Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030205717 A1
Publication typeApplication
Application numberUS 10/448,503
Publication dateNov 6, 2003
Filing dateMay 29, 2003
Priority dateMar 1, 2001
Also published asDE10208021A1, US6576932, US20020121646
Publication number10448503, 448503, US 2003/0205717 A1, US 2003/205717 A1, US 20030205717 A1, US 20030205717A1, US 2003205717 A1, US 2003205717A1, US-A1-20030205717, US-A1-2003205717, US2003/0205717A1, US2003/205717A1, US20030205717 A1, US20030205717A1, US2003205717 A1, US2003205717A1
InventorsReena Khare, Werner Goetz, Michael Camras
Original AssigneeReena Khare, Goetz Werner K., Camras Michael D.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Increasing the brightness of III-Nitride light emitting devices
US 20030205717 A1
Abstract
LEDs employing a III-Nitride light emitting active region deposited on a base layer above a substrate show improved optical properties with the base layer grown on an intentionally misaligned substrate with a thickness greater than 3.5 μm. Improved brightness, improved quantum efficiency, and a reduction in the current at which maximum quantum efficiency occurs are among the improved optical properties resulting from use of a misaligned substrate and a thick base layer. Illustrative examples are given of misalignment angles in the range from 0.05 to 0.50, and base layers in the range from 6.5 to 9.5 μm although larger values of both misalignment angle and base layer thickness can be used. In some cases, the use of thicker base layers provides sufficient structural support to allow the substrate to be removed from the device entirely.
Images(10)
Previous page
Next page
Claims(31)
What is being claimed is:
1. A method comprising:
providing a sapphire substrate having an upper face wherein said upper face is misaligned from a main crystal plane of said substrate at least 0.05;
depositing a base layer above said upper face of said substrate wherein said base layer has a thickness exceeding about 3.5 micrometers;
doping at least a portion of said base layer with an n-type dopant; and
forming a III-Nitride light emitting region above said base layer.
2. The method of claim 1 further comprising removing said substrate following said depositing said base layer thereon.
3. The method of claim 1 wherein said upper face of said sapphire substrate is misaligned from a main crystal plane of said substrate at an angle between about 0.05 and about 10.
4. The method of claim 1 wherein said upper face of said sapphire substrate is misaligned from a main crystal plane of said substrate at an angle between about 0.05 and about 5.
5. The method of claim 1 wherein said upper face of said sapphire substrate is misaligned from a main crystal plane of said substrate at an angle between about 0.05 and about 1.
6. The method of claim 1 wherein said thickness is between about 3.5 micrometers to about 200 micrometers.
7. The method of claim 1 wherein said thickness is between about 3.5 micrometers to about 20 micrometers.
8. The method of claim 1 wherein said thickness is between about 3.5 micrometers to about 10 micrometers.
9. The method of claim 1 wherein said thickness is between about 3.5 micrometers to about 7 micrometers.
10. The method of claim 1 wherein said main crystal plane is the c-plane.
11. The method of claim 1 wherein said main crystal plane is the r-plane.
12. The method of claim 1 wherein said main crystal plane is the a-plane.
13. The method of claim 1 wherein said main crystal plane is the m-plane.
14. The method of claim 1 wherein doping at least a portion of said base layer comprises increasing a doping level of the base layer in a direction towards said light-emitting region.
15. The method of claim 1 wherein:
depositing a base layer comprises depositing a first sublayer above said upper face and a second sublayer above said first sublayer; and
doping at least a portion of the base layer comprises doping said second sublayer more heavily than said first sublayer.
16. The method of claim 15 wherein said first sublayer has a dopant concentration less than about 51018 cm−3 and said second sublayer has a dopant concentration of at least about 1018 cm−3.
17. The method of claim 15 wherein depositing a base layer further comprises depositing a third sublayer over the second sublayer.
18. A method comprising:
providing a substrate having an upper face wherein said upper face is misaligned from a main crystal plane of said substrate at least 0.05;
depositing a base layer above said upper face of said substrate wherein said base layer has a thickness exceeding about 5.5 micrometers; and
forming a III-Nitride light emitting region above said base layer.
19. The method of claim 18 further comprising removing said substrate following said depositing said base layer thereon.
20. The method of claim 18 wherein said thickness is between about 6.5 micrometers to about 200 micrometers.
21. The method of claim 18 wherein said thickness is between about 6.5 micrometers to about 20 micrometers.
22. The method of claim 18 wherein said thickness is between about 6.5 micrometers to about 10 micrometers.
23. The method of claim 18 wherein providing a substrate comprises providing a substrate selected from the group consisting of sapphire, silicon carbide, gallium nitride, gallium arsenide, and gallium phosphide.
24. The method of claim 18 further comprising doping at least a portion of the base layer.
25. The method of claim 24 wherein doping at least a portion of said base layer comprises increasing a doping level of the base layer in a direction towards the light-emitting region.
26. The method of claim 24 wherein:
depositing a base layer comprises depositing a first sublayer above said upper face and a second sublayer above said first sublayer; and
doping at least a portion of the base layer comprises doping said second sublayer more heavily than said first sublayer.
27. The method of claim 26 wherein said first sublayer has a dopant concentration less than about 51018 cm−3 and said second sublayer has a dopant concentration of at least about 1018 cm−3.
28. The method of claim 26 wherein depositing a base layer further comprises depositing a third sublayer over the second sublayer.
29. The method of claim 18 wherein said upper face of said substrate is misaligned from a main crystal plane of said substrate at an angle between about 0.05 and about 10.
30. The method of claim 18 wherein said upper face of said substrate is misaligned from a main crystal plane of said substrate at an angle between about 0.05 and about 5.
31. The method of claim 18 wherein said upper face of said substrate is misaligned from a main crystal plane of said substrate at an angle between about 0.05 and about 1.
Description
    CROSS REFERENCE TO RELATED APPLICATION
  • [0001]
    This application is a division of application Ser. No. 09/797,770, filed Mar. 1, 2001, now U.S. Pat. No. 6,576,932, which is incorporated herein by reference.
  • BACKGROUND
  • [0002]
    1. Field of Invention
  • [0003]
    The present invention relates to increasing the brightness of III-Nitride light emitting diodes.
  • [0004]
    2. Description of Related Art
  • [0005]
    Light emitting diodes (“LEDs”) are a highly durable solid state source of light capable of achieving high brightness and having numerous applications including displays, illuminators, indicators, printers, and optical disk readers among others. Direct bandgap semiconductors are the materials of choice for fabrication of LEDs, which generate light from electricity. One important class of light emitting systems are based upon compound alloys of Group III atoms (particularly In, Ga, Al) and nitrogen N, typically abbreviated as “III-Nitrides.” One family of III-Nitride compounds has the general composition (Inx Ga1-x)yA1-yN where 0≦(x, y)≦1. III-Nitrides are capable of emitting light that spans a large portion of the visible and near-ultraviolet electromagnetic spectrum including ultraviolet, blue, green, yellow and red wavelengths. Improving the brightness and other optical properties of LEDs is an important technological goal.
  • [0006]
    A portion of a typical prior art LED structure is depicted in FIG. 1. Other components of LEDs as known in the art (electrodes, window materials, etc.) are omitted for clarity.
  • [0007]
    An LED typically has one or more layers epitaxially deposited on a surface of a substrate prior to the formation of the light emitting active region. These epitaxial layers form a “base layer” that can have n-type conductivity. FIG. 1 depicts an example of a base layer having a GaN layer beneath an n-type GaN layer.
  • [0008]
    The light emitting active region in which radiative recombination of electrons and holes occurs is formed on top of the base layer, typically in the form of at least one quantum well although single and double heterostructures and homojunctions can also be used. Above the active region lie p-type conductive injection and confinement regions. Positive and negative contacts (omitted from FIG. 1) are also provided.
  • [0009]
    There remains a need for LEDs with improved optical performance including higher LED brightness and higher quantum efficiency.
  • SUMMARY
  • [0010]
    The present invention relates to methods of fabricating light emitting devices, particularly LEDs employing a III-Nitride light emitting active region deposited on an n-type conductive base layer. The substrate upon which the base layer is grown is cut intentionally misaligned from a main crystal plane. In addition to intentional substrate misalignment, base layers are employed that are thicker than 3.5 μm. In some embodiments of the present invention, the presence of a thick base layer provides sufficient mechanical support for the device such that the substrate can be removed entirely from the light emitting system, further increasing the performance of the device.
  • [0011]
    Examples are provided for the illustrative case of thick base layers deposited on a sapphire substrate misaligned from the c-axis. Misalignment angles are in the range from 0.05 to approximately 10. The present invention also employs base layers thicker than 3.5 μm, preferably in the range of 7 μm-10 μm. The combination of base layers >3.5 μm, grown on the misaligned substrates leads to surprisingly improved light emission.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0012]
    The drawings herein are not to scale.
  • [0013]
    [0013]FIG. 1: Schematic cross-sectional depiction of a portion of a prior art LED layered structure.
  • [0014]
    [0014]FIG. 2: Schematic depiction of a sapphire unit cell.
  • [0015]
    [0015]FIGS. 3a and 3 b: Relative light emitting efficiency for LEDs grown on mis-oriented c-plane sapphire substrates with mis-orientation angles of 0.3 and 0.05. Data are shown for LED structures with base layers having strain state A (a) and B (b).
  • [0016]
    [0016]FIG. 4: Schematic cross-sectional depiction of a portion of a LED layered structure pursuant to an embodiment of the present invention.
  • [0017]
    [0017]FIG. 5: Schematic cross-sectional depiction of a portion of a LED layered structure pursuant to another embodiment of the present invention.
  • [0018]
    [0018]FIG. 6: Brightness as a function of dominant wavelength for LEDs having thin (3.5 μm) and thick (6.5 μm) base layers grown on-axis (tilt angle less than 0.05) and off-axis (tilt angle in the range from about 0.20 to about 0.40).
  • [0019]
    [0019]FIG. 7: Relative light emitting efficiency as a function of forward current for the thick base layer (6.5 μm) LED depicted in FIG. 5 grown on-axis (0.03) and off-axis (0.39).
  • [0020]
    [0020]FIG. 8: Brightness as a function of dominant wavelength for four experiments of the same device structure grown with a thick base layer (6.5 μm) on substrates with and without misalignment.
  • [0021]
    [0021]FIG. 9: Display device incorporating the high brightness LEDs of the present invention.
  • DETAILED DESCRIPTION
  • [0022]
    The present invention relates to epitaxial layer thickness and crystal orientation for light emitting diodes (“LEDs”) and, in particular to the substrate orientation and the base layer thickness between the substrate and the light emitting active region resulting in improved light emitting properties. The base layer is the layer or layers between the substrate and the active region, including layers close to the substrate, such as buffer or nucleation layers and layers close to the active region, such as transition layers. Specific examples are included in connection with LEDs based upon a double heterostructure multiple quantum well light emitting active region composed of indium gallium nitride (InGaN) deposited on an n-type conductive base layer on a sapphire substrate. These examples are intended to be illustrative only. The present invention is applicable to homojunctions, to single and double heterostructures and to single or multiple quantum well embodiments.
  • [0023]
    Pursuant to the present invention, the substrate is cut intentionally misaligned from a main crystal plane and thick base layers are grown on the misaligned substrates. Higher brightness and improved efficiency are among the improvements demonstrated in various embodiments by off-axis growth of a thick base layer. One embodiment is the growth of a thick n-type GaN base layer on an off-axis sapphire substrate.
  • [0024]
    Substrate Orientation and Base Layers
  • [0025]
    The substrates upon which LEDs can be fabricated include sapphire, SiC, GaN, GaAs, and GaP among others. Examples are included for the specific case of misaligned base layer growth on a sapphire substrate. However, sapphire is described herein as an illustrative example, not intended as a limitation on the various embodiments.
  • [0026]
    Sapphire, or Al2O3, has a hexagonal structure belonging to the space group R3 c. The basic structure consists of hexagonal close-packed planes of oxygen intercalated with planes of aluminum atoms. FIG. 2 depicts the structure of a unit cell of the sapphire crystal and the planes commonly designated a, c, m and r. The {0001} plane is designated the “c-plane,” and the “c-axis” is perpendicular to the c-plane. However, sapphire and III-Nitrides have a large lattice mismatch. To deposit III-Nitride layers on top of sapphire substrates a thin III-Nitride nucleation layer, also called a buffer layer, must be deposited first. The rest of the base layer then can be deposited. The base layer provides for carrier transport to the light emitting layer. The base layer typically comprises one or more III-Nitride materials (undoped, n-type or p-type).
  • [0027]
    We consider the example of an n-doped GaN base layer including doped, modestly doped, undoped and/or unintentionally doped GaN sublayers, recognizing that other materials can be employed for the base layer. A base layer with a graded doping can also be used. The doping level of the base layer can be lower in the direction towards the substrate and can be higher in the direction towards the active region, although the region close to the active region or the substrate may not follow this doping grade. Typical procedures for depositing n-type base layers, fabricating the MQW active region, and depositing p-type layers are described in several standard references including Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, Eds. S. Nakamura and S. F. Chichibu, (Taylor & Francis, 2000) and “InGaN Light emitting Diodes with Quantum-Well Structures” by S. Nakamura, appearing in Materials Research Society Symposium Proceedings Vol. 395, Gallium Nitride and Related Materials, Eds, F. A. Ponce, R. D. Dupuis, S. Nakamura, J. A. Edmond (Materials Research Society, 1996), pp. 879-887.
  • [0028]
    Conventional fabrication techniques for LEDs involve the growth of one or more layers collectively comprising a base layer and providing a transition from the substrate to the active region. In prior art LEDs employing a sapphire substrate, base layers are conventionally grown on the sapphire substrate along the c-axis, typically called “on-axis” or “aligned” growth. “On-axis” emphasizes that the sapphire crystal is cut as precisely as is feasible along the c crystallographic plane (or other main crystal plane) and the base layer is grown substantially perpendicular to the c-axis.
  • [0029]
    In the present invention, the sapphire (or other) substrate upon which the base layer is grown is cut not precisely perpendicular to the c-axis depicted in FIG. 2 (or other main crystallographic axis) but is inclined at a small deviation from perpendicularity. The substrate surface on which the base layer is deposited pursuant to these embodiments is thus not precisely the c-plane depicted in FIG. 2. We use “misalignment” or “tilt angle” to denote the angle between the normal to the growth plane and the c-axis. Misaligned, off-axis growth thus denotes growth of a base layer on a substrate surface that is misaligned from such a main crystal plane.
  • [0030]
    The direction of misalignment with respect to a designated crystallographic axis can also be specified. For the examples considered herein of growth on a sapphire substrate, it is convenient to indicate the direction of misalignment of the c-axis towards the m-plane as “m-plane tilt,” or towards the a-plane as “a-plane tilt.” However, off-axis growth planes can have any orientation, not limited to purely m-plane or purely a-plane tilts. Off-axis growth for other substrates can be defined in a completely analogous manner in terms of the direction of the misalignment with respect to a main crystallographic axis.
  • [0031]
    Experiments suggest that optical performance improves as tilt angles larger than about 0.05 are used in combination with thick base layers. In general, it is found that growth of a thick base layer on a substrate with a misalignment of more than 0.05 improves LED brightness and other optical properties without a clear upper limit to the misalignment angle. It is possible that the tilt angle that yields LEDs with improved brightness depends on the strain state of the III-Nitride base layers. Strain denotes the deviation of the lattice constants of an epitaxial layer with respect to bulk crystal. III-Nitride layers grown on c-plane sapphire substrates are generally “in compression” (the lateral lattice constant is smaller than for a bulk crystal). However, the introduction of Si into a III-Nitride crystal can reduce the degree of compression and, at high doping levels, cause the crystal to be “in tension” (the lateral lattice constant is larger than for a bulk crystal). In FIG. 3 relative light output efficiency is shown for LEDs that have a strain state “A” and a strain state “B” (3 a and 3 b; respectively). While for strain state “A” a misalignment angle of 0.3 is favorable, for strain state “B” a mis-alignment angle of 0.05 gives improved brightness. Strain state “B” denotes more tension with respect to strain state “A” and was accomplished by higher Si doping. It is expected that for even higher Si doping concentration and or thicker base layers tilt angles >0.05 can be favorable and improved brightness has been observed for a tilt angle of 1.
  • [0032]
    Under a certain set of growth conditions on a lattice mismatched substrate, the layer being grown may crack. The cracking limit is the maximum thickness that the layer (of a particular doping) can be grown without significant cracking, such that device performance is not adversely affected. There can be a trade-off between doping and thickness, the lighter the doping, the thicker the layer can be grown before it cracks.
  • [0033]
    M-plane, a-plane and intermediate direction tilts from the c-plane have been investigated with respect to base layer growth on sapphire. No significant variation in optical performance has been observed with variation in tilt direction to the accuracy of the measurements reported herein. Most tilt angles given herein are m-plane tilts from the c-plane. Tilt angles less than 0.05 are not significantly different from on-axis. Thus, “on-axis” is used herein to indicate tilt angles from 0 to 0.05 in any direction.
  • [0034]
    In the fabrication of light emitting devices on a substrate, a base layer comprising one or more constituent layers is typically grown on the substrate as a transition region between the substrate the light emitting active region. Typically, Metal-Organic Chemical Vapor Deposition (“MOCVD”) is used to grow the sublayers comprising the base layer, although other deposition techniques can be used and are within the scope of the present invention. To be concrete in our discussion, we describe the particular example of growth of a base layer on a sapphire substrate, not intending thereby to exclude other substrates such as SiC, GaN, GaAs, and GaP among others.
  • [0035]
    [0035]FIG. 4 is a schematic depiction of the cross-section of a portion of an LED device pursuant to an embodiment of the present invention. The device comprises a base layer of AlInGaN grown above an off-axis substrate to a thickness greater than about 3.5 μm. The first layer or region of the base layer is typically a buffer layer or nucleation layer (not shown). The last layer or region of the base layer can be a transition layer (not shown), that can provide a transition between the previous base layer growth and the active region. An active region for emitting light is grown above the base layer. The active region can be a homojunction, a single or a double heterostructure, or a single or multiple quantum well structure. An AlInGaN confinement layer is grown above the active region. The AlInGaN layers can be any composition of AlInGaN, including GaN, AlGaN, and InGaN, and can be n-type, p-type, undoped, or have a graded doping profile. The two AlInGaN layers can have different compositions from one another. The AlInGaN base layer can have a graded doping level that generally decreases in the direction towards the substrate and increases in the direction towards the active region, although as previously mentioned, other regions or layers close to the substrate or close to the active region may not follow this doping grade. The AlInGaN base layer can be composed of sublayers including a sublayer that is closer to the substrate and a sublayer that is closer to the active region such that the sublayer closer to the active region is more heavily doped than the sublayer closer to the substrate. The sublayer closer to the active region can be more heavily doped n-type or p-type than the sublayer closer to the substrate. Examples of sublayer dopings include: a sublayer closer to the active region more heavily doped n-type than a n-type sublayer closer to the substrate; a sublayer closer to the active region more heavily p-type than a p-type sublayer closer to the substrate; a sublayer closer to the active region more heavily doped p-type than a n-type sublayer closer to the substrate; and a sublayer closer to the active region more heavily doped n-type than a p-type sublayer closer to the substrate. P-type base layers between the substrate and the active region can occur, for example, in tunnel junction devices and in n-up devices that that have an opposite polarity electric field than the more conventional p-up devices. All of these devices are included within the scope of the present invention.
  • [0036]
    [0036]FIG. 5, one embodiment of the present invention, is a schematic depiction of the cross-section of a portion of an LED device showing a sapphire substrate 1 and the base layer 3 between the substrate and the light emitting active region 5. A base layer of n-type GaN 2 comprising a sublayer of the base layer 3 deposited on a buffer layer (not shown) on a sapphire substrate 1 misaligned from a main crystal plane: The buffer layer growth of nitride on sapphire (on-axis or off-axis) is recognized not to be precisely epitaxial due to the lattice mismatch. Rather, the initial stages in the growth of nitride on sapphire seem to proceed by solid phase crystallization from an amorphous phase of GaN as deposited on the sapphire. Subsequent base layers are deposited epitaxially on the buffer layer. In one embodiment described below the base layers are n-type GaN. If no special precautions are taken, deposited GaN tends to be n-type conductive. That is, if GaN is deposited without the introduction of specific dopants, n-type material typically results. This “unintentional” n-type doping may result from the incorporation of n-type impurities (for example, silicon and oxygen) from background gases into the GaN. However, n-doped GaN can also be used as base sublayer 2 in which modest amounts of dopants are specifically introduced into the GaN. Specific introduction of modest amounts of dopant can result in a more controlled, reproducible. LED structure than unintentional doping. In the examples presented herein, sublayer 2 is unintentionally doped n-type.
  • [0037]
    In practice, doping levels have an effect on the thickness to which sublayer 2 can be grown before the cracking limit is reached. We use the term “lightly doped GaN” to indicate a GaN layer that is unintentionally or modestly doped having a doping level sufficiently low, typically less than about 51018 dopant atoms per cubic centimeter. Using a lightly doped sublayer allows the base layer to be grown to the desired thickness without reaching the cracking limit. “Lightly doped” applied to material other than GaN used for sublayer 2 likewise denotes doping levels that allow growth to the desired thickness before the cracking level is reached. In one embodiment, the lightly doped GaN 2 sublayer is 4.5 μm thick.
  • [0038]
    In this embodiement, a sublayer of n-doped GaN 4 is grown over the lightly doped GaN 2. In this embodiment, n-doped GaN 4 is 2 μm thick. N-CaN 4 is typically doped to a concentration in the range of approximately 1018-1020 dopant atoms per cubic centimeter. In this embodiment, n-doped GaN 4 has a dopant concentration on the order of approximately 1019 dopant atoms per cubic centimeter. A Si dopant is used for the examples presented herein but is not a limitation on the scope of the present invention. Si, Ge, Sn, O are among the dopant atoms used to dope the III-Nitrides n-type. P-type dopants include Mg, Zn, Be, C, and Cd. Another layer, layers, or regions of the base layer 3 may precede the active region 5. This transition layer or region (not shown) is part of base layer 3 and can be lightly doped and serves as a transition between the previous part of the base layer and the active region 5.
  • [0039]
    Above the base layer 3 lies the active light emitting region 5. In some embodiments a multi-quantum-well (“MQW”) comprising several quantum well layers separated by barrier layers of higher bandgap material. For InGaN quantum wells, typical barrier layers include higher bandgap InGaN, GaN, AlGaN, and AlInGaN. Although the present invention is described in terms of InGaN MQWs on a sapphire substrate with n-type GaN buffer regions, the present invention is not inherently limited to this LED structure.
  • [0040]
    Layers of p-type conductivity known as “confinement layers” and “injection layers” lie opposite the active region from the n-type base layer, depicted as 6 in FIG. 4. Typical materials, dimensions and dopant concentrations for the p-layers arc known in the art and given in the references previously cited and can be, for example, 100-1000 Å of p-type AlxGa1-xN (0<x<0.25) followed by 100-3000 Å of p-type GaN. A more heavily doped p-type layer may be formed above the p-GaN to ensure good ohmic contact of the p-electrode.
  • [0041]
    In typical prior art LEDs as depicted in FIG. 1, the base layers are grown on on-axis substrates with a total thickness of less than 3.5 μm. One embodiment of the present invention, FIG. 5 shows the base layer 3, grown on off-axis substrates, to be thicker than that of FIG. 1. That is, the present invention uses base layers 3 having a thickness greater than about 3.5 μm grown on off-axis substrates. A preferred thickness of base layer 3 is from approximately 6.5 to approximately 9.5 μm grown on off-axis substrates. Improved brightness is one favorable result from the use of thick base layers 3 in combination with off-axis epitaxial growth. For economy of language, we refer to “thin” and “thick” base layers to indicate the general ranges below 3.5 μm for “thin” and above 3.5 μm for “thick.”
  • [0042]
    The examples presented herein maintain the N-GaN layer 4 at a thickness of about 2 μm and cause the base layer 3 to thicken by causing the lightly doped GaN layer 2 to thicken. This is illustrative only and the thickening of the base layer described herein can be achieved by thickening any or any combination of sublayers comprising the base layer.
  • [0043]
    Although base layers 3 thicker than about 3.5 μm and, advantageously, in the range from approximately 6.5 μm to about 9.5 μm grown on off-axis substrates give adequate results in the practice of the present invention, considerably thicker layers up to approximately 200 μm grown off-axis are also feasible. Brightness increases with increasing thickness of the off-axis grown base layer and the present invention has no upper limit on thickness. However, the increased thickness of the overall LED structure tends to increase manufacturing complexities, for example throughput and device singulation.
  • [0044]
    Substrate Removal
  • [0045]
    The primary function of the substrate is to provide a platform upon which the various layers of the complete light emitting device can be fabricated. The substrate thus provides mechanical strength and stability during fabrication and operation. However, during operation of the light emitting device, the optical properties of the substrate may interfere with effective light extraction (among other properties) and thus hinder device performance. The thick base layers used herein provide, in some cases, sufficient mechanical stability to allow separation of the substrate from the remainder of the device following fabrication of the thick base layers.
  • EXAMPLES
  • [0046]
    Several examples compare brightness and other optical properties of the LED for various off-axis tilt angles and for various thicknesses of n-type base layers. The data relates to InGaN MQW LEDs as generally depicted in FIG. 5.
  • [0047]
    Several batches of LEDs were fabricated with different dominant emission wavelengths. FIG. 6 depicts the LED brightness in lumens as a function of this dominant wavelength for LED's having thin and thick base layers. “Thin” base layers are about 3.5 μm thick while “thick” base layers are about 6.5 μm thick in FIG. 6. Surprisingly, the improved light emission achieved by using thick and off-axis base layers in combination markedly exceeds the sum of the individual improvements from each effect considered separately. For example, at approximately 510 nm, FIG. 6 depicts the improvement obtained from thin on-axis to thick on-axis as segment 100. The improvement achieved from thin on-axis to thin off-axis is depicted as 100+101. The improvement obtained by the combination of thick and off-axis base layers is 100+101+102, which markedly exceeds the sum of contributions from thick and off-axis effects considered separately (100+101+100=flux level 200). Thus, the combination of thick base layer together with growth on a on a off-axis substrate achieves an improvement in light emission that unexpectedly and clearly exceeds the sum of its individual parts.
  • [0048]
    [0048]FIG. 7 depicts the relative efficiency in producing light as a function of the forward current driving the LED. The data is not calibrated in terms of absolute light output (lumens) but rather compares the LED driving current with current generated by the particular photodetector employed to measure total light emitted. Thus, relative variations in light emitting efficiency from data point to data point and curve-to-curve may be extracted from FIG. 7.
  • [0049]
    The data of FIG. 7 relates to thick base layers as generally depicted in FIG. 5 (layer 3 approximately 6.5 μm), for two angles of misorientation from the c-axis towards the m-plane. The top curve is measured from a device grown on a substrate with a misalignment angle of approximately 0.39 and a base layer thickness of about 6.5 μm. The bottom curve is measured from a device grown on a on-axis substrate with a base layer thickness of about 6.5 μm. We see in FIG. 7 that for the two devices both having thick base layers of comparable thickness the off-axis deposition has a higher maximum in the efficiency curve than does on-axis deposition. Additionally, off-axis deposition is seen to peak at a lower current value than does on-axis deposition, 7.9 milliamp (mA) compared to 12.6 mA.
  • [0050]
    Achieving higher efficiency for off-axis deposition as depicted in FIG. 7 is certainly preferable, giving much brighter LEDs for the same current. However, achieving maximum efficiency at a lower current value is also evidence of a more favorable LED structure. Light emitting efficiency is determined, in part, by radiative electron-hole recombination and non-radiative loss mechanisms. Non-radiative losses tend to dominate the performance of the LED at lower currents. Higher currents tend to cause the non-radiative losses to saturate, leading to increasing light emitting efficiency at higher currents. Thus, peak efficiency at a lower current is evidence of fewer non-radiative loss mechanisms, indicating less defects and overall a better LED material.
  • [0051]
    [0051]FIG. 8 depicts four experiments in which on-axis and off-axis sapphire substrates were loaded into the same reactor and LEDs fabricated under otherwise identical conditions. All experiments depicted in FIG. 8 employ thick base layers approximately 6.5 μm thick. Thus, FIG. 8 allows a clear comparison of the effect on light emission of tilted vs. untilted substrates for thick base layers pursuant to the present invention, removing effects of other experiment-to-experiment variations. FIG. 8 clearly depicts the enhanced brightness resulting from the growth of thick base layers on tilted substrates.
  • [0052]
    The resulting high brightness LEDs formed in accordance with the invention are particularly suitable for color display panels using red, green, and blue LEDs as the pixel elements. Such displays are well known and are represented in FIG. 9. A display panel 300 has an array of red, green, and blue LEDs, respectively, that are selectively illuminated by well known circuitry to display an image. Only three pixels are shown in FIG. 9 for simplicity. In one embodiment, each primary color is arranged in columns. In other embodiments, the primary colors are arranged in other patterns, such as triangles. The high brightness LEDs may also be used for backlighting an LCD display.
  • [0053]
    Having described the invention in detail, those skilled in the art will appreciate that, given the present disclosure, modifications may be made to the invention without departing from the spirit of the inventive concept described herein. Therefore, it is not intended that the scope of the invention be limited to the specific and preferred embodiments illustrated and described.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5587593 *Apr 19, 1995Dec 24, 1996Toyoda Gosei Co., Ltd.Light-emitting semiconductor device using group III nitrogen compound
US5900647 *Feb 4, 1997May 4, 1999Sharp Kabushiki KaishaSemiconductor device with SiC and GaAlInN
US6252255 *Jun 25, 1999Jun 26, 2001Sharp Kabushiki KaishaCrystal growth method for nitride semiconductor, nitride light emitting device, and method for producing the same
US6303405 *Sep 24, 1999Oct 16, 2001Kabushiki Kaisha ToshibaSemiconductor light emitting element, and its manufacturing method
US6411636 *Dec 21, 1999Jun 25, 2002Pioneer CorporationNitride semiconductor laser and method of fabricating the same
US6596079 *Mar 13, 2000Jul 22, 2003Advanced Technology Materials, Inc.III-V nitride substrate boule and method of making and using the same
US6670647 *Aug 30, 2000Dec 30, 2003Sharp Kabushiki KaishaSemiconductor light emitting element, display device and optical information reproduction device using the same, and fabrication method of semiconductor light emitting element
US6756611 *Oct 2, 2002Jun 29, 2004Nichia Chemical Industries, Ltd.Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device
US6800500 *Jul 29, 2003Oct 5, 2004Lumileds Lighting U.S., LlcIII-nitride light emitting devices fabricated by substrate removal
US20030207125 *May 23, 2003Nov 6, 2003Nec CorporationBase substrate for crystal growth and manufacturing method of substrate by using the same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7026653 *Jan 27, 2004Apr 11, 2006Lumileds Lighting, U.S., LlcSemiconductor light emitting devices including current spreading layers
US7371597 *Dec 12, 2005May 13, 2008Lg Electronics Inc.Diode having vertical structure and method of manufacturing the same
US7435608 *Oct 31, 2006Oct 14, 2008Hitachi Cable, Ltd.III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
US7547908 *Dec 22, 2006Jun 16, 2009Philips Lumilieds Lighting Co, LlcIII-nitride light emitting devices grown on templates to reduce strain
US7813397Apr 9, 2008Oct 12, 2010Nichia CorporationNitride semiconductor laser device
US7821021Nov 7, 2006Oct 26, 2010Lg Electronics Inc.Diode having vertical structure and method of manufacturing the same
US7847313 *Mar 12, 2007Dec 7, 2010Hitachi Cable, Ltd.Group III-V nitride-based semiconductor substrate and group III-V nitride-based light emitting device
US7863638Jan 7, 2010Jan 4, 2011Lg Electroncis Inc.Diode having vertical structure and method of manufacturing the same
US7915632Jul 21, 2010Mar 29, 2011Lg Electronics Inc.Diode having vertical structure and method of manufacturing the same
US7951693 *Dec 22, 2006May 31, 2011Philips Lumileds Lighting Company, LlcIII-nitride light emitting devices grown on templates to reduce strain
US8008681Nov 8, 2010Aug 30, 2011Lg Electronics Inc.Diode having vertical structure and method of manufacturing the same
US8030679 *Oct 6, 2005Oct 4, 2011Lg Innotek Co., Ltd.Nitride semiconductor light emitting device and fabrication method therefor
US8278128 *Feb 2, 2009Oct 2, 2012The Regents Of The University Of CaliforniaEnhancement of optical polarization of nitride light-emitting diodes by wafer off-axis cut
US8501510 *May 17, 2012Aug 6, 2013Hermes-Epitek Corp.Optoelectronic component with three-dimension quantum well structure and method for producing the same
US8592846Aug 24, 2011Nov 26, 2013Lg Electronics Inc.Diode having vertical structure and method of manufacturing the same
US9000468Jul 25, 2013Apr 7, 2015Lg Innotek Co., Ltd.Diode having vertical structure
US9620677Mar 3, 2015Apr 11, 2017Lg Innotek Co., Ltd.Diode having vertical structure
US20050161679 *Jan 27, 2004Jul 28, 2005Decai SunSemiconductor light emitting devices including current spreading layers
US20050224783 *Mar 31, 2005Oct 13, 2005Nichia CorporationNitride semiconductor laser device and nitride semiconductor device
US20060091420 *Dec 12, 2005May 4, 2006Yoo Myung CDiode having vertical structure and method of manufacturing the same
US20070040219 *Oct 31, 2006Feb 22, 2007Hitachi Cable, Ltd.III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
US20070057273 *Nov 7, 2006Mar 15, 2007Yoo Myung CDiode having vertical structure and method of manufacturing the same
US20080042160 *Mar 12, 2007Feb 21, 2008Hitachi Cable, Ltd.Group III-V nitride-based semiconductor substrate and group III-V nitride-based light emitting device
US20080149961 *Dec 22, 2006Jun 26, 2008Philips Lumileds Lighting Company, LlcIII-Nitride Light Emitting Devices Grown on Templates to Reduce Strain
US20080153192 *Dec 22, 2006Jun 26, 2008Philips Lumileds Lighting Company, LlcIII-Nitride Light Emitting Devices Grown on Templates to Reduce Strain
US20080192788 *Apr 9, 2008Aug 14, 2008Nichia CorporationNitride semiconductor laser device and nitride semiconductor device
US20080219910 *May 16, 2008Sep 11, 2008Sumitomo Electric Industries, Ltd.Single-Crystal GaN Substrate
US20090072252 *Oct 6, 2005Mar 19, 2009Hyo Kun SonNitride Semiconductor Light Emitting Device and Fabrication Method Therefor
US20100052008 *Feb 2, 2009Mar 4, 2010The Regents Of The University Of CaliforniaEnhancement of optical polarization of nitride light-emitting diodes by wafer off-axis cut
US20100309943 *Jun 7, 2010Dec 9, 2010The Regents Of The University Of CaliforniaLONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES
US20110049470 *Nov 8, 2010Mar 3, 2011Yoo Myung CheolDiode having vertical structure and method of manufacturing the same
US20120231569 *May 17, 2012Sep 13, 2012Hermes-Epitek Corp.Optoelectronic component with three-dimension quantum well structure and method for producing the same
EP1583190A1 *Mar 31, 2005Oct 5, 2005Nichia CorporationNitride semiconductor laser device
Classifications
U.S. Classification257/103, 257/E21.119, 438/22, 257/14, 257/E33.003, 257/94
International ClassificationH01L21/20, H01L21/205, H01L33/00, H01L33/16
Cooperative ClassificationH01L21/0254, H01L21/02433, H01L21/0237, H01L33/007, H01L33/16, H01L21/02458
European ClassificationH01L33/00G3B2, H01L21/20B