Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030197676 A1
Publication typeApplication
Application numberUS 10/128,112
Publication dateOct 23, 2003
Filing dateApr 23, 2002
Priority dateApr 23, 2002
Also published asUS7133028
Publication number10128112, 128112, US 2003/0197676 A1, US 2003/197676 A1, US 20030197676 A1, US 20030197676A1, US 2003197676 A1, US 2003197676A1, US-A1-20030197676, US-A1-2003197676, US2003/0197676A1, US2003/197676A1, US20030197676 A1, US20030197676A1, US2003197676 A1, US2003197676A1
InventorsMichael Smith
Original AssigneeGateway, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Drive activity sampling and notification
US 20030197676 A1
Abstract
A data storage device activity state is sampled and used to control a remote data storage device activity indicator. A disk drive activity signal is sampled by hardware either based on an edge transition of the activity signal, or on a periodic basis. If the state of the activity signal changes, state change data is sent via a controller to a keyboard. A disk drive status light on the keyboard is controlled by the change data. The controller is a USB host controller that sends the state change data to a USB function that controls the status light.
Images(3)
Previous page
Next page
Claims(25)
What is claimed is:
1. An information handling system comprising:
a data storage device;
a sampler that detects storage device activity at selected intervals; and
a controller that provides an activity signal to a remote activity indicator.
2. The information handling system of claim 1 wherein the controller is coupled to USB function corresponding to the activity indicator.
3. The information handling system of claim 1 wherein the data storage device generates an activity signal representative of data transfer.
4. The information handling system of claim 3 wherein the sampler samples the activity signal generated by the data storage device.
5. The information handling system of claim 1 wherein the data storage device is a hard disk drive.
6. The information handling system of claim 1 wherein the data storage device is a CD drive.
7. The information handling system of claim 1 and further comprising an input device having the remote activity indicator disposed thereon.
8. The information handling system of claim 7 wherein the input device is a keyboard.
9. A method of providing a remote indication of storage device activity, the method comprising:
sampling activity of a storage device;
providing a signal representative of the sampled activity to a controller; and
generating commands for a remote activity indicator to control the activity indicator in accordance with the sampled activity.
10. The method of claim 9 and further comprising providing the commands to the remote activity indicator via a USB bus.
11. The method of claim 9 wherein the commands comprising ON and OFF representations.
12. The method of claim 9 comprising controlling the activity indicator in accordance with the commands.
13. A keyboard that provides input to an information handling system, the keyboard comprising:
a housing;
a plurality of keys disposed on the housing; and
an activity indicator disposed on the housing, the activity indicator responsive to sampled activity of an electronic data storage device in the information handling system.
14. The keyboard of claim 13 and further comprising a latch to latch the activity indicator to a state consistent with the sampled activity.
15. The keyboard of claim 14 wherein the activity indicator comprises an LED.
16. The keyboard of claim 13 and further comprising a USB connector.
17. The keyboard of claim 16 wherein the activity indicator is responsive to commands generated as a function of the sampled activity.
18. An input device that provides input to an information handling system, the input device comprising:
means for enabling a user to provide input to the information handling system;
means for indicating activity of a data storage device in the information handling system;
means for sampling activity of the data storage device; and
means for communicating with the input device.
19. The input device of claim 18 wherein the means for communicating with the input device is a USB controller.
20. The input device of claim 18 wherein the means for communicating with the input device generates commands for controlling the means for indicating activity.
21. The input device of claim 18 wherein the input device is located remotely from the data storage device.
22. The input device of claim 18 wherein the means for enabling a user to provide input to the information handling system is a keyboard.
23. The input device of claim 18 wherein the means for indicating activity comprises a light.
24. A cursor control device, comprising:
a housing;
a cursor input device, the cursor input device suitable for providing an output indicating movement of a cursor to an information handling system;
a key disposed on the housing, the key suitable for enabling a user to select a cursor position; and
an activity indicator disposed on the housing, the activity indicator suitable for indicating activity of an electronic data storage device disposed in an information handling system.
25. The cursor control device of claim 24 wherein the cursor input device comprises a mouse.
Description
FIELD OF THE INVENTION

[0001] The present invention relates to providing indications of drive activity, and in particular to sampling of hard disk drive activity and providing a notification to a user based on the sampling.

BACKGROUND OF THE INVENTION

[0002] Disk drives and other storage devices are usually equipped with activity lights that indicate when the drive is actively transferring data to and from a computer system. These lights tend to flicker consistent with the activity of the drive. Further, the activity lights are located proximate the disk drives, which many times are not viewable by a user. In some cases, the drives are located in a portion of the system not viewable by a user during normal use of the drive. The system itself may be located beneath a table, and a user cannot see the activity light even if openly viewable otherwise.

SUMMARY OF THE INVENTION

[0003] A storage drive activity state is sampled. A representation of the sampling is used to control a remote drive activity indicator.

[0004] In one embodiment, a disk drive activity signal is sampled by hardware either based on an edge transition of the activity signal, or on a periodic basis. If the state of the activity signal changes, state change data is sent via a controller to a keyboard. A disk drive status light on the keyboard is controlled by the change data.

[0005] In a further embodiment, the controller is a USB host controller that sends the state change data or commands to a USB function that controls the status light.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006]FIG. 1 is a block representation of a computer system having a remote disk activity indicator.

[0007]FIG. 2 is a block schematic diagram of modules for providing remote disk activity indications.

[0008]FIG. 3 is a flow chart of operation of remote disk activity indicator control.

DETAILED DESCRIPTION OF THE INVENTION

[0009] In the following description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the scope of the present invention. The following description is, therefore, not to be taken in a limited sense, and the scope of the present invention is defined by the appended claims.

[0010] A personal computer is shown at 100 in FIG. 1. The computer 100 comprises a tower, or desk unit 110 having a disk drive 120 with an activity light 130 driven by an activity signal. The activity signal is generated when the disk drive is actively seeking and or transferring information to and from the disk. Disk drives include both hard disk drives, floppy disk drives, CD drives, DVD drives and other types of data storage devices, such as tape drives.

[0011] The computer 100 further includes a monitor or display 140 which is a standard CRT device in one embodiment, plasma display, flat panel, active matrix or other type of display device. A cursor control device such as a keyboard 150 having a plurality of keys, and a remote activity indicator 160 such as an LCD or LED is also provided. In further embodiments, the remote activity indicator 160 is located on a mouse device having cursor control and selection functions. The activity indicator is separate from the drive 120, since the drive may not be easily viewable by a user. The drive may not be visible because it is located within the tower, or the tower is located remotely from the keyboard and display, such as under a desk, or off to the side of a desk.

[0012] In one embodiment, the keyboard is coupled to the tower 110 by a USB (Universal Serial Bus) connection. A USB connection provides a high speed serial communication link. It is fast becoming the preferred method of attaching peripheral devices to a computer because of its ability to detect, power and configure the peripheral devices, as well as its ability to provide high speed data transfer. A USB controller usually comprises software and a USB connector in a host computer, such as tower 110. Communications with peripheral devices is carried on via transactions, which include commands for execution by functions in the peripheral device.

[0013] In operation, hardware in the tower 110 samples the activity signal 210 generated by the disk drive as shown in FIG. 2. A sampler 220 is shown in block form coupled to the activity signal. The sampler 220 operates in one of at least two different manners. In a first sampling mode, the activity signal is sampled in a periodic manner, such as every 30 milliseconds. In a further mode, the sampler 220 detects edges in the activity signal, corresponding to changes in state of the activity signal.

[0014] If the state of the activity signal changes, state change data is sent via a bus controller 230 to a USB bus connector 240 on the keyboard. The state change data is in the form of a transaction with a command for a activity indicator function to execute. The commands comprise commands representative of turning an activity indicator on and off, such as “INDICATOR ON” and “INDICATOR OFF”. A latch 250, is used to control the state of the indicator 260 consistent with the sampled activity. In one embodiment, the indicator 260 is a light that goes on and off in accordance with the received commands. When the light is on, that corresponds to disk drive activity. An off state corresponds to no drive activity.

[0015] In one embodiment, the cursor control device 150 is a mouse, trackball or touchpad and has a housing and a cursor input device. The cursor input device is suitable for providing an output indicating movement of a cursor to an information handling system, such as a personal computer. A key disposed on the housing is suitable for enabling a user to select a cursor position. An activity indicator is disposed on the housing for indicating activity of an electronic data storage device disposed in the information handling system.

[0016] A flowchart showing operation of the functions of the present invention is provided in FIG. 3. The functions are implemented by software executing on one or more processors, such as device drivers, either alone or in combination with other hardware or firmware. The functions are also described as modules. Functions may be implemented in one or more modules as desired.

[0017] At 310, the activity signal provided by the drive is sampled. The sampling rate in one embodiment is approximately every 30 milliseconds. This sampling rate provides a fairly accurate rate of sampling, yet minimizes bus traffic. Higher sampling rates provide more accuracy and consume more bandwidth. Lower rates are desired in further embodiments to further minimize bandwidth utilization.

[0018] A sampled activity signal is provided to a controller module at 320. The controller module determines whether the sampled activity signal indicates activity, or no activity. In one embodiment, the controller keeps a record of recent activity signal indications, and generates a command at 330 if the activity has changed since the last activity indication. In one embodiment, the command is simply a change command. In further embodiments, two different commands are generated, an “ON” command and an “OFF” command corresponding to the desired state of a remote activity indicator.

[0019] In yet a further embodiment, the history of activity signals is analyzed to provide a filtered analysis. If the activity state is changing rapidly, indicative of intermittent activity of the drive, the sampled activity signal is filtered to minimize the number of commands sent and prevent rapid changing in the remote indicator. In one embodiment, an average of the most recent five or more sampled activity signals is used to determine the command and whether or not to send a new command indicative of a change of state of the activity of the drive. In a further embodiment, 3 or more consecutive identical sampled activity signals are utilized to determine whether or not to send a change command. In still further embodiments, the number of consecutive identical activity indications is different for determining whether to send an ON command or an OFF command. Many other variations may be used.

[0020] Once the command is generated at 330, it is sent to a function at 340 in one embodiment for controlling the state of the remote activity indicator. The function in one embodiment is a USB function. The function receives and executes the command at 350. In further embodiments, many different methods of communicating the sampled state of the activity of the drive are used. Wireless transceivers are used in one embodiment to communicate the sampled activity of the drive to the remote indicator. Hardwired connections are used in a further embodiment with high and low logic levels controlling the state of the remote activity indicator.

[0021] At 360, a latch state is changed if necessary to control or change the state of the remote indicator at 370. In one embodiment, the latch function is incorporated into the remote indicator. If the received command indicates no change in state, the output of the latch does not change. The latch function is used to maintain the state of the remote indicator until a change is commanded. The function can be implemented in one of many different ways known to one of skill in the art.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7613843 *Jan 13, 2006Nov 3, 2009American Megatrends, Inc.Activity indicator for mass storage device
US20120239844 *Mar 17, 2011Sep 20, 2012American Megatrends, Inc.Data storage system for managing serial interface configuration based on detected activity
US20120239845 *May 24, 2011Sep 20, 2012American Megatrends, Inc.Backplane controller for managing serial interface configuration based on detected activity
Classifications
U.S. Classification345/156, 714/E11.184
International ClassificationG06F11/32, G06F3/023, G06F3/02
Cooperative ClassificationG06F3/0202, G06F11/324, G06F3/0219, G06F3/023
European ClassificationG06F3/023, G06F3/02A, G06F11/32S, G06F3/02A5
Legal Events
DateCodeEventDescription
Apr 9, 2014FPAYFee payment
Year of fee payment: 8
Apr 29, 2010FPAYFee payment
Year of fee payment: 4
Apr 23, 2002ASAssignment
Owner name: GATEWAY, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SMITH, MICHAEL G.;REEL/FRAME:012843/0679
Effective date: 20020221