some measure related to the head of the person (e.g. the distance between the eyes) stems from the fact that the size of the mouth extracted from the video frame depends on the distance of the user to the video camera, position of the head, etc. The distance between the person's eyes is used to account for this dependency, however, other measures such as the height or width of the face, the area of the face and others measures can also be used.
  • [0056]
    In block 128, the home computer 10 determines the degree of preference. The degree of preference for the image I is defined as the smile size S I for the image I. If the smile was not detected, then the smile size and consequently the degree of preference is equal to 0.
  • [0057]
    In block 130, the home computer 10 creates a personal affective tag for the image I and stores the degree of preference in the personal affective tag as part of the image metadata. Alternatively, the degree of preference can be stored in a separate file in association with the user identifier and the image identifier.
  • [0058]
    In addition, the information about the date the user views a certain image can be also recorded as a separate entry into personal affective tag. Every time the user views the specified image a new personal affective tag is created which contains the user identifier, the degree of preference and the date when the image was viewed. As a result, images that were viewed more frequently would contain a bigger number of personal affective tags.
  • [0059]
    In block 132, the user clicks the pointing device 18 to indicate that they want to move to the next image. Alternatively, the user can provide some other form of input, such as hitting a key on the keyboard 16, providing an audio command, which is input by a microphone (not shown), providing a gesture captured by video camera 4, or using other input devices.
  • [0060]
    In block 134, the home computer 10 determines if this is the last image of the image set.
  • [0061]
    In block 136, if this is not the last image, the home computer 10 retrieves the next image of the image set and repeats blocks 122 through 134.
  • [0062]
    In block 138, if this is the last image, the home computer 10 stops the process of affective tagging.
  • [0063]
    Through the process of affective tagging the degree of preference can be determined and updated for all images in the database that were viewed by the user.
  • [0064]
    The degree of preference can be used in a digital imaging system to rank images in a systematic and continuous manner as favorite images for a specified user. This ranking can be done either based on the maximum degree of preference for each image (chosen among all personal affective tags created for this user and a specified image) or based on the cumulative degree of preference, which is defined as the sum of the degrees of preference for this user extracted from all relevant personal affective tags for the specified image.
  • [0065]
    The ranking can also be done for a specific time period. In this case, only the personal affective tags created during a desired period of time are considered.
  • [0066]
    In another embodiment, a binary degree of preference for images in an image database can be determined. When the smile is detected in block 124, the corresponding image is then classified as preferred with the binary degree of preference equals 1. Alternatively, when the smile is not detected, the image is classified as not preferred with the degree of preference equals 0.
  • [0067]
    The determined affective information in terms of the binary degree of preference is then stored as personal affective tag, which includes the user identifier as part of the image metadata. It can also be stored in a separate file on the computer together with the image identifier and the user identifier. In addition, affective information in terms of the actual frame(s) of the user's facial expression can also be stored in a separate file in association with the image identifier and the user identifier.
  • [0068]
    Yet in another embodiment, emotional category for images in an image database can be determined. The facial expression may be classified into a broader range of emotional categories, such as ‘happy’, ‘sad’, ‘disgust’, ‘surprised’, etc. As a result of facial recognition, images that evoke ‘happy’ facial expressions are assigned the ‘happy’ emotional category, images that evoke ‘sad’ facial expressions are assigned the ‘sad’ emotional category, etc. Images can be further classified using a range of values for these categories, such as strongly happy, somewhat happy, neutral and somewhat sad, and strongly sad, etc.
  • [0069]
    The determined affective information in terms of the emotional category is then stored as personal affective tag, which includes the user identifier as part of the image metadata. It can also be stored in a separate file on the computer together with the image identifier and the user identifier.
  • [0070]
    Referring to FIG. 3, there is shown a flow diagram illustrating another embodiment of the present invention for providing affective information based on the degree of interest of the particular user to a plurality of digital images. With this embodiment, a degree of interest is determined based on the viewing time, which is the time that the user views each digital image, before moving on to the next digital image.
  • [0071]
    The data described in a paper entitled “Looking at pictures: Affective, facial, visceral, and behavioral reactions”, Psychophysiology, 30, pp. 261-273, 1993, by P. J. Lang, M. K. Greenwald, M. M. Bradley, and A. O. Hamm, indicates that on average, viewing time linearly correlates with the degree of the interest or attention an image elicit in an observer. Thus, such a relationship allows interpreting the viewing time as the user's degree of interest toward a specified image. Quoted publication by Lang et al. compares a viewing time with the degree of the interest for third party pictures only. In the present invention, a viewing time information is assessed for every individual for the first party as well as third party images and stored as a personal affective tag as part of the image metadata or in a separate file in association with the user identifier and the image identifier.
  • [0072]
    Recording of this signal implies that a user controls the time during which he or she observes an image. In the preferred embodiment, the user views images on the monitor screen of the PC and proceeds to the next image by pressing the mouse button or hitting a key. The following method to determine a degree of interest for every user and for every image is suggested and shown in FIG. 3.
  • [0073]
    In blocks 210 through 222, the method is the same as in blocks 110 through 122 in FIG. 2. In block 224, the home computer 10 determines the time interval T IJ between two consecutive images I and J.
  • [0074]
    In block 226, the home computer 10 determines the degree of interest. The degree of interest for the image I is defined as the time interval T IJ when the image I was viewed.
  • [0075]
    To ensure that the viewing time is not improperly judged as a result of user distraction, the video camera 4 can be used to ensure that the user 2 is directing their gaze towards the monitor 14, and is not distracted by other tasks, or has even left the room.
  • [0076]
    In block 228, the home computer 10 creates a personal affective tag for the image I and stores the degree of interest in the personal affective tag as part of the image metadata. Alternatively, the degree of interest can be stored in a separate file in association with the user identifier and the image identifier.
  • [0077]
    In addition, the information about the date the user views a certain image can be also recorded as a separate entry into personal affective tag. Every time the user views the specified image a new personal affective tag is created which contains the user identifier, the degree of interest and the date when the image was viewed. As a result, images that were viewed more frequently would contain a bigger number of personal affective tags.
  • [0078]
    In blocks 230 through 236, the degree of interest is determined for all images in the database that were viewed by the user.
  • [0079]
    The degree of interest can be used in a digital imaging system to rank images in a systematic and continuous manner as favorite or important images for a specified user. This ranking can be done either based on the maximum degree of interest for each image (chosen among all personal affective tags created for this user and a specified image) or based on the cumulative degree of interest, which is defined as the sum of the degrees of interest for this user extracted from all relevant personal affective tags for the specified image.
  • [0080]
    The ranking can also be done for a specific time period. In this case, only the personal affective tags created during a desired period of time are considered.
  • [0081]
    Referring to FIG. 4, there is shown a flow diagram illustrating embodiments of the present invention for providing affective information based on the degree of excitement. With the present invention, a degree of excitement is determined based on the skin conductance.
  • [0082]
    Skin conductance is a measure of galvanic skin response. Skin conductance reflects a magnitude of the electrical conductance of the skin that is measured as a response to a certain event —viewing the image. As described in the paper “Looking at pictures: Affective, facial, visceral, and behavioral reactions”, Psychophysiology , 30, pp. 261-273, 1993, by P. J. Lang, M. K. Greenwald, M. M. Bradley, and A. O. Hamm, skin conductance changes depending on the arousal the image elicits in the viewer: the higher the conductance, the lower the arousal or excitement, and vice versa: the lower the conductance, the higher the arousal. The measure of the amplitude of the skin conductance is also used to conclude about interest or attention.
  • [0083]
    The following method to determine a degree of excitement for every user and for every image is suggested and shown in FIG. 4.
  • [0084]
    In blocks 310 through 322, the method is the same as in blocks 210 through 222 in FIG. 3. In block 324, the home computer 10 determines the change in the skin conductance or C I during viewing an image I. Skin conductance signal is detected through sensors in pointing device 18. The pointing device 18 can be a computer mouse such as IMB computer mouse with special bio-metric sensor that is able to detect and record skin conductance. Other devices can also be used such as various wearable devices for affective computing (computing emotional responses from physiological signals) developed at the MIT Media Lab (http://www.media.mit.edu/affect/AC_research/wearables.html). An example of such device is the Galvactivator, a glove-like wearable device that senses the wearer's skin conductivity and maps its values to a bright LED display, created by Rosalind Picard and her colleagues (http://www.media.mit.edu/galvactivator/).
  • [0085]
    In block 326, the home computer 10 determines the degree of excitement. The degree of excitement for the image I is defined as the skin conductance C I when the image I was viewed.
  • [0086]
    To ensure that the change in skin conductance is elicited by the image and not by any other extraneous events, the video camera 4 can be used to check that the user 2 is directing their gaze towards the monitor 14, and is not distracted by other tasks, or has even left the room.
  • [0087]
    In block 328, the home computer 10 creates a personal affective tag for the image I and stores the degree of excitement in the personal affective tag as part of the image metadata. Alternatively, the degree of excitement can be stored in a separate file in association with the user identifier and the image identifier.
  • [0088]
    In addition, the information about the date the user views a certain image can also be recorded as a separate entry into personal affective tag. Every time the user views the specified image a new personal affective tag is created which contains the user identifier, the degree of excitement and the date when the image was viewed. As a result images that were viewed more frequently would contained a bigger number of personal affective tags.
  • [0089]
    In blocks 330 through 336, the degree of excitement is determined for all images in the database that were viewed by the user.
  • [0090]
    The degree of excitement can be used in a digital imaging system to rank images in a systematic and continuous manner as favorite, important or exciting images for a specified user. This ranking can be done either based on the maximum degree of excitement for each image (chosen among all personal affective tags created for this user and a specified image) or based on the cumulative degree of excitement, which is defined as the sum of the degrees of excitement for this user extracted from all relevant personal affective tags for the specified image.
  • [0091]
    The ranking can also be done for a specific time period. In this case, only the personal affective tags created during a desired period of time are considered.
  • [0092]
    In another embodiment the actual signal of galvanic skin response is stored as affective information either in a separate file on the computer 10 together with the image identifier and the user identifier, or in the personal affective tag as part of the image metadata.
  • [0093]
    Referring to FIG. 5, there is shown a flow diagram illustrating embodiment of the present invention for providing affective information based on the combination of the three affective signals described in the earlier paragraphs, namely, the degree of preference, the degree of interest and the degree of excitement, which are further combined to obtain an integral measure of positive importance.
  • [0094]
    In blocks 410 through 422, the method is the same as in blocks 210 through 222 in FIG. 2. In block 424, the home computer 10 determines the degree of preference based on facial expression (DP) the same way as in block 128 of FIG. 3. In block 426, the home computer 10 determines the degree of interest based on viewing time (DI) the same way as in block 226 of FIG. 4. In block 428, the home computer 10 determines the degree of excitement based on skin conductance (DE) the same way as in block 326 of FIG. 4.
  • [0095]
    In block 430, the home computer 10 determines the degree of positive importance (or “favoriteness”) based on a sum of these three measures:
  • Positive Importance=DP+DI+DE
  • [0096]
    In another embodiment, the degree of positive importance is determined based on a weighted sum of these three measures, where the weights are determined based on the standard deviation within each of the normalized (divided by the maximum value) signals over the image set. In this case, the higher the standard deviation within the signal, the higher the weight of the contribution for the signal into the measure of positive importance. Consequently, the lower the standard deviation of a given signal, the lower the weight of the contribution for the corresponding signal into the measure of positive importance. The reason for this dependency stems from the assumption that a standard deviation of a particular measure reflects a degree of differentiation between the images along a given measure. This implies that the signal with the highest standard deviation has more differentiation power, and therefore is more important to consider while determining an integral measure of positive importance.
  • [0097]
    In block 432, the home computer 10 creates a personal affective tag for the image I and stores the degree of positive importance in the personal affective tag as part of the image metadata. Alternatively, the degree of positive importance can be stored in a separate file in association with the user identifier and the image identifier.
  • [0098]
    In addition, the information about the date the user views a certain image can also be recorded as a separate entry into personal affective tag. Every time the user views the specified image a new personal affective tag is created which contains the user identifier, the degree of positive importance and the date when the image was viewed. As a result images that were viewed more frequently would contained a bigger number of personal affective tags.
  • [0099]
    In blocks 434 through 440, the degree of positive importance is determined for all images in the database that were viewed by the user.
  • [0100]
    The degree of positive importance can be used in a digital imaging system to rank images in a systematic and continuous manner as favorite images for a specified user. This ranking can be done either based on the maximum degree of positive importance for each image (chosen among all personal affective tags created for this user and a specified image) or based on the cumulative degree of positive importance, which is defined as the sum of the degrees of positive importance for this user extracted from all relevant personal affective tags for the specified image.
  • [0101]
    The ranking can also be done for a specific time period. In this case only the personal affective tags created during a desired period of time are considered.
  • [0102]
    In another embodiment, different combinations of these three or other affective signals (such as derived from EEG, EMG, hand temperature, brain scan, eye movements and others) can be used to create the personal affective tag to classify images in accordance with a broader range of emotional categories, such as ‘happy’, ‘sad’, ‘disgust’, ‘surprised’, etc. Images can be further classified using a range of values for these categories, such as strongly happy, somewhat happy, neutral and somewhat sad, and strongly sad, etc.
  • [0103]
    The determined affective information in terms of the emotional category is then stored as personal affective tag, which includes the user identifier as part of the image metadata. It can also be stored in a separate file on the computer together with the image identifier and the user identifier.
  • [0104]
    An illustrative example of a personal affective tag is shown in FIG. 6A. FIG. 6A depicts a file data structure for the simplest personal affective tag for a single user, which includes a personal identification field, and an affective field.
  • [0105]
    A personal identification code is stored in the personal identification field. This field identifies the user, whose affective information is stored in the personal affective tag.
  • [0106]
    Affective information is stored in the affective field. The affective information can be the result of automatic detection or a manual entry by the user.
  • [0107]
    The affective field identifies relevant data that represents or describes user's reactions toward images in terms of user's affective, cognitive, physiological, or behavioral responses. These data can be both raw recorded signals (e.g., skin conductance response) and/or interpreted information (e.g., the degree of positive importance). The affective field can also include basic emotion (e.g. happy) with a corresponding ranking that quantifies the intensity of the detected emotion.
  • [0108]
    The minimum required information contained in a personal affective tag consists of the personal identification code stored in the corresponding field, and affective information stored in the affective field. Other optional fields such as date and place of viewing, or other information can be included in a personal affective tag.
  • [0109]
    An illustrative example of personal affective tags with optional fields is shown in FIG. 6A. Referring to FIG. 6B, there is shown an example data structure of affective metadata for a single image, which provides personalized affective information for multiple users. Personal affective tag #1 indicates that on Sep. 1, 2000, a computer stored the following affective information for the first user (user 1) viewing this image: Facial Expression =Smile; Smile size =1.5; The Degree of Preference =1.5; Emotional category =Strongly happy; Viewing time =15 sec; The Degree of Interest =15; Skin Conductance Response =5 μmho; The Degree of Excitement =5; The Degree of Positive Importance =21.5.
  • [0110]
    Personal affective tag #2 indicates that later during the day of Sep. 1, 2000 the computer stored the following affective information for the second user (user 2) viewing the specified image: Facial Expression =No Smile; Smile size =0; The Degree of Preference =0; Emotional category =Neutral; Viewing time =2 sec; The Degree of Interest =2; Skin Conductance =1 μmho; The Degree of Excitement =1; The Degree of Positive Importance =3.
  • [0111]
    According to the affective information, the specified image had a higher degree of preference, interest, excitement, and importance for the first user than for the second user.
  • [0112]
    Personal affective tag #3 indicates that on Oct. 1, 2000 the computer stored the following affective information for the first user (user 1) viewing the specified image: Facial Expression =Smile; Smile size =1.1; The Degree of Preference =1.1; Emotional category =Somewhat happy; Viewing time =10 sec; The Degree of Interest =10; Skin Conductance =3 μmho; The Degree of Excitement =3; The Degree of Positive Importance =14.1.
  • [0113]
    According to this affective information, one month later the specified image slightly decreased its degree of preference, interest, excitement, and importance for the first user.
  • [0114]
    The method for providing affective information described in detail previously in the present invention for the case of picture viewing can also be utilized during the process of picture taking. In this case, the imaging capture device would need to be supplied with for example, a bio-sensor and ability to capture the face of a picture taker.
  • [0115]
    The present invention can be used as part of a system for retrieving images using affective information, and for producing album pages and other hardcopy photo products using affective information, as described in commonly assigned U.S. patent application Ser. No. ______, filed concurrently herewith entitled “Method for Providing Affective Information in an Imaging System” by Elena A. Fedorovskaya et al.; and Ser. No. ______, filed concurrently herewith entitled “Method for Using Viewing Time to Determine Affective Information in an Imaging System” by Elena A. Fedorovskaya et al.; the disclosures of which are incorporated herein by reference.
  • [0116]
    A computer program product can include one or more storage medium, for example; magnetic storage media such as magnetic disk (such as a floppy disk) or magnetic tape; optical storage media such as optical disk, optical tape, or machine readable bar code; solid-state electronic storage devices such as random access memory (RAM), or read-only memory (ROM); or any other physical device or media employed to store a computer program having instructions for practicing a method according to the present invention.
  • [0117]
    The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
  • PARTS LIST
  • [0118]
    [0118]2 user
  • [0119]
    [0119]4 video camera
  • [0120]
    [0120]10 home computer systems
  • [0121]
    [0121]12 CPU motherboard
  • [0122]
    [0122]14 monitor
  • [0123]
    [0123]16 keyboard
  • [0124]
    [0124]18 pointing device with physiology sensors
  • [0125]
    [0125]20 hard drive
  • [0126]
    [0126]22 modem
  • [0127]
    [0127]24 digital still camera
  • [0128]
    [0128]26 CD reader
  • [0129]
    [0129]28 scanner
  • [0130]
    [0130]30 Internet service provider
  • [0131]
    [0131]32 modem
  • [0132]
    [0132]110 block
  • [0133]
    [0133]112 block
  • [0134]
    [0134]114 block
  • [0135]
    [0135]116 block
  • [0136]
    [0136]118 block
  • [0137]
    [0137]120 block
  • [0138]
    [0138]122 block
  • [0139]
    [0139]124 block
  • [0140]
    [0140]126 block
  • [0141]
    [0141]128 block
  • [0142]
    [0142]130 block
  • [0143]
    [0143]132 block
  • [0144]
    [0144]134 block
  • [0145]
    [0145]136 block
  • PARTS LIST (con't)
  • [0146]
    [0146]138 block
  • [0147]
    [0147]210 block
  • [0148]
    [0148]212 block
  • [0149]
    [0149]214 block
  • [0150]
    [0150]216 block
  • [0151]
    [0151]218 block
  • [0152]
    [0152]220 block
  • [0153]
    [0153]222 block
  • [0154]
    [0154]224 block
  • [0155]
    [0155]226 block
  • [0156]
    [0156]228 block
  • [0157]
    [0157]230 block
  • [0158]
    [0158]232 block
  • [0159]
    [0159]234 block
  • [0160]
    [0160]236 block
  • [0161]
    [0161]310 block
  • [0162]
    [0162]312 block
  • [0163]
    [0163]314 block
  • [0164]
    [0164]316 block
  • [0165]
    [0165]318 block
  • [0166]
    [0166]320 block
  • [0167]
    [0167]322 block
  • [0168]
    [0168]324 block
  • [0169]
    [0169]326 block
  • [0170]
    [0170]328 block
  • [0171]
    [0171]330 block
  • [0172]
    [0172]332 block
  • PARTS LIST (con't)
  • [0173]
    [0173]334 block
  • [0174]
    [0174]336 block
  • [0175]
    [0175]410 block
  • [0176]
    [0176]412 block
  • [0177]
    [0177]414 block
  • [0178]
    [0178]416 block
  • [0179]
    [0179]418 block
  • [0180]
    [0180]420 block
  • [0181]
    [0181]422 block
  • [0182]
    [0182]424 block
  • [0183]
    [0183]426 block
  • [0184]
    [0184]428 block
  • [0185]
    [0185]430 block
  • [0186]
    [0186]432 block
  • [0187]
    [0187]434 block
  • [0188]
    [0188]436 block
  • [0189]
    [0189]438 block
  • [0190]
    [0190]440 block
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5619619 *Mar 11, 1994Apr 8, 1997Kabushiki Kaisha ToshibaInformation recognition system and control system using same
US5659692 *May 8, 1995Aug 19, 1997Massachusetts Institute Of TechnologyComputer method and apparatus for video conferencing
US5666215 *Aug 3, 1995Sep 9, 1997Eastman Kodak CompanySystem and method for remotely selecting photographic images
US6046773 *Jun 2, 1995Apr 4, 2000Idt International Digital Technologies Deutschland GmbhApparatus and method for decoding video images
US6492990 *Oct 7, 1996Dec 10, 2002Yissum Research Development Company Of The Hebrew University Of JerusalemMethod for the automatic computerized audio visual dubbing of movies
US6504944 *Feb 1, 1999Jan 7, 2003Kabushiki Kaisha ToshibaImage recognition apparatus and method
US20030108241 *Dec 11, 2001Jun 12, 2003Koninklijke Philips Electronics N.V.Mood based virtual photo album
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7366753 *May 7, 2003Apr 29, 2008Sony CorporationInformation processing system, apparatus and method for processing information, and program
US7673044Mar 2, 2010Sony CorporationInformation processing system, apparatus and method for processing information, and program
US7698238Apr 13, 2010Sony Deutschland GmbhEmotion controlled system for processing multimedia data
US7930199Jul 21, 2006Apr 19, 2011Sensory Logic, Inc.Method and report assessing consumer reaction to a stimulus by matching eye position with facial coding
US8095522 *Dec 13, 2005Jan 10, 2012MorphoMethod of searching for information in a database
US8150807Oct 3, 2007Apr 3, 2012Eastman Kodak CompanyImage storage system, device and method
US8151292 *Oct 2, 2008Apr 3, 2012Emsense CorporationSystem for remote access to media, and reaction and survey data from viewers of the media
US8209224Oct 29, 2009Jun 26, 2012The Nielsen Company (Us), LlcIntracluster content management using neuro-response priming data
US8235725 *Aug 7, 2012Sensory Logic, Inc.Computerized method of assessing consumer reaction to a business stimulus employing facial coding
US8270814Sep 18, 2012The Nielsen Company (Us), LlcMethods and apparatus for providing video with embedded media
US8326002Aug 13, 2010Dec 4, 2012Sensory Logic, Inc.Methods of facial coding scoring for optimally identifying consumers' responses to arrive at effective, incisive, actionable conclusions
US8327395Oct 2, 2008Dec 4, 2012The Nielsen Company (Us), LlcSystem providing actionable insights based on physiological responses from viewers of media
US8332883Oct 2, 2008Dec 11, 2012The Nielsen Company (Us), LlcProviding actionable insights based on physiological responses from viewers of media
US8335715Dec 18, 2012The Nielsen Company (Us), Llc.Advertisement exchange using neuro-response data
US8335716Nov 19, 2009Dec 18, 2012The Nielsen Company (Us), Llc.Multimedia advertisement exchange
US8386312Feb 26, 2013The Nielsen Company (Us), LlcNeuro-informatics repository system
US8386313Feb 26, 2013The Nielsen Company (Us), LlcStimulus placement system using subject neuro-response measurements
US8392250Mar 5, 2013The Nielsen Company (Us), LlcNeuro-response evaluated stimulus in virtual reality environments
US8392251Aug 9, 2010Mar 5, 2013The Nielsen Company (Us), LlcLocation aware presentation of stimulus material
US8392253May 16, 2008Mar 5, 2013The Nielsen Company (Us), LlcNeuro-physiology and neuro-behavioral based stimulus targeting system
US8392254Mar 5, 2013The Nielsen Company (Us), LlcConsumer experience assessment system
US8392255Mar 5, 2013The Nielsen Company (Us), LlcContent based selection and meta tagging of advertisement breaks
US8396744Mar 12, 2013The Nielsen Company (Us), LlcEffective virtual reality environments for presentation of marketing materials
US8464288Jun 11, 2013The Nielsen Company (Us), LlcMethods and apparatus for providing personalized media in video
US8473345Mar 26, 2008Jun 25, 2013The Nielsen Company (Us), LlcProtocol generator and presenter device for analysis of marketing and entertainment effectiveness
US8484081Mar 26, 2008Jul 9, 2013The Nielsen Company (Us), LlcAnalysis of marketing and entertainment effectiveness using central nervous system, autonomic nervous system, and effector data
US8494610Sep 19, 2008Jul 23, 2013The Nielsen Company (Us), LlcAnalysis of marketing and entertainment effectiveness using magnetoencephalography
US8494905Jun 6, 2008Jul 23, 2013The Nielsen Company (Us), LlcAudience response analysis using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)
US8533042Jul 30, 2008Sep 10, 2013The Nielsen Company (Us), LlcNeuro-response stimulus and stimulus attribute resonance estimator
US8548852Aug 8, 2012Oct 1, 2013The Nielsen Company (Us), LlcEffective virtual reality environments for presentation of marketing materials
US8600100Apr 16, 2010Dec 3, 2013Sensory Logic, Inc.Method of assessing people's self-presentation and actions to evaluate personality type, behavioral tendencies, credibility, motivations and other insights through facial muscle activity and expressions
US8631322 *Mar 15, 2006Jan 14, 2014Fujifilm CorporationAlbum creating apparatus facilitating appropriate image allocation, album generating method and program
US8635105Aug 27, 2008Jan 21, 2014The Nielsen Company (Us), LlcConsumer experience portrayal effectiveness assessment system
US8655428May 12, 2010Feb 18, 2014The Nielsen Company (Us), LlcNeuro-response data synchronization
US8655437Aug 21, 2009Feb 18, 2014The Nielsen Company (Us), LlcAnalysis of the mirror neuron system for evaluation of stimulus
US8687925 *Apr 7, 2008Apr 1, 2014Sony CorporationImage storage processing apparatus, image search apparatus, image storage processing method, image search method and program
US8762202Apr 11, 2012Jun 24, 2014The Nielson Company (Us), LlcIntracluster content management using neuro-response priming data
US8797331Aug 4, 2008Aug 5, 2014Sony CorporationInformation processing apparatus, system, and method thereof
US8955010Jun 10, 2013Feb 10, 2015The Nielsen Company (Us), LlcMethods and apparatus for providing personalized media in video
US8977110Aug 9, 2012Mar 10, 2015The Nielsen Company (Us), LlcMethods and apparatus for providing video with embedded media
US8989835Dec 27, 2012Mar 24, 2015The Nielsen Company (Us), LlcSystems and methods to gather and analyze electroencephalographic data
US9021515Oct 24, 2012Apr 28, 2015The Nielsen Company (Us), LlcSystems and methods to determine media effectiveness
US9060671Dec 27, 2012Jun 23, 2015The Nielsen Company (Us), LlcSystems and methods to gather and analyze electroencephalographic data
US9071462 *Nov 29, 2011Jun 30, 2015Samsung Electronics Co., Ltd.Method and apparatus for displaying message in mobile communication terminal
US9183632 *Nov 15, 2011Nov 10, 2015Nec CorporationFeeling-expressing-word processing device, feeling-expressing-word processing method, and feeling-expressing-word processing program
US9196042 *Nov 15, 2011Nov 24, 2015Nec CorporationFeeling-expressing-word processing device, feeling-expressing-word processing method, and feeling-expressing-word processing program
US9215978Jan 30, 2015Dec 22, 2015The Nielsen Company (Us), LlcSystems and methods to gather and analyze electroencephalographic data
US9224033 *Nov 15, 2011Dec 29, 2015Nec CorporationFeeling-expressing-word processing device, feeling-expressing-word processing method, and feeling-expressing-word processing program
US9224037 *Nov 28, 2012Dec 29, 2015Canon Kabushiki KaishaApparatus and method for controlling presentation of information toward human object
US9292858Feb 27, 2012Mar 22, 2016The Nielsen Company (Us), LlcData collection system for aggregating biologically based measures in asynchronous geographically distributed public environments
US9320450Mar 14, 2013Apr 26, 2016The Nielsen Company (Us), LlcMethods and apparatus to gather and analyze electroencephalographic data
US9336535Feb 11, 2014May 10, 2016The Nielsen Company (Us), LlcNeuro-response data synchronization
US9357240Jan 21, 2009May 31, 2016The Nielsen Company (Us), LlcMethods and apparatus for providing alternate media for video decoders
US20040153445 *Feb 25, 2003Aug 5, 2004Horvitz Eric J.Systems and methods for constructing and using models of memorability in computing and communications applications
US20050223237 *Mar 30, 2005Oct 6, 2005Antonio BarlettaEmotion controlled system for processing multimedia data
US20060015689 *Jul 15, 2004Jan 19, 2006International Business Machines CorporationImplementation and management of moveable buffers in cache system
US20060220983 *Mar 15, 2006Oct 5, 2006Fuji Photo Film Co., Ltd.Album creating apparatus, album generating method and program
US20070178428 *Jun 23, 2004Aug 2, 2007Mark LuchinMethod for prognostication the behavior of a man and/or type of his/her activity and also for identification of his/her personality
US20070299876 *Dec 13, 2005Dec 27, 2007Paul WeltiMethod of Searching for Information in a Database
US20080162721 *Feb 21, 2008Jul 3, 2008Sony CorporationInformation processing system, apparatus and method for processing information, and program
US20080215975 *Apr 23, 2007Sep 4, 2008Phil HarrisonVirtual world user opinion & response monitoring
US20080253695 *Apr 7, 2008Oct 16, 2008Sony CorporationImage storage processing apparatus, image search apparatus, image storage processing method, image search method and program
US20080260212 *Jan 11, 2008Oct 23, 2008Moskal Michael DSystem for indicating deceit and verity
US20090024049 *Mar 26, 2008Jan 22, 2009Neurofocus, Inc.Cross-modality synthesis of central nervous system, autonomic nervous system, and effector data
US20090040231 *Aug 4, 2008Feb 12, 2009Sony CorporationInformation processing apparatus, system, and method thereof
US20090094247 *Oct 3, 2007Apr 9, 2009Fredlund John RImage storage system, device and method
US20090094286 *Oct 2, 2008Apr 9, 2009Lee Hans CSystem for Remote Access to Media, and Reaction and Survey Data From Viewers of the Media
US20090131764 *Oct 31, 2008May 21, 2009Lee Hans CSystems and Methods Providing En Mass Collection and Centralized Processing of Physiological Responses from Viewers
US20100070987 *Mar 18, 2010At&T Intellectual Property I, L.P.Mining viewer responses to multimedia content
US20100145215 *Aug 20, 2009Jun 10, 2010Neurofocus, Inc.Brain pattern analyzer using neuro-response data
US20100266213 *Apr 16, 2010Oct 21, 2010Hill Daniel AMethod of assessing people's self-presentation and actions to evaluate personality type, behavioral tendencies, credibility, motivations and other insights through facial muscle activity and expressions
US20110038547 *Aug 13, 2010Feb 17, 2011Hill Daniel AMethods of facial coding scoring for optimally identifying consumers' responses to arrive at effective, incisive, actionable conclusions
US20120157134 *Nov 29, 2011Jun 21, 2012Samsung Electronics Co., Ltd.Method and apparatus for displaying message in mobile communication terminal
US20130136304 *Nov 28, 2012May 30, 2013Canon Kabushiki KaishaApparatus and method for controlling presentation of information toward human object
US20130188835 *Nov 15, 2011Jul 25, 2013Nec CorporationFeeling-expressing-word processing device, feeling-expressing-word processing method, and feeling-expressing-word processing program
US20130204535 *Feb 3, 2012Aug 8, 2013Microsoft CorporationVisualizing predicted affective states over time
US20130279747 *Nov 15, 2011Oct 24, 2013Nec CorporationFeeling-expressing-word processing device, feeling-expressing-word processing method, and feeling-expressing-word processing program
US20140046922 *Aug 8, 2012Feb 13, 2014Microsoft CorporationSearch user interface using outward physical expressions
EP1582965A1 *Apr 1, 2004Oct 5, 2005Sony Deutschland GmbhEmotion controlled system for processing multimedia data
EP2802969A1 *Jan 9, 2013Nov 19, 2014Microsoft CorporationConsumption of content with reactions of an individual
WO2006064119A1Dec 13, 2005Jun 22, 2006Sagem Defense SecuriteMethod for data search in a database
Classifications
U.S. Classification382/189
International ClassificationG06F3/01, G06F3/00
Cooperative ClassificationG06F3/011, G06F17/30265, G06F3/015
European ClassificationG06F3/01B, G06F3/01B8, G06F17/30M2
Legal Events
DateCodeEventDescription
Feb 19, 2002ASAssignment
Owner name: EASTMAN KODAK COMPANY, NEW YORK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ENDRIKHOVSKI, SERGUEI;FEDOROVSKAYA, ELENA A.;MATRASZEK, TOMASZ A.;AND OTHERS;REEL/FRAME:012645/0738;SIGNING DATES FROM 20020116 TO 20020218
Jun 22, 2009FPAYFee payment
Year of fee payment: 4
Feb 21, 2012ASAssignment
Owner name: CITICORP NORTH AMERICA, INC., AS AGENT, NEW YORK
Free format text: SECURITY INTEREST;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:028201/0420
Effective date: 20120215
Feb 1, 2013ASAssignment
Owner name: KODAK PHILIPPINES, LTD., NEW YORK
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: PAKON, INC., INDIANA
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: CREO MANUFACTURING AMERICA LLC, WYOMING
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: KODAK AMERICAS, LTD., NEW YORK
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: KODAK IMAGING NETWORK, INC., CALIFORNIA
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: KODAK REALTY, INC., NEW YORK
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: EASTMAN KODAK COMPANY, NEW YORK
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: KODAK AVIATION LEASING LLC, NEW YORK
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: EASTMAN KODAK INTERNATIONAL CAPITAL COMPANY, INC.,
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: NPEC INC., NEW YORK
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: FPC INC., CALIFORNIA
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: LASER-PACIFIC MEDIA CORPORATION, NEW YORK
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: KODAK PORTUGUESA LIMITED, NEW YORK
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: KODAK (NEAR EAST), INC., NEW YORK
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Owner name: QUALEX INC., NORTH CAROLINA
Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001
Effective date: 20130201
Apr 29, 2013ASAssignment
Owner name: INTELLECTUAL VENTURES FUND 83 LLC, NEVADA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:030306/0341
Effective date: 20130201
Oct 4, 2013REMIMaintenance fee reminder mailed
Feb 21, 2014LAPSLapse for failure to pay maintenance fees
Apr 15, 2014FPExpired due to failure to pay maintenance fee
Effective date: 20140221