Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030168256 A1
Publication typeApplication
Application numberUS 10/326,063
Publication dateSep 11, 2003
Filing dateDec 23, 2002
Priority dateMar 6, 2002
Also published asUS7081405, US20050040525
Publication number10326063, 326063, US 2003/0168256 A1, US 2003/168256 A1, US 20030168256 A1, US 20030168256A1, US 2003168256 A1, US 2003168256A1, US-A1-20030168256, US-A1-2003168256, US2003/0168256A1, US2003/168256A1, US20030168256 A1, US20030168256A1, US2003168256 A1, US2003168256A1
InventorsRay Chien
Original AssigneeVia Technologies, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Package module for an IC device and method of forming the same
US 20030168256 A1
Abstract
A package module of an IC device comprises a substrate, at least one semiconductor device, and an interconnected layer. The substrate has a first surface and a second surface, wherein the substrate further contains a plurality of metal plugs, which penetrate the substrate and connect the first surface and the second surface. The semiconductor device is located on the first surface of the substrate, wherein the semiconductor device contains a plurality of metal pads, each of which is connected to one of the metal plugs. The interconnected layer is formed on the second surface of the substrate, wherein the interconnected layer is comprised of a plurality of metal circuits, a plurality of land pads, and a plurality of via pads, wherein each of the metal plugs is connected to one of the metal circuits.
Images(5)
Previous page
Next page
Claims(20)
What is claimed is:
1. A package module for an IC device, comprising:
a substrate, having a first surface and a second surface; wherein said substrate further contains a plurality of metal plugs, which penetrate said substrate and connect the interconnected layer on the said second surface and the semiconductor device on the said first surface; a semiconductor device, which is located on said first surface of said substrate; wherein said semiconductor device contains a plurality of metal pads, each of which is connected to one of said metal plugs;
an interconnect layer, which is formed on said second surface of said substrate; wherein said interconnected layer is comprised of a plurality of metal circuits, a plurality of land pads, and a plurality of via pads, wherein each of said metal plugs is connected to one of said metal circuits.
2. The package module of claim 1, wherein said substrate has a CTE (Coefficient of Thermal Expansion) close to that of said semiconductor device and is composed of an insulator.
3. The package module of claim 1, further comprising a glue layer, which is formed on said first surface of said substrate to agglutinate said semiconductor device to said substrate.
4. The package module of claim 3, wherein said glue layer has a CTE (Coefficient of Thermal Expansion) lower than 15 ppm/ C. and is used for adhesive purposes.
5. The package module of claim 1, wherein said package module further comprises a metal layer which is formed on the exposed area of said first surface of said substrate and covers said semiconductor device.
6. The package module of claim 1, wherein said package module further comprises an insulating layer which is formed on said second surface of said substrate to cover and protect said metal circuits.
7. The package module of claim 1, wherein said package module further comprises a solder ball on each of said land pads.
8. A package module of a plurality of IC devices, comprising:
a substrate, having a first surface and a second surface; wherein said substrate further contains a plurality of metal plugs, which penetrate said substrate and connect the interconnected layer on the said second surface and the semiconductor devices on the said first surface; a plurality of semiconductor devices, which are located on said first surface of said substrate; wherein each of said semiconductor devices contains a plurality of metal pads, each of which is connected to one of said metal plugs;
an interconnected layer, which is formed on said second surface of said substrate; wherein said interconnected layer is comprised of a plurality of metal circuits, a plurality of land pads, and a plurality of via pads, wherein each of said metal plugs is connected to one of said metal circuits.
9. The package module of claim 8, wherein said substrate has a CTE (Coefficient of Thermal Expansion) close to that of the semiconductor device and is composed of an insulator.
10. The package module of claim 8, further comprising a glue layer, which is formed on said first surface of said substrate to agglutinate said semiconductor devices to said substrate.
11. The package module of claim 10, wherein said glue layer has a CTE (Coefficient of Thermal Expansion) lower than 15 ppm/ C. and is used for adhesive purposes.
12. The package module of claim 8, wherein said package module further comprises a metal layer which is formed on the exposed area of said first surface of said substrate and to cover said semiconductor devices.
13. The package module of claim 8, wherein said package module further comprises an insulating layer which is formed on said second surface of said substrate to cover and protect said metal circuits.
14. The package module of claim 8, wherein said package module further comprises a solder ball on each of said land pads.
15. A method of forming a package module of at least one IC device, comprising:
providing a substrate, having a first surface and a second surface;
placing and affixing at least one semiconductor device with a plurality of metal pads on said first surface of said substrate;
performing a laser alignment procedure, and then performing a laser drilling process from said second surface of said substrate to form a plurality of via holes, each of which is aligned to and touches one of said metal pads;
performing a cleaning process to clean the said second surface of said substrate and the inner surfaces of the said via holes;
forming a metal layer on said second surface of said substrate, and also filling into said via holes to form a plurality of metal plugs, each of which is connected to one metal pad of said semiconductor device;
forming an interconnected layer on said second surface of said substrate by performing a photo lithographic process and an etching process on the metal layer; wherein said interconnected layer is composed of a plurality of metal circuits, a plurality of land pads, and a plurality of via pads.
16. The method of claim 15, further comprising a process for forming an insulating layer on said second surface of said substrate to cover and protect said metal circuits.
17. The method of claim 16, further comprising a process for forming a solder ball on each of said land pads.
18. The method of claim 15, further comprising a process for forming a metal layer on the exposed area of said first surface of said substrate and to cover said semiconductor device.
19. The method of claim 15, wherein said laser alignment procedure can be preformed by an optical camera from said second surface of said substrate, whenever said substrate is composed of translucent material.
20. The method of claim 15, wherein said laser alignment procedure can be preformed by an X-ray camera from said second surface of said substrate, whenever said substrate is composed of an optically nontransparent material.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    The present invention relates to a package module for an IC device and, more specifically, to a method of forming a package module for at least one IC device.
  • [0003]
    2. Discussion of the Background
  • [0004]
    A typical conventional flip-chip package is usually a bumped die attached onto a multi-layer substrate. Please refer first to FIG. 1, which schematically illustrates the cross-sectional diagram of the flip chip package module in accordance with the prior art. The flip chip package module generally consists of a substrate (1), a semiconductor (2), a plurality of bumps (3), an underfill layer (4), and a plurality of solder balls (5).
  • [0005]
    The substrate (1) is usually comprised of multiple-layers (4 or 6 layers) that are interconnected and the substrate comprises of a first surface (1 a), a second surface (1 b), a plurality of conductive vias (6), and a plurality of solder pads (7). The semiconductor device (2), having a plurality of die pads, is connected to the substrate (1) by means of wafer bumps, which can be solder bumps or other types of bumps. The die pads are first coated with layers of UBM (Under Bump Metallurgy, not shown in the figure) before applying the bumps (3). After the bumps (3) are formed on the semiconductor device (2), the semiconductor device (2) is attached onto the substrate (1) for electrical contact. The underfill layer (4), is filled into the gaps and cured between the substrate (1) and the semiconductor device (2), providing better mechanical strength. The solder balls (5) are located atop the solder pads (7) on the second surface (1 b) of the substrate (1).
  • [0006]
    However, the prior art has the following disadvantages:
  • [0007]
    According to conventional packaging technology, layers of UBM (Under Bump Metallurgy) must be formed on the die pads before applying the wafer bumps. After forming the bumps, the semiconductor device is adhered to the first surface of the substrate. Moreover, bumps must be formed for electrical contacts with the substrate thereunder. The process of making UBM layers and bumps is costly.
  • [0008]
    2. The substrate in the prior art usually contains four or six layers, and at least two layers are required to avoid warpage and bending of the substrate. Therefore, the manufacturing process of the conventional substrate is very costly.
  • [0009]
    3. The probe card for the chip probe test of the bumped wafer is more expensive than a conventional probe card for bare wafers with bare probe pads on each die.
  • [0010]
    4. Most substrates are composed of organic material, and their CTE (Coefficient of Thermal Expansion) is around 18 ppm/ C., which is much higher than that of the die (CTE around 4 ppm/ C.). This mismatch of CTE values poses a threat to temperature-cycle reliability, particularly for large-area dies.
  • [0011]
    5. Due to the low viscosity requirement for the underfill liquid (before curing), the choice of underfill materials is limited. A consequence is that the moisture resistance of the cured underfill material is not as great as certain epoxy compounds or certain organic compounds serving as glues.
  • [0012]
    Based on the abovementioned drawbacks, it becomes an important issue to conceive a new package module of IC devices and a method of fabricating the same to minimize production costs and to increase manufacturing yields for semiconductor assembly technology.
  • SUMMARY OF THE INVENTION
  • [0013]
    One object of the present invention relates to a method of forming a package module for an IC device.
  • [0014]
    Another object of the present invention relates to a package module for at least one IC device.
  • [0015]
    An embodiment of the present invention discloses a package module for an IC device that comprises a substrate, a semiconductor device, and an interconnected layer. The substrate is composed of a first surface and a second surface, wherein the substrate further contains a plurality of metal plugs, which penetrate the substrate and connect the interconnected layer on the second surface and the semiconductor device on the first surface. The semiconductor device is located on the first surface of the substrate, wherein the semiconductor device contains a plurality of metal pads, each of which is connected to one of the metal plugs. The interconnected layer is formed on the second surface of the substrate, wherein the interconnected layer is comprised of a plurality of metal circuits, a plurality of land pads, and a plurality of via pads, wherein each of the metal plugs is connected to one of the metal circuits.
  • [0016]
    Another embodiment of the present invention discloses a package module for an IC device that comprises a substrate, a plurality of semiconductor devices, and an interconnected layer. The substrate is composed of a first surface and a second surface, wherein the substrate further contains a plurality of metal plugs, which penetrate the substrate and connect the interconnected layer on the second surface and the semiconductor device on the first surface. The plurality of semiconductor devices are located on the first surface of the substrate, wherein each semiconductor device contains a plurality of metal pads, each of which is connected to one of the metal plugs. The interconnected layer is formed on the second surface of the substrate, wherein the interconnected layer is comprised of a plurality of metal circuits, a plurality of land pads, and a plurality of via pads, wherein each of the metal plugs is connected to one of the metal circuits.
  • [0017]
    The present invention discloses a method of forming a package module for an IC device. A substrate is provided first, which is composed of a first surface and a second surface. After placing at least one semiconductor device with a plurality of metal pads on the first surface of the substrate, an alignment procedure and a laser drilling process are performed in sequence to form a plurality of via holes, each of which is aligned and in contact with one of the metal pads. Next, a metal layer is deposited on the second surface of the substrate, the via holes are also filled with deposited metal to form a plurality of metal plugs, each of which is connected to one of the metal pads of the semiconductor device.
  • [0018]
    After that, an interconnected layer is formed on the second surface of the substrate by a photo lithographic process and by an etching process, wherein the interconnected layer is composed of a plurality of metal circuits, a plurality of land pads, and a plurality of via pads (not shown).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0019]
    [0019]FIG. 1 schematically illustrates the cross-sectional diagram of the flip chip package module in accordance with the prior art.
  • [0020]
    [0020]FIG. 2 schematically illustrates the cross-sectional diagram of the package module in accordance with the first embodiment of the present invention.
  • [0021]
    [0021]FIG. 3 schematically illustrates the cross-sectional diagram of the package module in accordance with the second embodiment of the present invention.
  • [0022]
    [0022]FIG. 4 schematically illustrates the cross-sectional diagram of the package module in accordance with the third embodiment of the present invention.
  • [0023]
    [0023]FIG. 5 schematically illustrates the cross-sectional diagram of the package module in accordance with the fourth embodiment of the present invention.
  • [0024]
    [0024]FIG. 6A to FIG. 6E are schematic diagrams of the method of forming a package module for an IC device according to the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0025]
    Please refer to FIG. 2, which schematically illustrates the cross-sectional diagram of the package module in accordance with the first embodiment of the present invention. The package module of an IC device comprises of a substrate (10), a semiconductor device (20), a glue layer (30), an interconnected layer (40) and an insulating layer (50).
  • [0026]
    The substrate (10) has a first surface (10 a) and a second surface (10 b). The substrate (10) is composed of a semi-transparent or opaque insulating material, whose CTE (Coefficient of Thermal Expansion) is close to that of the semiconductor device (20), which is around 4 ppm/ C. for a silicon die. A typical example material for the substrate can be a ceramic platelet.
  • [0027]
    The substrate (10) further contains a plurality of metal plugs (12), which penetrate the substrate (10) and make electrical connections from the first surface (10 a) to the second surface (10 b). The diameter of the metal plugs (12) is between 10 to 100 micro-meters.
  • [0028]
    The semiconductor device (20) is located on the first surface (10 a) of the substrate (10). The semiconductor device (20) contains a plurality of metal pads (22), each of which is connected to one of the metal plugs (12).
  • [0029]
    The glue layer (30) is formed on the first surface (10 a) of the substrate (10) to agglutinate the semiconductor device (20) to the substrate (10). The glue can be in a tape, liquid, or gel form, and can be composed of epoxy compounds, polyimide compounds, or other compunds with strong adhesion, stiffness, and low moisture absorption properties. Generally, a glue layer with a CTE lower than 15 ppm/ C. is preferred.
  • [0030]
    The interconnected layer (40) is formed on the second surface (10 b) of the substrate (10). The interconnected layer (40) consists of a plurality of metal circuits (40 a), a plurality of land pads (40 b), and a plurality of via pads surrounding the metal vias (not shown in the figure). Each metal plug (12) is connected to a metal circuit (40 a), and each metal plug (12) is connected to one of the metal pads (22) of the semiconductor device (20). Consequently, the electrical connection from the land pads (40 b) to the metal pads (22) of the semiconductor device (20) is completed.
  • [0031]
    The protective, insulating layer (referred to as solder mask) (50) is formed on the second surface (10 b) of the substrate (10) to cover and protect the metal circuits (40 a) and via pads (not shown) thereunder.
  • [0032]
    Please refer now to FIG. 3, which schematically illustrates the cross-sectional diagram of the package module in accordance with the second embodiment of the present invention. According to the second embodiment, the package module further comprises a metal layer (42) which is formed on top of the exposed first surface (10 a) of the substrate (10), the back surface of the semiconductor device (20) and the exposed glue layer (30). The metal layer (42) covering the semiconductor device (20) and the exposed first surface (10 a) of the substrate (10) can serve for some performance enhancing purposes, such as ESD protection, thermal dissipation enhancement, moisture resistance enhancement, etc. Other elements of the present embodiment are identical to those described in the first embodiment.
  • [0033]
    Please refer next to FIG. 4, which schematically illustrates the cross-sectional diagram of the package module in accordance with the third embodiment of the present invention. According to the third embodiment, the package module further comprises a plurality of solder balls (70), which are formed on the land pads (40 b) on the second surface (10 b) of the substrate (10). Other elements of the present embodiment are identical to those described in the second embodiment.
  • [0034]
    Please refer to FIG. 5, which schematically illustrates the cross-sectional diagram of the package module in accordance with the fourth embodiment of the present invention. The package module of an IC device is comprised of a substrate (10), a plurality of semiconductor devices (20), a glue layer (30), an interconnected layer (40) and a protective, insulating layer (50).
  • [0035]
    The substrate (10) is composed of a first surface (10 a) and a second surface (10 b). The substrate (10) is composed of a semi-transparent or opaque insulating material, whose CTE (Coefficient of Thermal Expansion) is close to that of the semiconductor devices (20), which are around 4 ppm/ C., for silicon dies. A typical example material for the substrate can be a ceramic platelet. The substrate (10) further contains a plurality of metal plugs (12), which penetrate the substrate (10) and connect the interconnected layer (40) on the second surface (10 b) and the semiconductor devices (20) on the first surface (10 a). The semiconductor devices (20) are located on the first surface (10 a) of the substrate (10) to form a multi-chip module (MCM) package. Each of the semiconductor devices (20) contains a plurality of metal pads (22), each of which is connected to one of the metal plugs (12). In addition, the glue layer (30), the interconnect layer (40) and the insulating layer (50) of the present embodiment are identical to those described in the first embodiment.
  • [0036]
    Referring now to FIG. 6, a schematic diagram of a method of forming a package module for an IC device according to the present invention is disclosed.
  • [0037]
    As shown in FIG. 6A, a substrate (10) having a first surface (10 a) and a second surface (10 b) is provided. Next, a glue layer (30) is applied onto the first surface (10 a) of the substrate (10) in the designated area(s) with conventional methods, and possibly followed by a pre-cure process. The designated area(s) match that of the die position(s) to be placed on the substrate (10).
  • [0038]
    [0038]FIG. 6A shows the schematic diagram of the first step of forming a package module for an IC device according to the first, second, and third embodiment of the present invention. Particularly, forming a glue layer (30) at several designated areas is needed for the MCM package, as described in the fourth embodiment. As the fabrication process of the fourth embodiment is identical to that described in the first, second, and third embodiment, FIG. 6A to FIG. 6F demonstrate only the schematic diagrams for the first, second, and third embodiment.
  • [0039]
    The substrate (10) is composed of semi-transparent or opaque insulating material, whose CTE (Coefficient of Thermal Expansion) is close to that of the semiconductor device (20), which is around 4 ppm/ C., for a silicon die. A typical example material for the substrate can be a ceramic platelet.
  • [0040]
    The glue can be in a tape, liquid, or gel form, and can be composed of epoxy compounds, polyimide compounds, or others with strong adhesion, stiffness, and low moisture absorption properties. Generally, a glue with CTE lower than 15 ppm/ C. is preferred.
  • [0041]
    Referring next to FIG. 6B, the semiconductor device (20) with a plurality of metal pads (22) is first aligned and placed onto the designated area, which is atop the glue layer (30) on the first surface (10 a) of the substrate (10). The metal pads (22) of the semiconductor device (20) face the first surface (10 a) of the substrate (10). The semiconductor device (20) is then pressed firmly onto the glue layer (30), followed by a curing process.
  • [0042]
    Next, please refer to FIG. 6C. Before the laser drilling process begins, an alignment procedure is performed to ensure that the laser beam can be properly aimed at the metal pads (22) of the semiconductor device (20). The alignment procedure can be performed by an optical camera (for semi-transparent substrate and glue) or by an X-ray camera from the second surface (10 b) of the substrate (10). After that, a proper energy output of a laser beam is applied onto the second surface (10 b) of the substrate (10) to evaporate and remove the substrate material on the optical path to form a plurality of via holes (11), each of which is aligned with a metal pad (22). During the laser drill process, the glue layer (30) and a thin surface layer of the metal pads (22) on the laser optical path are also evaporated and removed, therefor ensuring a clean electrical contact to the metal pad (22). The diameter of the via holes (11) is in a range between 10 to 100 micro-meters.
  • [0043]
    The laser can be an excimer layer or a YAG laser with a pulsed beam output. For each via hole (11) formation, several laser shots may be needed in order to reduce micro-cracking of the substrate (10) and retain a good via hole profile by a lesser thermal shock during each laser irradiation shot.
  • [0044]
    Referring now to FIG. 6D, a cleaning process is first performed to reduce or eliminate debris (organic or inorganic from the glue layer (30), a thin surface layer of the metal pads (22) and the substrate (10)) and reduce or eliminate contamination on the second surface (10 b) of the substrate (10) and the inner surfaces of the via holes (11). According to the present invention, the cleaning process can be a plasma cleaning process, a chemical vapor cleaning process, or a chemical liquid cleaning process.
  • [0045]
    Thereafter, a metal layer (42) is formed on the second surface (10 b) of the substrate (10) by physical vapor deposition (PVD), chemical vapor deposition (CVD), plating, or the combination thereof. During metal layer (42) formation, the via holes (11) are filled up with metal and therefore a plurality of metal plugs (12) are formed, each of which is connected to one metal pad (22) of the semiconductor device (20). The metal layer (42) can be composed of a layer of TiN, TiW, Cu, Ti, W, TaN or other metals, or a composite layer of a combination of metals thereabove.
  • [0046]
    Whereas in the second embodiment of the present invention, the metal layers (42) are also formed on the exposed areas of the first surface (10 a) and the semiconductor device (20), in order to cover the semiconductor device (20) with a metal coating. The metal layer (42) covering the semiconductor device (20) can serve some performance enhancing purposes, such as ESD protection, thermal dissipation enhancement, moisture resistance enhancement, etc.
  • [0047]
    Referring then to FIG. 6E, an interconnected layer (40) is formed on the second surface (10 b) of the substrate (10) by performing a photolithography process and an etching process. The interconnected layer (40) consists of a plurality of metal circuits (40 a), a plurality of land pads (40 b), and a plurality of via pads (surrounding the metal via (12), not shown in the figure). Each metal plug (12) is connected to a metal circuit (40 a), and each metal plug (12) is connected to one metal pad (22) of the semiconductor device (20). Consequently, the electrical connection to the land pads (40 b) and the metal pads (22) of the semiconductor device (20) is completed.
  • [0048]
    The etching process can be a plasma etching process or a chemical wet etching process. Thereafter, a photo resistant stripping process and a cleaning process are performed in sequence.
  • [0049]
    Referring next to FIG. 6F, a layer of photo-imaginable insulating material is first coated onto the second surface (10 b) of the substrate (10). The coating method can be by spray coating, printing, or other means. The coated insulating material also covers and fills the inner surface of the metal plugs (12).
  • [0050]
    Thereafter, an insulating layer (or solder mask) (50) is formed to protect the metal circuits (40 a) by performing a photo lithographic process followed by an etching process. Because the insulating material is photo-imaginable, no further photo resisting is needed for the photo lithographic process. After etching. a curing process can be performed to harden the insulating layer (50).
  • [0051]
    Furthermore, layers of Ni/Au (not shown in the figure) or a layer of organic anti-oxidation film can also be applied onto the land pads (40 b) for surface protection purposes or for soldering purposes. According to the third embodiment of the present invention, a solder ball (70) can be formed on each land pad (40 b) plated with Ni/Au layers.
  • [0052]
    The above-mentioned method of forming package module for an IC device in the present invention has the following advantages:
  • [0053]
    The use of costly UBM (Under Bump Metallurgy) and wafer bumping processes are eliminated in the present invention.
  • [0054]
    The use of a costly multi-layer flip-chip substrate is eliminated in the present invention.
  • [0055]
    The use of costly vertical probe cards for bumped dies is eliminated.
  • [0056]
    The temperature-cycle reliability of the flip-chip package improves when the CTE of the interposer is chosen to be close to that of the die (around 4 ppm/ C. for silicon).
  • [0057]
    According to the second embodiment of the present invention, the optional metal layer(s) on the top side (die side) can serve some performance purposes, such as ESD protection, thermal dissipation enhancement, moisture resistance enhancement, etc.
  • [0058]
    The moisture resistance of the cured glue under/surrounding the die, which could be of higher viscosity glue compound compared to that found in a conventional underfill material, can be improved.
  • [0059]
    The low-CTE interposer material (ceramic as an exemplar material) has a much higher dimensional stability compared to conventional organic substrate materials. This dimensional stability makes high density interconnected (HDI) metal lines and fine pitch possible.
  • [0060]
    The LGA (land grid array) package form disclosed herein could be easily converted to PGA (pin grid array), CGA (column grid array) or BGA (ball grid array) package forms by further processes.
  • [0061]
    The conventional build-up process(s) can be applied to the present invention to form build-up layer(s) on the second surface (10 b) of the substrate; in order to make a package module with multi-layer interconnections.
  • [0062]
    The many features and advantages of the invention disclosed herein are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Furthermore, since numerous modifications and variations will be apparent to those skilled in the art, it is not our intention to limit the invention to the exact embodiment, configuration or operation illustrated or described herein. Accordingly, all suitable modifications and equivalents may be resorted to falling within the scope of the invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US6236112 *Nov 5, 1999May 22, 2001Shinko Electric Industries Co., Ltd.Semiconductor device, connecting substrate therefor, and process of manufacturing connecting substrate
US6394821 *May 17, 2000May 28, 2002Nitto Denko CorporationAnisotropic conductive film and production method thereof
US6396138 *Feb 15, 2000May 28, 2002International Rectifier CorporationChip array with two-sided cooling
US6399891 *Jun 5, 2000Jun 4, 2002Sony Chemicals CorporationMultilayer boards
US6670206 *Apr 11, 2002Dec 30, 2003Samsung Electro-Mechanics Co., Ltd.Method for fabricating surface acoustic wave filter packages
US6670704 *Nov 25, 1999Dec 30, 2003Micro Components Ltd.Device for electronic packaging, pin jig fixture
US6900077 *Jan 9, 2001May 31, 2005Micron Technology, Inc.Methods of forming board-on-chip packages
US20010022392 *Apr 9, 2001Sep 20, 2001International Business Machines CorporationTented plated through-holes and method for fabrication thereof
US20020003299 *Mar 11, 1998Jan 10, 2002Yoshifumi NakamuraChip carrier and method of manufacturing and mounting the same
US20020066592 *Dec 4, 2000Jun 6, 2002Wen Feng ChengBall grid array package capable of increasing heat-spreading effect and preventing electromagnetic interference
US20020084522 *Oct 4, 2001Jul 4, 2002Akira YoshizawaSemiconductor device using interposer substrate and manufacturing method therefor
US20020084533 *Dec 29, 2000Jul 4, 2002Pollock Steven L.Efficient multiple power and ground distribution of SMT IC packages
US20030151143 *Feb 14, 2002Aug 14, 2003Macronix International Co., Ltd.Semiconductor packaging device and manufacture thereof
US20030201535 *Apr 24, 2002Oct 30, 2003James ChenImage sensor semiconductor package
US20040065963 *Aug 2, 2003Apr 8, 2004Chippac, Inc.Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7176578 *Oct 26, 2005Feb 13, 2007Senseair AbMethod for processing a thin film substrate
US7256486Jun 27, 2003Aug 14, 2007Avago Technologies Ecbu Ip (Singapore) Pte. Ltd.Packaging device for semiconductor die, semiconductor device incorporating same and method of making same
US7279355 *Jun 27, 2003Oct 9, 2007Avago Technologies Ecbuip (Singapore) Pte LtdMethod for fabricating a packaging device for semiconductor die and semiconductor device incorporating same
US7662665Jan 22, 2007Feb 16, 2010Taiwan Semiconductor Manufacturing Co., Ltd.Method for fabricating a semiconductor package including stress relieving layer for flip chip packaging
US7868439 *Aug 23, 2006Jan 11, 2011Via Technologies, Inc.Chip package and substrate thereof
US7919787Aug 14, 2007Apr 5, 2011Avago Technologies Ecbu Ip (Singapore) Pte. Ltd.Semiconductor device with a light emitting semiconductor die
US8124459 *Jan 11, 2006Feb 28, 2012Stats Chippac Ltd.Bump chip carrier semiconductor package system
US8354340 *Oct 2, 2007Jan 15, 2013Renesas Electronics CorporationElectronic device and method of manufacturing the same
US8633591Dec 12, 2012Jan 21, 2014Renesas Electronics CorporationElectronic device
US8823174 *Dec 17, 2013Sep 2, 2014Renesas Electronics CorporationElectronic device
US8975750 *Aug 8, 2014Mar 10, 2015Renesas Electronics CorporationElectronic device
US9123869Feb 28, 2011Sep 1, 2015Intellectual Discovery Co., Ltd.Semiconductor device with a light emitting semiconductor die
US9406602Jan 27, 2015Aug 2, 2016Renesas Electronics CorporationElectronic device
US9406650Apr 21, 2014Aug 2, 2016Taiwan Semiconductor Manufacturing Company, Ltd.Methods of packaging semiconductor devices and packaged semiconductor devices
US20040266058 *Jun 27, 2003Dec 30, 2004Lee Kong WengMethod for fabricating a packaging device for semiconductor die and semiconductor device incorporating same
US20050103524 *Nov 12, 2004May 19, 2005Toshiki NaitoDouble sided wired circuit board
US20060071323 *Oct 26, 2005Apr 6, 2006Martin Hans E GMethod for processing a thin film substrate
US20070069361 *Aug 23, 2006Mar 29, 2007Via Technologies, Inc.Chip package and substrate thereof
US20070108605 *Jan 11, 2006May 17, 2007Stats Chippac Ltd.Bump chip carrier semiconductor package system
US20070272940 *Aug 14, 2007Nov 29, 2007Lee Kong WSemiconductor device with a light emitting semiconductor die
US20080079163 *Oct 2, 2007Apr 3, 2008Nec Electronics CorporationElectronic device and method of manufacturing the same
US20080174002 *Jan 22, 2007Jul 24, 2008Taiwan Semiconductor Manufacturing Co., Ltd.Stress relieving layer for flip chip packaging
US20110147788 *Feb 28, 2011Jun 23, 2011Avago Technologies Ecbu Ip (Singapore) Pte. Ltd.Semiconductor device with a light emitting semiconductor die
US20120243147 *Oct 14, 2010Sep 27, 2012Endicott Interconnect Technologies, Inc.Land grid array (lga) contact connector modification
US20140346681 *Aug 8, 2014Nov 27, 2014Renesas Electronics CorporationElectronic device
CN100437958CNov 3, 2005Nov 26, 2008台湾应解股份有限公司Chip capsulation structure, and fabricating method
Legal Events
DateCodeEventDescription
Dec 23, 2002ASAssignment
Owner name: VIA TECHNOLOGIES, INC., TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHIEN, RAY;REEL/FRAME:013612/0270
Effective date: 20020401