Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS20030236482 A1
Publication typeApplication
Application numberUS 10/408,657
Publication dateDec 25, 2003
Filing dateApr 4, 2003
Priority dateJan 4, 2001
Also published asCA2429369A1, CA2429369C, DE60128586D1, DE60128586T2, EP1351725A2, EP1351725B1, US6659973, US8070706, US20020087109, US20090118660, WO2002053210A2, WO2002053210A3
Publication number10408657, 408657, US 2003/0236482 A1, US 2003/236482 A1, US 20030236482 A1, US 20030236482A1, US 2003236482 A1, US 2003236482A1, US-A1-20030236482, US-A1-2003236482, US2003/0236482A1, US2003/236482A1, US20030236482 A1, US20030236482A1, US2003236482 A1, US2003236482A1
InventorsReynolds Gorsuch, Tommy Cooper, Harold Handley
Original AssigneeGorsuch Reynolds G., Tommy Cooper, Handley Harold H.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus and method for in-vivo plasmapheresis using periodic backflush
US 20030236482 A1
Apparatus and method for in-vivo plasmapheresis utilizing a plurality of elongated hollow microporous filter fibers periodically interrupt diffusion of blood plasma from a patient, and, for a selected time, backflush fluid into the fibers at a pressure and interval sufficient to cleanse the fiber pores, after which plasma diffusion is resumed. The backflush fluid, preferably a normal saline solution, may contain an anticoagulant such as heparin in suitable concentration for systemic anti-coagulation or for treating the fiber for thromboresistance.
Previous page
Next page
What is claimed is:
1. A method of carrying out human in-vivo plasmapheresis comprising:
implanting a filter device within a blood vessel of a patient, said filter device comprising a plurality of elongated hollow microporous fibers;
providing a multiple lumen catheter in fluid communication with the hollow interior of said fibers, and diffusing plasma and toxins from the patient's blood through the wall of said fibers into the hollow interior thereof; and
periodically interrupting said diffusion of plasma and toxins and backflushing said fibers by directing a backflush fluid containing an amount of anticoagulant at least sufficient to provide fiber thromboresistance through a lumen of said catheter into said fibers at a pressure and for an interval sufficient to substantially cleanse the pores of said filter, and after said interval, resuming said diffusion of plasma.
2. A method of claim 1 using a backflush fluid comprising a saline solution containing at least 1 IU heparin per kilogram of human patient body weight.
3. A method of claim 1 using a backflush fluid comprising saline solution containing about 2 or more IU per kilogram of human patient body weight.
4. A method of claim 1 using a backflush fluid comprising saline solution having a heparin concentration of between about 25 IU per ml and about 300 IU per ml.
5. A method of claim 1 using a backflush fluid comprising saline solution having a heparin concentration of between about 75 IU per ml and about 150 IU per ml.
6. A method of claim 1, 2, 3, 4 or 5 wherein the fluid is backflushed at a pressure of between about 15 and about 100 mg Hg for an interval of between about 5 and about 50 seconds.
7. A method of claim 4 wherein heparin concentration is sufficient to provide systemic anti-coagulation in a human patient.
8. A method of claim 1 for inducing systemic anti-coagulation comprising using a single bolus of backflush fluid containing between about 50 IU and about 150 IU heparin per kilogram of patient body weight.
9. A method of claim 1 for maintaining systemic anti-coagulation comprising using a backflush fluid containing more than about 150 IU heparin per ml and less than about 50 IU per kilogram of patient body weight.
10. A method of claim 1 wherein toxin-containing plasma from said fibers is directed to plasma treatment apparatus through a second lumen of said catheter.
11. A method of claim 1 wherein plasma from plasma treatment apparatus is directed to a third lumen of said catheter and returned to said patient.
12. A method of claim 6 wherein plasma from plasma treatment apparatus is directed to a third lumen of said catheter and returned to said patient.
13. A method of claim 6 wherein plasma from plasma treatment apparatus is directed to a third lumen of said catheter and returned to said patient.
  • [0001]
    This application is a continuation-in-part of U.S. patent application Ser. No. 09/754,773, filed Jan. 4, 2001 (TRANSVI.008A)
  • [0002]
    In U.S. Pat. Nos. 4,950,224, 5,152,743, 5,151,082, 5,735,809 and 5,980,481 there are disclosed methods and apparatus for carrying out in-vivo plasmapheresis for separating plasma from other blood components within the body and blood vessels of a patient. In the apparatus pumping is used to create a trans-membrane pressure and motivate the flow of fluid from within the in-vivo system, whereby blood plasma is pumped from the patient to a treatment system such as a dialyzer or other apparatus in which toxic metabolic waste in the plasma is removed. After the plasma is treated for removal of waste products, excess fluids, toxins, and/or other deleterious plasma proteins, the treated plasma is returned and reintroduced to the patient's blood stream. Methods of toxin removal from blood, as taught by the aforesaid patents and referred to as plasma dialysis, ultrafiltration or blood purification, are unique from and substantially superior to conventional hemodialysis as presently practiced for both acute and chronic kidney failure, primarily because removal of whole blood from the patient's vasculature is eliminated from the procedure using plasma, or portions of the plasma. The methods and apparatus described in the aforesaid patents are incorporated herein by reference.
  • [0003]
    In U.S. Pat. Nos. 5,224,926, 5,735,809 and 5,968,004 there are disclosed improved filter assemblies including elongated hollow fibers and various filter assembly designs incorporating such hollow fibers to be used in the above-described methods and apparatus. In U.S. patent application Ser. No. 09/549,131, filed Apr. 13, 2000 (TRANSVI.007), there is disclosed specialized hollow fiber membranes which are superior in biocompatibility, performance and morphology for use in the aforesaid in-vivo plasmapheresis. In U.S. patent application Ser. No. 09/981,783, filed Oct. 17, 2001 (TRANSVI.011A) there is disclosed a plasmapheresis filter device and catheter assembly incorporating the aforesaid specialized hollow fiber membranes. In U.S. patent application Ser. No. 10/219,082, filed Aug. 13, 2002 (TRANSVI.012A) there are disclosed apparatus and methods for therapeutic apheresis using the aforesaid specialized hollow fiber membranes, filter device and catheter assembly. Such fibers, filter device, catheter assembly, apparatus and methods as disclosed in the aforesaid patents and applications are incorporated herein by reference.
  • [0004]
    In the aforesaid systems, the hollow fiber membranes function as filters, where the primary purpose of said membranes is separation of specific blood or plasma components from whole blood. In such systems, the blood (permeate) flows on the outside of the fiber and the plasma (exudate) is diffused through the fiber membrane to the interior lumen of the hollow fiber. However, as use is continued, performance of the fibers as filters becomes degraded over time. For example, clogging or fouling of the filter occurs on the surface of the filter as the pore void spaces become more occluded with particulate matter from the permeate building up within the pore void such that the minute volume of the exudate is progressively degraded to the point of failure and cessation of exudate flow. Such clogging or fouling of the filter membranes, as well as clotting problems with prior art filter systems as disclosed in the aforesaid application Ser. No. 09/549,131 (TRANSVI.007), causes major operational and economic problems with current ex-vivo systems performing Continuous Renal Replacement Therapy (CRRT) for acute and chronic kidney failure. It is reported by Ramesh, Prasad, et al., in Clinical Neprology, Vol. 53, p. 55-60 (January 2000), that over 50% of such filters fail in 10 hours and over 75% fail in 30 hours of usage. Because short-term filter replacement is both undesirable and unacceptable, clogging or fouling failure of filters used in in-vivo systems described in the aforesaid patents would be totally unacceptable for both medical and economic reasons.
  • [0005]
    According to the present invention, in-vivo plasmapheresis is periodically interrupted and a backflush fluid is directed into the interior of the hollow fibers of the filter device for a duration and at a flow rate sufficient to substantially cleanse the pores of the filter. After a sufficient duration, the backflush is terminated and the plasmapheresis extraction is resumed. The apparatus for carrying out the improvement of the invention. includes a multiple lumen catheter having a first lumen for directing backflush fluid into the hollow fibers, a second fluid for directing plasma from the filter assembly, and a third lumen for returning treated plasma to the patient. The apparatus also includes one or more pumps for pumping the backflush fluid into the filter assembly.
  • [0006]
    [0006]FIG. 1 is a schematic illustration of an apparatus for carrying out the improved method of the invention;
  • [0007]
    [0007]FIG. 2 illustrates an apparatus of the invention implanted in a patient; and
  • [0008]
    [0008]FIG. 3 is a graph illustrating trans-membrane flux degradation trends with and without periodic backflush of the invention.
  • [0009]
    As illustrated in FIG. 1, the apparatus for carrying out the invention comprises a filter assembly 12 having a plurality of hollow fiber membranes 14. The terminal ends of the fibers are potted into an extraction header 16 which provides fluid communication between the hollow interior 15 of each of the fiber membranes and into the interior lumens of the triple-lumen catheter 20. The catheter 20 comprises a first lumen 22 for directing backflush fluid through the header 16 into the hollow interior of the elongated fiber membranes. A second lumen 24 directs plasma from the filter assembly to a plasma treatment apparatus 34 to provide ultrafiltration, dialysis, replacement, column adsorption, or a bioreactor or other such apparatus for treating or utilizing the plasma. A third lumen 26 directs the treated plasma back to the patient. Providing a separate lumen (22) for backflush fluid instead of using exudate lumen (24) for backflush eliminates deadspace in lumen 24 and the necessity of removing and reintroducing exudate to accommodate such backflush. The apparatus also includes one or more positive displacement pumps. A first pump 21 pumps fluid from a source of backflush fluid 32 at predetermined intervals and for a predetermined and selected duration as will be explained further hereinafter. A second positive displacement pump 23 pumps plasma exudate from the filter assembly via catheter lumen 24 through the treatment apparatus 34 and back to the patient via third catheter lumen 26. In other selected systems a third positive displacement pump 25 is used to pump the treated plasma or plasma component back to the patient via third catheter lumen 26. The catheter includes an orifice 27 which directs the returned treated plasma into the patient's blood vessel 11. Alternatively, an apparatus may only require three pumps, using one pump for plasma to and from the patient, a second pump for backflush, and a third pump for removing water or for pumping dialysate through a hemofilter.
  • [0010]
    The apparatus may also provide means for collecting and disposing of plasma components such as toxins, excess plasma water, etc, separated in the plasma exudate in treatment apparatus 34, and which is not to be returned to the patient. Such means is connected to the plasma treatment apparatus via conduct 37 and includes a collection container 39 and a pump 28 for pumping the effluent to be removed from the plasma exudate to the container.
  • [0011]
    The filter assembly 12, including the header and elongated hollow microporous membrane fibers 14, is implanted in a blood vessel 11 of the patient, preferably the vena cava, or other suitable blood vessel as described in the aforesaid patents. A preferred fiber membrane used in the filter assembly is disclosed in aforesaid application Ser. No. 09/549,131. Such a membrane has a plurality of zones between the inner and outer wall surfaces, each zone having a different mass density than the mass density of an adjacent zone. The membrane fiber wall may have two, three or four or more mass density zones with a lower mass density zone at the inner wall surface and a higher mass density zone at the outer wall surface. Each zone is characterized by a different average moninal pore size, with a lower mass density zone having a nominal average pore size of between about 1 um and about 60 um and a higher mass density zone having a nominal average pore diameter of between about 0.3 um and about 1 um. A preferred membrane has the capability of extracting up to 0.75 (ml/min)/(cm2Śmm Hg) at transmembrane pressures of between about 5 mm and about 50 mmHg. An implanted filter assembly is illustrated in FIG. 2 and further described in the aforesaid patents.
  • [0012]
    The backflush fluid source 32 comprises a container, bag or other suitable source of a backflush fluid, for example, a normal saline solution, or a source of fresh or treated plasma from which toxins, high molecular weight proteins and/or other undesirable contaminants have been removed. The apparatus also includes a microprocessor/controller 38 which controls operation of the pumps and manages the system. The microprocessor/controller is calibrated to determine the flowrate of the pumps. The system may include one or more pressure transducers for monitoring the pressure of fluids within all lumens. Such transducers, not shown, may be used to measure the transmembrane pressure thereby indicating when the pores of the filter have become clogged to an extent to terminate the extraction period, and initiate the backflush operation of the apparatus. Depending on the exudate flow determined by the microprocessor/controller and the transmembrane pressure sensed by such transducers, the microprocessor/controller may determine the duration of the backflush period, as well as the backflush flow rate to be used for substantially cleansing the pores of the fiber membrane. Pumps may also be provided having variable pressure capabilities which may also be regulated by the microprocessor/controller, if desired. The microprocessor/controller 38 may be used to manage the system through monitoring of the flows in the lumens of the catheter, particularly the flow of the exudate through catheter 24 and the pumping of the backflush fluid through the catheter lumen 22. Pump 25 may also be operated by the microprocessor/controller for returning the desired amount of treated plasma to the patient.
  • [0013]
    The backflush cycle is periodic and preferably provided at a high trans-membrane pressure and low volume, i.e., a low multiple of the volume contained in the membrane lumens of the hollow fibers of the filter and the extraction header. The combination of high pressure and relatively short injection times for backflushing both expands the membrane pores and dislodges adhered proteins, thereby restoring pore integrity and density of the virtual filter area to an improved performance level after each backflush cycle. Thus, the process of the invention not only prevents degradation due to clogging, but over time improves the yield of trans-membrane exudate flux in terms of (ml/min)/(cm2Śmm Hg) by progressively adjusting and thus optimizing the backflush parameters. Backflush pressures used are between about 15 and about 100 mm Hg which are substantially less than the trans-membrane pressure which is deemed safe since the burst pressures of the membranes are greater than 760 mm Hg.
  • [0014]
    As previously noted, the pumps used in the apparatus of the invention are positive displacement roller pumps. Thus, the fluid flows for both exudate extraction via catheter lumen 24 and backflush fluid injection via catheter lumen 22 are functions of the diameter of the tubing used and the pump revolutions per second. The microprocessor/controller is calibrated to the parameters of the tubing diameter and pump revolutions, thereby equating fluid volume pumped to the time of operation. For example, the setting of the parameters for the control and regulation of the pumps may be empirically determined for equating the volume and time for exudate extraction and backflush injection functions of the apparatus. By way of example, such parameters found to be useful for plasmapheresis have been empirically determined for an exudate extraction period of between about 240 and about 600 sec, and a backflush duration of between about 5 and about 50 sec, thereby yielding a preferred backflush fluid flow of between 5 and 45 ml/min. The settings for such parameters are determined by catheter design and by blood flow conditions around the filter and plasma extraction membrane. Again, it is desired and preferred to deliver a minimum amount of saline backflush fluid for cleansing the hollow fiber membrane pores. Moreover, the volume of the backflush injection bolus must be greater than the dead space volume of the catheter extraction header, the inner lumen of the hollow fibers, and the interstitial space in the membrane walls. In addition to the dead space volume, a certain amount of saline is needed to wash out the material that fouls the membrane. The volume of this washing fluid is dependent upon the surface area of the membrane and may be expressed as a bolus flux in ml/cm2. By way of example, a bolus flux used for in-vivo and in-vitro tests is 0.03 ml/cm2. Again, the injection bolus volume is determined from the dead space volume and the membrane surface areas set by the catheter design.
  • [0015]
    The time between backflush periods may be determined by how quickly the membrane becomes clogged. Unnecessarily short intervals between backflushes results in higher average backflush flow rates, thereby reducing the amount of plasma removed. On the other hand, where backflush intervals are overly long, plasma flow rates decline due to filter fouling. For example, an empirically determined interval between backflushes of 300 sec has been found to be useful for existing catheter designs.
  • [0016]
    The flow rate for backflush fluid injections is determined by pressure limitations of the catheter, the effect of flow velocity for substantially cleansing or clearing the membrane, and the amount of backflush or bolus volume required. A rise in pressure is a result of resistance to flow due to clogged membranes and is a function of the backflush flow rate, membrane surface area, and level of membrane clogging. The flow rate is also limited by the amount of pressure that the inner lumen of the catheter and fibers can withstand without failure. As previously noted, the velocity or pressure of the backflush fluid must be sufficient to dislodge the clogging material in all of the membrane surface. It has been found that with 16 ml/min and a surface area of 40 cm2, by using a backflush pressure of 15 mm Hg, all of the membrane is sufficiently and substantially cleared. The duration of the backflush bolus may also be lengthened or shortened to adjust the backflush flow volume. While the period between backflush intervals and the flow rate are closely related to membrane clearing requirements, the duration is not, thereby making it an obvious choice for adjustment of bolus volume. For example, a catheter with a dead volume of 1.5 ml and a surface area of 40 cm2 requires a bolus volume of 2.7 ml. A plasma extraction period of 300 sec and a flow rate of 16 ml/min results in a backflush duration of about 10 sec. The average backflush flow rate is computed to be 0.54 ml/min.
  • [0017]
    The clogging or fouling of the filtration membrane is a function of the flow rate of exudate through the extraction filter assembly, the size of which, i.e., cm2 of membrane surface area, is dictated by the clinical application to be served. Generally, the more advanced disease state of organ failure to be served requires greater exudate flow rate and a greater membrane surface area, resulting in earlier degradation of extraction performance and requiring a more aggressive program for backflush cleansing of the membrane. Thus, for example, treatment of advanced acute renal failure (ARF) and end stage renal disease (ESRD) requires substantially higher fluid extraction rates for optimum clinical results as compared to fluid management systems for treating congestive heart failure (CHF).
  • [0018]
    A comparison of a system using backflush components and methods of the invention with a system having no backflush is illustrated in the graph of FIG. 3, and based on actual test results which have been repeated over time. The results show marked improvement using apparatus and method of the invention.
  • [0019]
    As previously described, useful backflush fluid may be a normal saline solution. The backflush fluid may also contain other desirable components. For example, it may be efficacious to incorporate anticoagulants in the backflush fluid to provide systemic anticoagulation, or to provide localized anticoagulation protection to the fibers for reducing or inhibiting thrombosis or clotting at or near the fiber surface and within the fiber wall itself. Some very useful fiber polymers will not have heparin retaining sites, while other useful polymers may include active anti-thrombogenicity, for example, polymers with heparin receptores. Where such anti-thrombogenic properties are not permanent, for example, where heparin is not permanently bound to the polymer, backflushing with heparin containing fluid will replenish the membrane with anticoagulant for continued thromboresistance throughout the in-vivo plasmapheresis. Desired and useful concentrations of heparin in the backflush fluid will be determined by those skilled in the art. Useful amounts of heparin in a backflush fluid such as a normal saline solution for treating the fibers for thromboresistance are of at least 1 IU and preferably 2 IU or more per kilogram of human patient body weight for backflushing at 5 minute intervals. For treating the fibers for continuing thrombosresistance, heparin concentrations of between about 25 IU and 300 IU per ml and preferably between about 75 IU and about 150 IU per ml of backflush fluid may be used. The backflush fluid may also be used to induce systemic anti-coagulation. For example, a single backflush 2.5 ml bolus containing between about 25 IU and about 150 IU and preferably between about 50 IU and about 100 IU per kilogram of human patient body weight should be sufficient to induce systemic anti-coagulation. Moreover, systemic anti-coagulation may be maintained using heparin backflush concentrations somewhere between the aforesaid fiber treatment and systemic inducement concentrations. However, other concentrations of heparin may be used where desired or as determined or prescribed, depending on backflush intervals, duration, and other process and backflushing variables such as described herein.
  • [0020]
    Medical applications of systems using the aforesaid invention include fluid management for patients in decompensated congestive heart failure and prevention of pre-renal kidney failure and acute respiratory distress syndrome, treatment of refractive congestive heart failure and acute renal failure, as well as therapeutic apheresis systems for immune system disease and blood component therapy, edema, management systems for ascites, lymphedema, and selective systemic edema, post surgical and traumatic edema, tissue engineering applications including bioreactors and hybrid bio-organs, and dialysis systems for end stage renal disease. Other uses and applications will be appreciated by those skilled in the art.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4086924 *Oct 6, 1976May 2, 1978Haemonetics CorporationPlasmapheresis apparatus
US4235231 *Jul 28, 1978Nov 25, 1980Dr. E. Fresenius Chemisch Pharmazeutische Industrie KGPortable artificial kidney
US4668214 *Jun 9, 1986May 26, 1987Electromedics, Inc.Method of washing red blood cells
US4708799 *Sep 17, 1985Nov 24, 1987Klaus GerlachHollow fiber membrane for plasma separation
US4832034 *Apr 9, 1987May 23, 1989Pizziconi Vincent BMethod and apparatus for withdrawing, collecting and biosensing chemical constituents from complex fluids
US4919817 *Feb 18, 1988Apr 24, 1990Baxter International Inc.Blood cell washing systems and methods
US4950224 *Aug 5, 1988Aug 21, 1990Healthdyne, Inc.Apparatus and method for in vivo plasma separation
US5053121 *Nov 29, 1989Oct 1, 1991Baxter International Inc.Blood cell washing systems and methods
US5145583 *Dec 21, 1990Sep 8, 1992Hospal IndustrieAsymmetric semipermeable membrane for the treatment of biological fluids
US5151082 *Aug 20, 1990Sep 29, 1992Heathdyne, Inc.Apparatus and method for kidney dialysis using plasma in lieu of blood
US5152743 *Aug 20, 1990Oct 6, 1992Healthdyne, Inc.Apparatus and method for selective separation of blood cholesterol
US5211850 *Jul 26, 1991May 18, 1993Research Medical, Inc.Plasma filter sorbent system for removal of components from blood
US5224926 *Aug 16, 1991Jul 6, 1993Healthdyne, Inc.Transvivo plasma extraction catheter device
US5242382 *Aug 20, 1990Sep 7, 1993Healthdyne, Inc.Apparatus and method for direct measurement of blood parameters
US5536412 *Jan 11, 1994Jul 16, 1996Hemocleanse, Inc.Hemofiltration and plasmafiltration devices and methods
US5549674 *Oct 8, 1993Aug 27, 1996The Regents Of The University Of MichiganMethods and compositions of a bioartificial kidney suitable for use in vivo or ex vivo
US5674452 *Oct 25, 1995Oct 7, 1997Cobe LaboratoriesHollow fiber exchangers
US5735809 *Dec 5, 1996Apr 7, 1998Matria Healthcare, Inc.Fiber assembly for in vivo plasma separation
US5868717 *Apr 10, 1996Feb 9, 1999Biolink CorporationDual-lumen catheter and method of use
US5968004 *Sep 23, 1997Oct 19, 1999Matria Healthcare, Inc.Microporous membrane sheet plasma extraction catheter
US5980481 *May 8, 1997Nov 9, 1999Transvivo, Inc.Method and apparatus for continuous peritoneal cascade dialysis and hemofiltration (CPCD/H)
US6044691 *Aug 26, 1998Apr 4, 2000Aksys, Ltd.Blood tubing set integrity tests for extracorporeal circuits
US6248087 *Jan 27, 1999Jun 19, 2001Therox, Inc.Apparatus for generalized extracorporeal support
US6762206 *Jan 8, 2001Jul 13, 2004Becton, Dickinson And CompanyCatheter flush solution and method for its use
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7354392 *Feb 25, 2004Apr 8, 2008Transvivo Inc.Structurally optimized hollow fiber membranes
US7597677Sep 19, 2002Oct 6, 2009National Quality Care, Inc.Wearable ultrafiltration device
US7871390Nov 19, 2007Jan 18, 2011Fresenius Medical Care Holdings, Inc.Enhanced clearance in an artificial kidney incorporating a pulsatile pump
US7896830Nov 1, 2007Mar 1, 2011Fresenius Medical Care Holdings, Inc.Wearable ultrafiltration device
US8040493Oct 7, 2009Oct 18, 2011Fresenius Medical Care Holdings, Inc.Thermal flow meter
US8137299Oct 6, 2009Mar 20, 2012Fresenius Medical Care Holdings, Inc.Wearable ultrafiltration device
US8206331Dec 11, 2009Jun 26, 2012Fresenius Medical Care Holdings, Inc.Wearable ultrafiltration device
US8395761Sep 25, 2011Mar 12, 2013Fresenius Medical Care Holdings, Inc.Thermal flow meter
US8475399Feb 26, 2010Jul 2, 2013Fresenius Medical Care Holdings, Inc.Methods and systems for measuring and verifying additives for use in a dialysis machine
US8597505Feb 8, 2011Dec 3, 2013Fresenius Medical Care Holdings, Inc.Portable dialysis machine
US8641655Dec 23, 2010Feb 4, 2014Fresenius Medical Care Holdings, Inc.Enhanced clearance in an artificial kidney incorporating a pulsatile pump
US8771511Jan 9, 2012Jul 8, 2014Fresenius Medical Care Holdings, Inc.Disposable apparatus and kit for conducting dialysis
US8840790Apr 27, 2011Sep 23, 2014Fenwal, Inc.Systems and methods of controlling fouling during a filtration procedure
US9157786Dec 24, 2012Oct 13, 2015Fresenius Medical Care Holdings, Inc.Load suspension and weighing system for a dialysis machine reservoir
US20030097087 *Sep 19, 2002May 22, 2003Victor GuraWearable ultrafiltration device
US20050187508 *Feb 25, 2004Aug 25, 2005Gorsuch Reynolds G.Structurally optimized hollow fiber membranes
US20080051689 *Nov 1, 2007Feb 28, 2008National Quality Care, Inc.Wearable ultrafiltration device
US20100094193 *Dec 11, 2009Apr 15, 2010National Quality Care, Inc.Wearable ultrafiltration device
US20100318116 *Jan 28, 2009Dec 16, 2010Peter Forselldrainage device comprising a filter cleaning device
WO2008064174A1 *Nov 19, 2007May 29, 2008Nat Quality Care IncEnhanced clearance in an artificial kidney incorporating a pulsatile pump
U.S. Classification604/6.04, 604/4.01
International ClassificationB01D65/02, A61M1/02, A61M1/16, A61M1/18, B01D69/12, A61M1/34, B01D61/28, B01D63/02, A61M1/14, B01D65/06
Cooperative ClassificationA61M2205/7554, A61M1/3413, A61M1/1678
European ClassificationA61M1/16E
Legal Events
Jun 24, 2003ASAssignment
Effective date: 20030411